RU2282917C1 - Гальванический источник постоянного тока - Google Patents

Гальванический источник постоянного тока Download PDF

Info

Publication number
RU2282917C1
RU2282917C1 RU2005103365/09A RU2005103365A RU2282917C1 RU 2282917 C1 RU2282917 C1 RU 2282917C1 RU 2005103365/09 A RU2005103365/09 A RU 2005103365/09A RU 2005103365 A RU2005103365 A RU 2005103365A RU 2282917 C1 RU2282917 C1 RU 2282917C1
Authority
RU
Russia
Prior art keywords
electrolyte
vessel
acid
metal
current
Prior art date
Application number
RU2005103365/09A
Other languages
English (en)
Inventor
Леонид Семенович Чугунов (RU)
Леонид Семенович Чугунов
Анатолий Константинович Терехов (RU)
Анатолий Константинович Терехов
Сергей Алексеевич Радин (RU)
Сергей Алексеевич Радин
Original Assignee
Открытое акционерное общество "Инфотэк Груп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Инфотэк Груп" filed Critical Открытое акционерное общество "Инфотэк Груп"
Priority to RU2005103365/09A priority Critical patent/RU2282917C1/ru
Application granted granted Critical
Publication of RU2282917C1 publication Critical patent/RU2282917C1/ru

Links

Classifications

    • Y02E60/12

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано при производстве гальванических источников постоянного тока. Техническим результатом изобретения является увеличение тока разряда и повышение электрической емкости. Согласно изобретению в источнике тока в качестве электролита используется гетерополикислота 2-18 ряда, имеющая химическую формулу H6[P2W18O62] с активизированной электронной оболочкой анионного комплекса, который способен накапливать в себе заряды высокой плотности, делая тем самым вещество сильно реакционноспособным. 1 ил.

