RU2279635C2 - Способ определения начальной выставки бесплатформенного инерциального блока относительно базовой системы координат - Google Patents

Способ определения начальной выставки бесплатформенного инерциального блока относительно базовой системы координат Download PDF

Info

Publication number
RU2279635C2
RU2279635C2 RU2004132062/28A RU2004132062A RU2279635C2 RU 2279635 C2 RU2279635 C2 RU 2279635C2 RU 2004132062/28 A RU2004132062/28 A RU 2004132062/28A RU 2004132062 A RU2004132062 A RU 2004132062A RU 2279635 C2 RU2279635 C2 RU 2279635C2
Authority
RU
Russia
Prior art keywords
coordinate system
relative
axis
instrument
rotation
Prior art date
Application number
RU2004132062/28A
Other languages
English (en)
Other versions
RU2004132062A (ru
Inventor
Федор Иванович Макарченко (RU)
Федор Иванович Макарченко
нцев Геннадий Николаевич Рум (RU)
Геннадий Николаевич Румянцев
Анатолий Иванович Калинин (RU)
Анатолий Иванович Калинин
Original Assignee
Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения им. акад. Н.А. Пилюгина" (ФГУП "НПЦАП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения им. акад. Н.А. Пилюгина" (ФГУП "НПЦАП") filed Critical Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения им. акад. Н.А. Пилюгина" (ФГУП "НПЦАП")
Priority to RU2004132062/28A priority Critical patent/RU2279635C2/ru
Publication of RU2004132062A publication Critical patent/RU2004132062A/ru
Application granted granted Critical
Publication of RU2279635C2 publication Critical patent/RU2279635C2/ru

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Gyroscopes (AREA)
  • Toys (AREA)

Abstract

Изобретение относится к области приборостроения и может быть использовано при выставке бесплатформенных инерциальных навигационных систем управления. Способ начальной выставки приборной системы координат бесплатформенного инерциального блока (БИБ) управляемого объекта, установленного на пусковой установке (ПУ) относительно базовой (стартовой) системы координат, материализованной стабилизированной платформой курсовертикали, также установленной на (ПУ), осуществляется комбинированным способом, использующим автономное определение положения приборной системы координат по сигналам акселерометров БИБ относительно плоскости горизонта и метод векторного согласования систем координат для определения положения приборной системы координат в азимуте. Для векторного согласования используется информация чувствительных элементов БИБ и информация прибора типа курсовертикаль. Технический результат заключается в сокращении времени и повышении точности определения начальной выставки приборной системы координат БИБ относительно базовой (стартовой) системы координат. 1 ил.

