RU2285304C2 - Строительный материал с радиационно-защитными свойствами и способ его получения - Google Patents

Строительный материал с радиационно-защитными свойствами и способ его получения Download PDF

Info

Publication number
RU2285304C2
RU2285304C2 RU2004134251/06A RU2004134251A RU2285304C2 RU 2285304 C2 RU2285304 C2 RU 2285304C2 RU 2004134251/06 A RU2004134251/06 A RU 2004134251/06A RU 2004134251 A RU2004134251 A RU 2004134251A RU 2285304 C2 RU2285304 C2 RU 2285304C2
Authority
RU
Russia
Prior art keywords
binder
production
waste
aggregate
filler
Prior art date
Application number
RU2004134251/06A
Other languages
English (en)
Other versions
RU2004134251A (ru
Inventor
Владимир Ильич Харитонов (RU)
Владимир Ильич Харитонов
Original Assignee
Владимир Ильич Харитонов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Ильич Харитонов filed Critical Владимир Ильич Харитонов
Priority to RU2004134251/06A priority Critical patent/RU2285304C2/ru
Priority to UAA200510941A priority patent/UA79381C2/uk
Publication of RU2004134251A publication Critical patent/RU2004134251A/ru
Application granted granted Critical
Publication of RU2285304C2 publication Critical patent/RU2285304C2/ru

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Building Environments (AREA)

Abstract

Изобретение относится к области защиты от ионизирующего излучения. Сущность изобретения: строительный материал с радиационно-защитными свойствами в качестве заполнителя содержит отходы производства марганцевых ферросплавов, а в качестве связующего - тетраборат натрия при следующем соотношении компонентов мас.%: заполнитель 80-95; связующее 5-20. Способ получения строительного материала с радиационно-защитными свойствами заключается в смешении заполнителя и связующего. В качестве заполнителя используют отходы производства марганцевых ферросплавов, а в качестве связующего - тетраборат натрия. После смешения производят полусухое прессование и термообработку. Преимущество изобретения заключается в повышении радиационно-защитных свойств и прочностных параметров материала. 2 н. и 14 з.п. ф-лы, 1 табл.