Description

Изобретение относится к области электротехники, а именно к созданию источников постоянного тока с высокой энергоемкостью и большим сроком службы. Оно может быть использовано как в отдельных элементах и батареях для бытовых приборов, так и для промышленных целей.
Известен химический источник тока в которых задача повышения энергоемкости решается за счет совместной работы минерального и органического электрода (Rn 2123741 Н 01 М 6/04) [1].
Известны химические источники тока, в которых эта задача решается за счет выбора конструкции электродов и специальных материалов для их покрытия (заявка №2000113905/09 Н 01 М 6/16) [2], сочетания материала электродов и электролита на основе фторидов (заявка №99121067/09) [3]. Наиболее близким к заявленному является источник постоянного тока (заявка №98115948/09) [4] на основе лития. Известный химический источник тока сдержит корпус, положительный электрод и систему «отрицательный электрод - электролит - активный компонент положительного электрода в виде оксигалоидного аниона». В качестве отрицательного электрода используют литий, литийсодержащий сплав, интеркалат лития или металл II-VIII групп, в качестве электролита - неводный или водный электролит, а в качестве оксигалоидного аниона - хлор в степени окисления +5 или бром в степени окисления +5 или +7, йод в степени окисления +5 или +7 или их смесь.
Техническая задача заключается в изготовлении гальванических источников тока с повышенной энергоемкостью, повышенным током разряда, а также большим сроком службы.
Технический результат достигается за счет использования в первичном источнике тока в качестве электролита гетерополикислоты 2-18 ряда, имеющей химическую формулу H6[P2W18O62] с активизированной электронной оболочкой анионного комплекса, который способен накапливать в себе заряды высокой плотности, делая тем самым вещество сильно реакционноспособным (патенты №2168289, №2218320. La Revue Polytechnique N 1620 Prix Nobel: la mecanique quantique a l honneur. Revue du palais de decouverte N 264, janvier 99. «Наука и жизнь» N 1, 1999 г. Нобелевские премии 1998 года.). Благодаря этому свойству, при пропускании постоянного электрического тока даже малой величины через гетерополикислоту, она начинает проявлять себя как сильнейший окислитель с выделением электрической энергии.
Сущность заявленного технического решения сводится к тому, что в гальваническом источнике постоянного тока, содержащем сосуд с электролитом, в котором размещены, один из металла, а другой из угля или графита, в качестве электролита использована гетерополикислота 2-18 ряда, имеющая химическую формулу H6[P2W18O62] с активизированной электронной оболочкой анионного комплекса, а внутренняя полость сосуда покрыта непроводящим инертным материалом, а металл катода выбран из ряда: медь, железо, никель, цинк, алюминий, марганец или свинец.
На чертеже представлен гальванический источник постоянного тока согласно настоящему изобретению он состоит из сосуда 1, внутренняя часть которого должна быть покрыта непроводящим инертным материалом (диэлектрическими полимерами, инертной смолой и т.д.). Сосуд может быть выполнен также из стекла или непроводящей керамики. В сосуд погружаются два электрода. В качестве анода используется угольный или графитовый электрод 2. В качестве катода используется металлический электрод 3, который может быть выполнен например из меди, железа, никеля, цинка, алюминия, магния или свинца. В сосуд с электродами заливают электролит 4 в виде 20-60%-ного раствора гетерополикислоты 2-18 ряда, имеющей химическую форму Н62W18O62] с активизированной электронной оболочкой анионного комплекса. Начинается реакция металла с кислотой. Химическую реакцию в общем виде можно записать следующим образом:
Figure 00000002
где n - степень окисления металла Me.
Степень окисления анионного комплекса не меняется. Металл, растворяясь в кислоте, отдает положительно заряженные ионы в раствор, при этом металлический электрод заряжается отрицательно. Между угольным или графитовым и металлическим электродом возникает разность потенциалов и, если к электродам подключить электрическую нагрузку 5, то в цепи возникнет электрический ток. Как уже говорилось, при воздействии даже слабого электрического постоянного тока, на катоде начинается окислительно-восстановительный процесс.
В общем виде его можно изобразить следующим образом:
Figure 00000003
где n - степень окисления металла.
В водном растворе соединение диссоциирует на ионы (уравнение 3)
Figure 00000004
Вольфрам принимает на себя два электрона, изменяя степень окисления с +6 до +4. При этом анионный гетерополикомплекс изменяет свой заряд с 6- до 42-. В цепи возникает постоянный электрический ток.
На катоде выделяется газообразный кислород, который вновь окисляет восстанавливаемый комплекс до степени окисления 6-.
На чертеже большими стрелками показана окисленная форма геетерополикомплекса и черными восстановленная. Таким образом благодаря восстановлению на катоде происходит рециркуляция гетерополикомплекса (уравнение 2). В результате чего гальванический источник постоянного тока работает непрерывно.
Расходными материалами является гетерополикислота и вода. Последняя расходуется частично, так как связать полностью выделяющийся газовый кислород и водород практически не возможно.
Далее приведен пример работы конкретного источника постоянного тока согласно настоящему изобретению с медным и графитовым электродами и электролитом из 30% водного раствора гетерополикислоты.
В стеклянный сосуд 1 емкостью 500 мл погрузили медный и графитовый электрод 2, 3. Между ними установили электрическую нагрузку в виде сопротивления. Резистор номиналом 10 Ом, обозначенный на чертеже RH, и переключатель 5. В сосуд налили 30%-ный водный раствор гетерополикислоты 2-18 ряда и имеющую химическую формулу Н62W18O62] с активизированной электронной оболочкой анионного комплекса.
До того пока цепь не замкнута, произошла реакция взаимодействия меди с кислотой:
Cu+H6[P2W18O62]=CuH4[P2W18O62]+H2
Произошла реакция присоединения. Медь, растворяясь в кислоте, отдавая положительные заряженные ионы в раствор, зарядилась отрицательно. Между электродами возникла разность потенциалов.
Созданный таким образом гальванический источник тока будет работать до полной выработки кислоты.
Расход кислоты и воды на 1 Вт/ч электроэнергии составляет соответственно 10-9 г кислоты и 10-4 г воды.
Таким образом, используя в заявленном техническом решении в качестве электролита гетерополикислоту 2-18 ряда с активизированной электронной оболочкой анионного комплекса, который способен накапливать в себе заряды высокой плотности, делая тем самым выбранное в качестве электролита вещество сильно реактивноспособным, можно создавать источники постоянного тока с высокой энергоемкостью и большим сроком службы.