Description

Изобретение относится к области приборостроения и может быть использовано при создании инерциальных систем управления для определения навигационных параметров управляемых подвижных объектов с помощью бесплатформенной инерциальной навигационной системы (БИНС).
Известны способы определения навигационных параметров при использовании бесплатформенных инерциальных навигационных систем (С.С.Ривкин, З.М.Берман, И.М.Окон. "Определение параметров ориентации объекта бесплатформенной инерциальной системой" - СПБ: ГНЦ РФ - ЦНИИ "Электроприбор" 1996 год; С.А.Зайцев, А.И.Калинин, Ф.И.Макарченко, Е.Л.Межирицкий, Г.Н.Румянцев "Способ определения навигационных параметров управляемых подвижных объектов и устройство для его осуществления" - заявка на изобретение №2003114979 от 20.05.2003 г. МПК G 01 С 21/24).
Одним из важнейших требований, предъявляемых к бесплатформенным инерциальным навигационным системам, является необходимость начальной выставки приборной системы координат (ПСК) бесплатформенного инерциального блока (БИБ) относительно базовой системы координат.
Ряд способов выставки инерциальных систем изложен в книге А.Липтона "Выставка инерциальных систем на подвижном основании". Издательство "Наука", Москва, 1971 год.
Известен способ выставки неуправляемого подвижного объекта, установленного на пусковой установке. Начальная выставка объекта заключается в том, что объект вместе с пусковой установкой специальным устройством разворачивают на заданный азимут стрельбы относительно известного направления на Север и на заданный угол возвышения относительно известного положения плоскости горизонта. Точность стрельбы неуправляемыми подвижными объектами не удовлетворяет современным требованиям.
Для повышения точности стрельбы используют управляемые подвижные объекты. Для управляемых подвижных объектов используют бесплатформенную инерциальную навигационную систему управления. Положение приборной системы координат, связанной с бесплатформенным инерциальным блоком, в момент начала решения навигационной задачи должно быть определено относительно базовой системы координат с большой точностью.
Будем использовать следующие системы координат.
OXYZ - стартовая система координат.
Ось OX расположена в плоскости горизонта и отклонена от направления на Север на угол, равный азимуту стрельбы.
Ось OY параллельна отвесу в точке старта и направлена вверх от центра Земли.
Ось OZ образует с осями ОХ и OY правую прямоугольную систему координат.
OX1Y1Z1 - система координат, связанная с объектом.
Ось OX1 направлена вдоль продольной оси объекта.
Ось OY1 расположена в вертикальной плоскости симметрии объекта.
Ось OZ1 образует с осями OX1 и OY1 правую прямоугольную систему координат.
Положение системы координат OX1Y1Z1 определяется относительно стабилизированной платформы курсовертикали (KB) по сигналам с датчиков углов, установленных на осях карданова подвеса. Стабилизированная платформа курсовертикали материализует базовую (стартовую) систему координат.
OXnYnZn - приборная система координат, которая определяется установочной поверхностью бесплатформенного инерциального блока. Приборная система координат OXnYnZn в "идеальном" случае должна совпадать с системой OX1Y1Z1. В общем случае оси этих систем координат не совпадают между собой и их взаимное положение необходимо определить.
Очевидно, что начальную выставку БИБ относительно базовой системы координат можно определить, если осуществить выставку приборной системы координат БИБ относительно строительных осей объекта и обеспечить определение положения строительных осей объекта относительно базовой системы координат с требуемой точностью.
Для решения задачи начальной выставки БИБ предлагается использовать известный метод векторного согласования систем координат. Для реализации этого метода необходимо определить не менее двух неколлинеарных векторов, которые могут быть измерены в приборной и базовой системе координат (А.В.Репников, С.П.Сачков, А.И.Черноморский. Гироскопические системы. М.: Машиностроение, 1983 г.).
Предлагаемый способ, обеспечивающий повышение точности начальной выставки приборной системы координат БИБ относительно базовой стартовой системы координат, предполагает использование показаний чувствительных элементов БИБ и курсовертикали (KB).
В бесплатформенных инерциальных навигационных системах в качестве чувствительных элементов БИБ используются акселерометры для измерения вектора кажущегося ускорения и датчики угловых скоростей (ДУСы) для измерения абсолютной угловой скорости управляемого объекта.
На чертеже показана схема расположения на пусковой установке (1) управляемого объекта (4), бесплатформенного инерциального блока (6), бортового (5) и наземного (3) цифровых вычислительных устройств (БЦВУ и НЦВУ), курсовертикали (2), рамы (9) устройства поворота пусковой установки с двигателем вращения по углу азимута (8) и двигателем вращения по углу возвышения (7).