Description

Изобретение относится к строительным материалам, обладающим конструкционными свойствами и способностью защиты от радиационного излучения, и способам получения таких материалов.
Известен строительный материал с радиационно-защитными свойствами, содержащий заполнитель, в качестве которого использованы промышленные отходы, содержащие карбонаты магния и кальция, оксиды железа, хрома и кремния, и связующее (FR 1584078, кл. G 21 F 1/04, 1969 г.). Недостатком этого решения следует признать слабую степень радиационной защиты, возможность наличия в материале токсичных элементов, таких как хром, а также ограниченные ресурсы таких отходов,
Известен также радиационно-защитный материал, содержащий заполнитель и связующее, в котором в качестве заполнителя применяются железомарганцевые конкреции (ЖМК), а в качестве связующего - цемент (RU 2029399 С1, кл. G 21 F 1/04, 1995 г.). Этот материал является наиболее близким к заявленному. Материал обладает радиационно-защитными свойствами, однако механические характеристики ограничивают его применение в качестве конструкционного материала. Кроме того, ограничены и труднодоступны сырьевые ресурсы ЖМК, что в конечном итоге приводит к значительному удорожанию материала.
Задачей изобретения является создание конструкционного строительного экологически чистого материала, обладающего радиационно-защитными свойствами, с использованием дешевого и доступного сырья.
Техническим результатом является утилизация отходов металлургического производства и создание на их основе дешевого радиационно-защитного строительного материала с наличием конструкционных качеств, позволяющих производить такие строительные элементы, как кирпичи, блоки, плитки, панели и пр.
Технический результат достигается тем, что в строительном материале, содержащем заполнитель и связующее, в качестве заполнителя использованы отходы производства марганцевых ферросплавов, а в качестве связующего - тетраборат натрия.
Соотношение компонентов заполнителя и связующего может составлять, мас.%:
Заполнитель 80-95
Связующее 5-20
что обеспечивает наилучшие радиационно-защитные и прочностные характеристики.
В качестве заполнителя могут быть использованы отходы производства силикомарганца и/или ферромарганца, что позволяет утилизировать отходы и получить строительный материал.
Отходы производства силикомарганца могут содержать оксиды кремния, кальция, алюминия, марганца, магния при следующем соотношении компонентов, мас.%:
SiO2 35-45
CaO 25-30
Al2O3 15-25
MnO 3-15
MgO 5-10
что обеспечивает получение требуемых физико-механических свойств материала.
Отходы производства силикомарганца могут быть использованы в виде гранулированного шлака, что расширяет сырьевую базу для производства материала и удешевляет его получение.
Отходы производства ферромарганца могут содержать марганец и оксиды кремния, алюминия, кальция, магния при следующем соотношении компонентов, мас.%:
Mn 20-35
SiO2 20-30
Al2O3 15-25
CaO 10-15
MgO 3-10
что повышает радиационно-защитные показатели материала.
Известен способ получения строительного материала, заключающийся в смешении кальцийсодержащих и строительных и промышленных отходов, таких как дробленые бетонные конструкции, металлургические и угольные шлаки, песок и пр. (RU 2102802 С1, кл. G 21 F 3/04, 1998 г.). Однако полученный таким способом материал имеет слабые радиационно-защитные свойства и невысокие прочностные показатели.
Известен способ получения строительного материала с радиационно-защитными свойствами, заключающийся в смешении заполнителя и связующего, в котором в качестве заполнителя применяются железомарганцевые конкреции (ЖМК), а в качестве связующего - цемент (RU 2029399 С1, кл. G 21 F 1/04, 1995 г. - прототип).Недостатком этого способа является то, что его реализация не обеспечивает получение материала с физико-механическими характеристиками (прочность, огнеупорность), необходимыми для его применения в качестве конструкционного материала. Кроме того, способ представляется дорогостоящим и трудно реализуемым ввиду ограниченности и труднодоступности сырьевых ресурсов ЖМК, что в конечном итоге приводит к значительному удорожанию материала.
Задачей изобретения является создание простого и дешевого способа получения материала, обладающего радиационно-защитными и конструкционными свойствами.
Техническим результатом является создание эффективной, экологически чистой и недорогой технологии утилизации шлаков ферросплавной промышленности и производства радиационно-защитного материала, прочностные и стоимостные параметры которого и конструкционные качества позволяют производить из него такие строительные материалы, как кирпичи, блоки, плитка, панели и пр.
Технический результат достигается тем, что в способе получения строительного материала с радиационно-защитными свойствами, заключающемся в смешении заполнителя и связующего, в качестве заполнителя используют отходы производства марганцевых ферросплавов, а в качестве связующего - тетраборат натрия, после смешения которых производят полусухое прессование и термообработку.
Заполнитель и связующее могут использовать при следующем соотношении компонентов, мас.%:
Заполнитель 80-95
Связующее 5-20
что обеспечивает наилучшие радиационно-защитные и прочностные характеристики материала.
В качестве заполнителя могут использовать отходы производства силикомарганца и/или ферромарганца, что позволяет утилизировать отходы и получить строительный материал.
Могут использовать отходы производства силикомарганца, содержащие оксиды кремния, кальция, алюминия, марганца, магния при следующем соотношении компонентов, мас.%:
SiO2 35-45
CaO 25-30
Al2О3 15-25
MnO 3-15
MgO 5-10
что обеспечивает получение требуемых физико-механических свойств материала.
Отходы производства силикомарганца могут использовать в виде гранулированного шлака, что расширяет сырьевую базу для производства материала и удешевляет его получение,
Могут использовать отходы производства ферромарганца, содержащие марганец и оксиды кремния, алюминия, кальция, магния при следующем соотношении компонентов, мас.%:
Mn 20-35
SiO2 20-30
Al2O3 15-25
CaO 10-15
MgO 3-10
что повышает радиационно-защитные показатели материала.
Перед смешением отходы производства ферромарганца могут подвергать:
измельчению до размера частиц не более 2 мм,
что повышает прочностные показатели материала.
Перед смешением отходы производства силикомарганца могут обжигать при температуре 300-400°С в течение 25-35 минут, что обеспечивает повышение физико-механических свойств материала.
При смешении заполнителя и связующего могут добавлять воду в количестве 3-6 мас.% от суммарного количества заполнителя и связующего, что обеспечивает физико-механические свойства материала.
Прессование могут производить в течение 20-60 сек под давлением 30-40 МПа, что обеспечивает физико-механические свойства материала.
После прессования материал могут выдерживать от 24 до 72 часов при положительной температуре окружающей среды, что обеспечивает физико-механические свойства материала.
При термообработке могут нагревать материал при скорости нагрева от 1 до 3°С в минуту до 105-110°С и выдерживать от 1 до 3 часов, после чего с той же скоростью нагревать до температуры обжига 700-800°С и выдерживать в течение 12-36 часов, после чего подвергать охлаждению при положительной температуре окружающей среды, что обеспечивает получение материала с высокими физико-механическими свойствами.
Настоящее изобретение поясняется конкретными примерами 1 и 2, которые не являются единственно возможными, но подтверждают получение заявленного технического результата.
Пример 1. Шлак производства силикомарганца марки СМн 20 по ГОСТ 4756-77 с модулем основности (СаО+MgO/SiO2+Al2О3)=0,54, использованный в качестве заполнителя, измельчали в шаровой мельнице и просеивали через сито с размером ячейки 2×2 мм, после чего обжигали в печи при температуре 300°С в течение 30 минут для удаления содержащих углерод частиц. В качестве связующего использовали тетраборат натрия декагидрат Na2B4O7×10Н2О. Заполнитель и связующее при соотношении. 88 и 12 мас.% соответственно смешивали с добавлением воды в количестве 3,5 мас.% от суммарного количества заполнителя и связующего. Смешивание производили в бетономешалке в течение 15 минут. Полученную смесь размещали в пресс-формах и выдерживали под прессом при давлении 39 МПа в течение 30 сек. Отпрессованный материал размером 23,6×11,6×7 см размещали на стеллажах и в течение 48 часов выдерживали при температуре окружающей среды 15°С. После выдержки осуществляли термообработку материала, для чего материал помещали в печь и нагревали при скорости нагрева 3°С в минуту до температуры 105°С, при которой выдерживали в течение 2 часов для удаления добавленной при смешивании воды, после чего с той же скоростью нагревали до температуры обжига 750°С, при которой материал выдерживали в течение 24 часов. После обжига материал охлаждали при температуре окружающей среды 15°С.
Физико-механические свойства полученного материала приведены в таблице.
Пример 2. Шлак производства высокоуглеродистого ферромарганца марки ФМн 78 К по ГОСТ 4755-80, использованный в качестве заполнителя, измельчали и просеивали через сито с размером ячейки 2×2 мм. В качестве связующего использовали тетраборат натрия декагидрат Na2B4O7×10Н2О. Заполнитель и связующее при соотношении 88 и 12 мас.% соответственно смешивали с добавлением воды в количестве 5 мас.% от суммарного количества заполнителя и связующего. Смешивание производили в бетономешалке в течение 20 минут. Полученную смесь размещали в пресс-формах и выдерживали под прессом при давлении 39 МПа в течение 30 сек. Отпрессованный материал размером 23,6×11,6×7,5 см размещали на стеллажах и в течение 48 часов выдерживали при температуре естественной окружающей среды 15°С. После выдержки осуществляли термообработку материала, для чего материал помещали в печь и нагревали при скорости нагрева 3°С в минуту до температуры 105°С, при которой выдерживали в течение 2 часов для удаления добавленной при смешивании воды, после чего с той же скоростью нагревали до температуры обжига 750°С, при которой материал выдерживали в течение 24 часов. После обжига материал охлаждали при температуре окружающей среды 15°С.
Физико-механические свойства полученного материала приведены в таблице. Реализация изобретения позволит получить новый экологически чистый и дешевый строительный материал, обладающий не только необходимыми конструкционными свойствами, позволяющими использовать его в виде таких строительных элементов как кирпичи, блоки, плиты, панели и пр., но и радиационно-защитными свойствами. Кроме того, реализация изобретения позволит решить экологическую проблему утилизации отходов производства марганцевых ферросплавов.
Таблица
Параметр Материал по примеру 1 Материал по примеру 2
Плотность, г/см3 1,6 2,15
Предел прочности при сжатии, МПа 28 30
Предел прочности при изгибе, МПа 6 7
Поглощение воды, мас.% 17 15
Линейный коэффициент ослабления гамма-излучения, см-1 (источник 60Со) 0,098 0,114
Слой половинного ослабления гамма-излучения (источник 60Со) d 0,5 см 7,0 6,0
Степень поглощения нейтронов по отношению к графиту с плотностью 1,70 г/см3 (источник 252Cf) % 51 70