Claims (1)

  1. Гальванический источник постоянного тока, содержащий сосуд с электролитом, в котором размещены электроды, один из металла, а другой из угля или графита, отличающийся тем, что в качестве электролита использована гетерополикислота 2-18 ряда, имеющая формулу H6[P2W18O62] с активизированной электронной оболочкой анионного комплекса, внутренняя полость сосуда покрыта непроводящим инертным материалом, а металл катода выбран из группы: медь, железо, никель, цинк I, алюминий, марганец или свинец.
RU2005103365/09A 2005-02-10 2005-02-10 Гальванический источник постоянного тока RU2282917C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005103365/09A RU2282917C1 (ru) 2005-02-10 2005-02-10 Гальванический источник постоянного тока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005103365/09A RU2282917C1 (ru) 2005-02-10 2005-02-10 Гальванический источник постоянного тока

Publications (1)

Publication Number Publication Date
RU2282917C1 true RU2282917C1 (ru) 2006-08-27

Family

ID=37061385

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005103365/09A RU2282917C1 (ru) 2005-02-10 2005-02-10 Гальванический источник постоянного тока

Country Status (1)

Country Link
RU (1) RU2282917C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448392C2 (ru) * 2009-11-25 2012-04-20 Государственное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет Источник постоянного тока

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448392C2 (ru) * 2009-11-25 2012-04-20 Государственное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет Источник постоянного тока

Similar Documents

Publication Publication Date Title
JP5192613B2 (ja) マグネシウム金属空気電池
Wu et al. Low charge overpotentials in lithium–oxygen batteries based on tetraglyme electrolytes with a limited amount of water
RU2170476C1 (ru) Аккумулятор на основе железа
Muñoz-Torrero et al. A critical perspective on rechargeable Al-ion battery technology
US9531002B2 (en) Transition metal cyanometallate cathode battery with metal plating anode
CA2152624A1 (en) Aluminum and sulfur electrochemical batteries and cells
JP5878565B2 (ja) 再充電可能な電池のための活性材料
RU99125215A (ru) Аккумулятор на основе железа
US10862153B2 (en) High-power redox flow battery based on the CrIII/CrVI redox couple and its mediated regeneration
US5549991A (en) Aluminum permanganate battery
JP2006196329A (ja) 空気極および該空気極を用いた空気二次電池
JP2016502251A (ja) 固体アルカリイオン伝導性膜の劣化防止
EP3229309A1 (en) Rechargeable aluminum-air electrochemical cell
Wheeler et al. A new solid-state sodium-metal battery
RU2282917C1 (ru) Гальванический источник постоянного тока
Deutscher et al. Investigations on an aqueous lithium secondary cell
Wu et al. The pitfalls of using stainless steel (SS) coin cells in aqueous zinc battery research
JP4746618B2 (ja) 向上した導電性を有するニッケル酸化物表面の製造方法
Rethinaraj et al. Preparation and properties of electrolyc manganese dioxide
JPH10106900A (ja) 電気二重層キャパシタ用電極
US20200119384A1 (en) Electrochemical systems with precipitated reactants and related methods
RU2303841C1 (ru) Электрический аккумулятор и способы его работы
US20240088486A1 (en) Electrolyte additives for energy conversion devices and energy conversion devices thereof
JP2015530722A (ja) 電池の電荷移動機構
Ikeuba et al. Advances on lithium, magnesium, zinc, and iron-air batteries as energy delivery devices—a critical review

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210211