Предлагаемый авторами способ основан на измерении приращений проекций вектора кажущейся скорости от действия ускорения силы тяжести и проекций вектора поворота пусковой установки (ПУ) вместе с БИБ. Поворот ПУ осуществляется по углам азимута и возвышения специальным устройством. Углы поворота ПУ относительно стабилизированной платформы KB определяются в НЦВУ (3) по сигналам с датчиков углов, установленных на осях карданова подвеса KB, и передаются в БЦВУ (5). В процессе определения начальной выставки производится обмен необходимой информацией между НЦВУ и БЦВУ.
Одним из существенных требований, предъявляемых к ПУ, является обеспечение жесткости конструкции между корпусом KB и местом установки БИБ, т.е. обеспечение неподвижности БИБ относительно КВ.
Точность выставки в условиях неподвижности БИБ относительно Земли будет определяться точностью определения ориентации связанной с корпусом курсовертикали системы координат относительно базовой системы и точностью чувствительных элементов БИБ. Влияние внешних помех (ветер, колебания почвы и др.) на точность определения начальной выставки можно уменьшить, используя известные методы фильтрации.
Предлагаемый комбинированный способ начальной выставки приборной системы координат БИБ сочетает автономный способ определения вертикали места по сигналам акселерометров БИБ и неавтономный способ определения азимута методом векторного согласования систем координат по сигналам акселерометров и датчиков угловой скорости БИБ и по сигналам датчиков углов курсовертикали. Способ отличается совокупностью следующих основных признаков:
- использованием показаний чувствительных элементов БИБ и KB;
- формированием проекций вектора поворота ПУ и приращений проекций ВКС;
- уточнением начальной выставки по показаниям акселерометров БИБ.
Способ состоит из выполнения следующих операций.
По сигналам с датчиков угловой скорости БИБ (6) в БЦВУ (5) в течение некоторого времени разворота БИБ (6) вместе с ПУ (1) решают матричное уравнение Пуассона
Figure 00000002
где
Figure 00000003
- вектор угловой скорости, С(t) - матрица поворота.
По приращению матрицы С(t) за время разворота ПУ (1) определяют в БЦВУ (5) угол вектора поворота БИБ (6) относительно инерциального пространства и его проекции на оси приборной системы координат.
По сигналам акселерометров БИБ (6) определяют в БЦВУ (5) приращение проекций вектора кажущейся скорости (ВКС) на оси приборной системы координат за некоторое время удержания ПУ (1) в неподвижном состоянии относительно Земли и определяют направление вертикали.
По величинам углов, полученным по сигналам с датчиков углов KB (2) в моменты начала и конца разворота ПУ (1), определяют матрицу поворота связанной системы координат относительно стабилизированной платформы KB (2).
По проекциям приращений ВКС на оси базовой системы координат за время удержания ПУ (1) в неподвижном состоянии относительно Земли и матрице поворота системы координат, связанной с корпусом KB (2), определяют в БЦВУ (5) приращение проекций ВКС на оси системы координат, связанной с корпусом KB (2).
По матрице поворота корпуса KB (2) относительно ее стабилизированной платформы и матрице поворота стабилизированной платформы относительно инерциального пространства за время разворота ПУ (1) определяют в БЦВУ (5) угол вектора поворота системы координат, связанной с корпусом KB (2), относительно инерциального пространства и его проекции на оси системы координат, связанной с корпусом KB (2).
По полученным значениям приращений проекций ВКС и вектора поворота на оси связанной и приборной систем координат определяют в БЦВУ (5) угловое положение приборной системы координат относительно связанной системы координат и относительно базовой системы координат.
По сигналам акселерометров БИБ (6) уточняют в БЦВУ (5) угловое положение приборной системы координат относительно вертикали места выставки.
Путем соответствующих программных разворотов ПУ (1) можно сформировать несколько неколлинеарных векторов разворота ПУ (1) и несколько неколлинеарных векторов приращений ВКС у приборной и связанной систем координат. Любое сочетание пар из этого набора векторов позволяет однозначно определить начальную ориентацию приборной системы координат относительно базовой.
При использовании предлагаемого технического решения достигается уменьшение времени и повышение точности определения начальной выставки приборной системы координат относительно базовой системы, что и является техническим результатом данного изобретения. Предлагаемый способ может быть также использован при калибровке чувствительных элементов БИБ.
На чертеже обозначено:
1 - пусковая установка (ПУ);
2 - курсовертикаль (KB);
3 - наземное цифровое вычислительное устройство (НЦВУ);
4 - управляемый объект (УО);
5 - бортовое цифровое вычислительное устройство (БЦВУ);
6 - бесплатформенный инерциальный блок (БИБ);
7 - двигатель вращения ПУ по углу возвышения;
8 - двигатель вращения ПУ по углу азимута;
9 - рама устройства поворота ПУ;
OXYZ - стартовая система координат;
OXпYпZп - приборная система координат;
OX1Y1Z1 - связанная с управляемым объектом система координат.