Claims (16)

1. Строительный материал с радиационно-защитными свойствами, содержащий заполнитель и связующее, отличающийся тем, что строительный материал с радиационно-защитными свойствами в качестве заполнителя содержит отходы производства марганцевых ферросплавов, а в качестве связующего - тетраборат натрия при следующем соотношении компонентов, мас.%:
Заполнитель 80-95 Связующее 5-20
2. Материал по п.1, отличающийся тем, что в качестве заполнителя он содержит отходы производства силикомарганца и/или ферромарганца.
3. Материал по п.2, отличающийся тем, что отходы производства силикомарганца содержат оксиды кремния, кальция, алюминия, марганца, магния при следующем соотношении компонентов, мас.%:
SiO2 35-45 CaO 25-30 Al2O3 15-25 MnO 3-15 MgO 5-10
4. Материал по п.3, отличающийся тем, что отходы производства силикомарганца использованы в виде гранулированного шлака.
5. Материал по п.2, отличающийся тем, что отходы производства ферромарганца содержат марганец и оксиды кремния, алюминия, кальция, магния при следующем соотношении компонентов, мас.%:
Mn 20-35 SiO2 20-30 Al2O3 15-25 CaO 10-15 MgO 3-10
6. Способ получения строительного материала с радиационно-защитными свойствами, заключающийся в смешении заполнителя и связующего, отличающийся тем, что в качестве заполнителя используют отходы производства марганцевых ферросплавов, а в качестве связующего - тетраборат натрия, после смешения которых производят полусухое прессование и термообработку, а заполнитель и связующее используют при следующем соотношении компонентов, мас.%:
Заполнитель 80-95 Связующее 5-20
7. Способ по п.6, отличающийся тем, что в качестве заполнителя используют отходы производства силикомарганца и/или отходы производства ферромарганца.
8. Способ по п.7, отличающийся тем, что используют отходы производства силикомарганца, содержащие оксиды кремния, кальция, алюминия, марганца, магния при следующем соотношении компонентов, мас.%:
SiO2 35-45 CaO 25-30 Al2O3 15-25 MnO 3-15 MgO 5-10
9. Способ по п.8, отличающийся тем, что отходы производства силикомарганца используют в виде гранулированного шлака.
10. Способ по п.7, отличающийся тем, что используют отходы производства ферромарганца, содержащие марганец и оксиды кремния, алюминия, кальция, магния при следующем соотношении компонентов, мас.%:
Mn 20-35 SiO2 20-30 Al2О3 15-25 CaO 10-15 MgO 3-10
11. Способ по п.7 или 10, отличающийся тем, что перед смешением отходы производства ферромарганца подвергают измельчению до размера частиц не более 2 мм.
12. Способ по п.8 или 9, отличающийся тем, что перед смешением заполнитель обжигают при температуре 300-400°С в течение 25-35 мин.
13. Способ по любому из пп.6-10, отличающийся тем, что при смешении заполнителя и связующего добавляют воду в количестве 3-6 мас.% от суммарного количества заполнителя и связующего.
14. Способ по любому из пп.6-10, отличающийся тем, что прессование производят в течение 20-60 с под давлением 30-40 МПа.
15. Способ по любому пп.6-10, отличающийся тем, что после прессования материал выдерживают от 24 до 72 ч при положительной температуре окружающей среды.
16. Способ по любому из пп.6-10, отличающийся тем, что при термообработке нагревают материал при скорости нагрева 1-3°С/мин до 105-110°С и выдерживают от 1 до 3 ч, после чего с той же скоростью нагревают до температуры обжига 700-800°С и выдерживают в течение 12-36 ч, после чего подвергают охлаждению при положительной температуре окружающей среды.
RU2004134251/06A 2004-11-24 2004-11-24 Строительный материал с радиационно-защитными свойствами и способ его получения RU2285304C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2004134251/06A RU2285304C2 (ru) 2004-11-24 2004-11-24 Строительный материал с радиационно-защитными свойствами и способ его получения
UAA200510941A UA79381C2 (en) 2004-11-24 2005-11-18 Building material with radiation-protection properties and method to obtain it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004134251/06A RU2285304C2 (ru) 2004-11-24 2004-11-24 Строительный материал с радиационно-защитными свойствами и способ его получения