Claims (1)

  1. Способ определения начальной выставки приборной системы координат бесплатформенного инерциального блока управляемого объекта, установленного на пусковой установке, относительно базовой (стартовой) системы координат, материализованной стабилизированной платформой курсовертикали, установленной также на пусковой установке, заключающийся в развороте вместе с пусковой установкой управляемого объекта на требуемые углы возвышения и азимута, отличающийся тем, что
    по сигналам с датчиков угловой скорости бесплатформенного инерциального блока в вычислительном устройстве во время разворота пусковой установки формируют матрицу поворота и определяют угол вектора поворота бесплатформенного инерциального блока относительно инерциального пространства и его проекции на оси приборной системы координат;
    по сигналам акселерометров бесплатформенного инерциального блока в неподвижном относительно Земли положении определяют в цифровом вычислительном устройстве приращение проекций вектора кажущейся скорости на оси приборной системы координат и углы вертикали относительно приборной системы координат;
    по сигналам с датчиков углов курсовертикали в вычислительном устройстве определяют матрицу поворота связанной системы координат относительно стабилизированной платформы курсовертикали;
    по проекциям приращения вектора кажущейся скорости на оси базовой системы координат и матрице поворота связанной системы координат относительно стабилизированной платформы определяют приращение вектора кажущейся скорости на оси связанной системы координат;
    по матрице поворота связанной системы относительно стабилизированной платформы и матрице поворота стабилизированной платформы относительно инерциального пространства определяют угол вектора поворота связанной системы относительно инерциального пространства и его проекции на оси связанной системы координат;
    по полученным значениям приращений проекции векторов поворота и кажущейся скорости определяют угловые положения приборной системы координат относительно базовой системы;
    по сигналам акселерометров уточняют положение приборной системы координат относительно вертикали места выставки.
RU2004132062/28A 2004-11-02 2004-11-02 Способ определения начальной выставки бесплатформенного инерциального блока относительно базовой системы координат RU2279635C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004132062/28A RU2279635C2 (ru) 2004-11-02 2004-11-02 Способ определения начальной выставки бесплатформенного инерциального блока относительно базовой системы координат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004132062/28A RU2279635C2 (ru) 2004-11-02 2004-11-02 Способ определения начальной выставки бесплатформенного инерциального блока относительно базовой системы координат

Publications (2)

Publication Number Publication Date
RU2004132062A RU2004132062A (ru) 2006-04-10
RU2279635C2 true RU2279635C2 (ru) 2006-07-10

Family

ID=36458864

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004132062/28A RU2279635C2 (ru) 2004-11-02 2004-11-02 Способ определения начальной выставки бесплатформенного инерциального блока относительно базовой системы координат

Country Status (1)

Country Link
RU (1) RU2279635C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572651C1 (ru) * 2014-09-09 2016-01-20 Открытое акционерное общество "Пермская научно-производственная приборостроительная компания" Способ выставки морской бинс

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572651C1 (ru) * 2014-09-09 2016-01-20 Открытое акционерное общество "Пермская научно-производственная приборостроительная компания" Способ выставки морской бинс

Also Published As

Publication number Publication date
RU2004132062A (ru) 2006-04-10

Similar Documents

Publication Publication Date Title
US8005635B2 (en) Self-calibrated azimuth and attitude accuracy enhancing method and system (SAAAEMS)
Groves Navigation using inertial sensors [Tutorial]
Curey et al. Proposed IEEE inertial systems terminology standard and other inertial sensor standards
US5369889A (en) Single gyro northfinder
US2914763A (en) Doppler-inertial navigation data system
CN201955092U (zh) 一种基于地磁辅助的平台式惯性导航装置
CN105841698A (zh) 一种无需调零的auv舵角精确实时测量系统
RU2324897C1 (ru) Азимутальная ориентация платформы трехосного гиростабилизатора по углу прецессии гироблока
WO2018176092A1 (en) "low cost ins"
RU2256881C2 (ru) Способ определения параметров ориентации и навигации и бесплатформенная инерциальная навигационная система для быстровращающихся объектов
RU2541710C1 (ru) Способ автономной азимутальной ориентации платформы трехосного гиростабилизатора на подвижном основании
RU2407989C1 (ru) Способ определения истинного азимута системой самоориентирующейся гироскопической
RU2608337C1 (ru) Способ автономной начальной выставки стабилизированной платформы трехосного гиростабилизатора в плоскость горизонта и на заданный азимут
Xing et al. Optimal weighted fusion based on recursive least squares for dynamic north-finding of MIMU on a tilting base
WO2013139486A1 (en) True north seeking and attitude system
RU2279635C2 (ru) Способ определения начальной выставки бесплатформенного инерциального блока относительно базовой системы координат
Lei et al. Initial alignment for SINS based on low-cost IMU
RU2624617C1 (ru) Способ автономной азимутальной ориентации платформы трехосного гиростабилизатора по изменяющимся видимым уходам
RU2348011C1 (ru) Навигационный комплекс
JP3137438B2 (ja) 移動体の慣性検出手段の初期座標値設定方法
RU2320963C2 (ru) Способ выставки осей подвижного объекта
RU2030574C1 (ru) Способ определения азимута скважины в последовательных точках и гироскопический инклинометр
KR880000774A (ko) 스트랩다운 자이로스코프(Strap-down Gyroscope)를 사용하여 방위각을 빨리 측정하기 위한 방법과 장치
RU2131585C1 (ru) Способ гирокомпасирования трехосного гиростабилизатора
Vodicheva et al. Improving the accuracy of angular rate determination for spinning vehicles