Publications (2)

Publication Number Publication Date
RU2004134251A RU2004134251A (ru) 2006-05-10
RU2285304C2 true RU2285304C2 (ru) 2006-10-10

Family

ID=36656567

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004134251/06A RU2285304C2 (ru) 2004-11-24 2004-11-24 Строительный материал с радиационно-защитными свойствами и способ его получения

Country Status (2)

Country Link
RU (1) RU2285304C2 (ru)
UA (1) UA79381C2 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КОМАРОВСКИЙ А.Н. "Строительство ядерных установок", Москва, Атомиздат, 1965, с.19-57. *

Also Published As

Publication number Publication date
UA79381C2 (en) 2007-06-11
RU2004134251A (ru) 2006-05-10

Similar Documents

Publication Publication Date Title
KR102079643B1 (ko) 해조류를 이용하여 미세플라스틱 등 해양오염을 저감시키고 내구성을 향상시킨 친환경 해양 콘크리트 조성물 및 이를 이용한 시공방법
KR101889783B1 (ko) 고칼슘 플라이애시와 철강산업부산물을 이용한 고화재 및 그 제조 방법
US20140338571A1 (en) Aggregates
KR101160890B1 (ko) 흙 블록용 조성물
KR102210123B1 (ko) 친환경적인 레미콘 조성물 및 이의 제조방법
US8206503B2 (en) Method and composition for making a concrete product from sludge
KR101966101B1 (ko) 결정성장 촉진형 하이브리드 자기치유 혼화재의 제조방법과 그 자기치유 혼화재를 이용한 시멘트 결합재 조성물
CN112573900A (zh) 一种铸造除尘灰和污泥的再利用方法
CN107353032B (zh) 一种以工业无机危险废物和耐火粘土尾矿为原料的发泡陶瓷保温板及制备方法
KR20120073621A (ko) 이산화탄소 흡수력이 촉진된 이산화탄소 저장 콘크리트 및 그 제조방법.
KR20170096494A (ko) 초속경 강회 및 이를 포함하는 초속경 강회 몰탈
RU2285304C2 (ru) Строительный материал с радиационно-защитными свойствами и способ его получения
KR101215067B1 (ko) 석면폐기물을 이용한 경량 건축자재의 제조 방법
KR100873872B1 (ko) 석분슬러지와 바텀애시를 혼합한 인공경량골재의 제조방법
JP2018080075A (ja) セメント混和材、セメント混和材の製造方法、セメント組成物およびセメント組成物の製造方法
Bayraktar et al. The mechanical properties of the different cooling requirements of high-temperature plaster
KR101866854B1 (ko) 폐자원을 이용한 친해양환경성 해양콘크리트용 결합재 조성물, 이를 포함하는 해양구조물용 시멘트 모르타르 및 해양구조물용 콘크리트
KR20000072111A (ko) 경량 골재용 조성물 및 그 제조방법
CN103524107A (zh) 一种无机防火芯层的材料配方
JP3888931B2 (ja) セメント硬化体及びその製造方法
JPS62260753A (ja) 中性固化剤及び中性固化剤の製造方法
KR101755626B1 (ko) 화강석 슬러지와 친환경 바인더 수지를 이용한 고화제 및 이의 제조방법
RU2285303C2 (ru) Радиационно-защитный материал и способ его получения
US20190308909A1 (en) Sintered ceramics
KR102488356B1 (ko) 비소성 인공골재 조성물 및 그 제조방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121125