RU2275732C2 - Линейный электродвигатель - Google Patents

Линейный электродвигатель Download PDF

Info

Publication number
RU2275732C2
RU2275732C2 RU2004113274/11A RU2004113274A RU2275732C2 RU 2275732 C2 RU2275732 C2 RU 2275732C2 RU 2004113274/11 A RU2004113274/11 A RU 2004113274/11A RU 2004113274 A RU2004113274 A RU 2004113274A RU 2275732 C2 RU2275732 C2 RU 2275732C2
Authority
RU
Russia
Prior art keywords
inductor
armature
cores
electric motor
magnetic
Prior art date
Application number
RU2004113274/11A
Other languages
English (en)
Other versions
RU2004113274A (ru
Inventor
Владимир Николаевич Давыдов (RU)
Владимир Николаевич Давыдов
Борис Владимирович Никифоров (RU)
Борис Владимирович Никифоров
Вадим Рубенович Апиков (RU)
Вадим Рубенович Апиков
нц Рафаил Артюшевич Тумас (RU)
Рафаил Артюшевич Тумасянц
Алексей Петрович Темирев (RU)
Алексей Петрович Темирев
Олег Евгеньевич Лозицкий (RU)
Олег Евгеньевич Лозицкий
Алексей Александрович Цветков (RU)
Алексей Александрович Цветков
Валерий Михайлович Павлюков (RU)
Валерий Михайлович Павлюков
тковский Игорь Анатольевич Кв (RU)
Игорь Анатольевич Квятковский
Original Assignee
Федеральное государственное унитарное предприятие "Центральное конструкторское бюро морской техники "Рубин"
Федеральное государственное унитарное предприятие "Производственно-конструкторское предприятие "ИРИС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральное конструкторское бюро морской техники "Рубин", Федеральное государственное унитарное предприятие "Производственно-конструкторское предприятие "ИРИС" filed Critical Федеральное государственное унитарное предприятие "Центральное конструкторское бюро морской техники "Рубин"
Priority to RU2004113274/11A priority Critical patent/RU2275732C2/ru
Publication of RU2004113274A publication Critical patent/RU2004113274A/ru
Application granted granted Critical
Publication of RU2275732C2 publication Critical patent/RU2275732C2/ru

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

Изобретение относится к области электромашиностроения и может быть использовано в электроприводах погружных и перекачивающих насосов, в электроприводах компрессоров, перемещения грузов, дверей, задвижек и т.д. Индуктор линейного электродвигателя выполнен в виде ряда кольцевых расположенных с определенным продольным шагом сердечников, каждый из которых имеет два полюсных выступа, между которыми уложены кольцевые катушки фазной обмотки. Внутри или снаружи индуктора установлен с возможностью скользящего перемещения цилиндрический якорь с кольцевыми полюсными выступами. Сердечники магнитопроводов электродвигателя могут быть выполнены из сплошного магнитомягкого материала или из пластин тонколистовой стали специальной формы. Вариантом исполнения является электродвигатель с постоянными кольцевыми магнитами на якоре. Тяговое усилие линейного электродвигателя образуется при подключении фаз обмотки к электронному коммутатору, работающему по командам датчика положения якоря. Технический результат заключается в упрощении изготовления статора, уменьшении габаритов, а также в повышении КПД. 4 з.п. ф-лы, 6 ил.

Description

Изобретение относится к области электротехники, в частности к линейным электродвигателям цилиндрического исполнения с возвратно-поступательным движением, и может быть использовано в электроприводах насосов, в том числе погружных для добычи нефти, компрессоров, перемещения грузов, дверей, задвижек и т.п.
Известны линейные электродвигатели с возвратно-поступательным движением, состоящие из цилиндрического статора с фазной обмоткой, в расточке которого с зазором перемещается рабочий орган, содержащий магнитопровод с короткозамкнутой обмоткой или постоянными магнитами в зависимости от типа электрической машины (авторское свидетельство СССР 1091820, Н 02 К 41/025, 1999 г.; заявка РФ 2001 09578/09, Н 02 К 41/02, 1994 г.). Цилиндрическое исполнение известных двигателей обеспечивает наименьшие габариты и хорошую вписываемость в скважины круглой формы, например, в качестве электропривода погружных насосов для добычи нефти.
Недостатком линейных двигателей асинхронного и синхронного типов является распределенная по пазам фазная обмотка статора, которая сложна в изготовлении, трудоемка при монтаже на магнитопроводах линейных двигателей большой длины и малого диаметра и отличается низкой ремонтопригодностью. Линейные асинхронные двигатели также подвержены воздействию краевых эффектов, проявляющихся в виде тормозных сил на входе и выходе короткозамкнутого ротора в магнитное поле статора и снижающих КПД двигателя.
Наиболее близким по технической сущности к заявляемому решению является вентильно-индукторный реактивный линейный электродвигатель, магнитопроводы индуктора и якоря (подвижная часть) которого выполнены в виде поперечных направлению движения автономных С-образных сердечников с полюсными выступами. На полюсных выступах сердечников индуктора установлены фазные катушки так, что каждый сердечник соответствует одной автономной фазе. Магнитопровод якоря также содержит автономные С-образные сердечники с полюсными выступами, расположенными поперечно направлению движения (патент РФ 2159494, Н 02 К 19/06, 1/06, 1999 г.). Фазные катушки обмотки поочередно подключаются к источнику постоянного тока с помощью вентильного коммутатора и рабочий магнитный поток, проходящий через полюсные выступы индуктора и якоря, создает тяговое усилие электродвигателя.
Благодаря наличию простых полюсных катушек индуктора и отсутствию обмоток на якоре двигатель обладает высокой надежностью и ремонтопригодностью в эксплуатации, не требует охлаждения якоря, не подвержен краевым тормозным эффектам и имеет высокий КПД.
Применение автономных С-образных сердечников, по каждому из которых замыкается магнитный поток только одной фазы, позволяет снизить потери в стали и уменьшить толщину ярма.
Недостатком известной конструкции линейного электродвигателя является сложность установки и крепления С-образных сердечников и фазных катушек на полюсах в линейном двигателе цилиндрического исполнения, длина которого достигает нескольких метров при ограниченном внешнем диаметре 100-150 мм. Кроме этого, расположение С-образных сердечников поперечно направлению перемещения подвижной части двигателя снижает коэффициент использования полезного объема двигателя из-за наличия междуполюсных поперечных пазов. Также конструкция магнитопроводов с автономными С-образными сердечниками не позволяет обеспечить высокую точность размеров поверхностей индуктора и якоря, прилегающих к рабочему зазору, который для снижения габаритов и повышения КПД двигателя стремятся сделать как можно меньше.
Задачей настоящего изобретения является упрощение конструкции и технологии изготовления линейного электродвигателя, уменьшение его габаритов и увеличение коэффициента полезного действия.
Указанная задача решается тем, что в линейном электродвигателе, содержащем индуктор и якорь, установленный с возможностью рабочего перемещения относительно индуктора, магнитопроводы которых выполнены в виде автономных сердечников с полюсными выступами, и фазные катушки, расположенные на полюсных выступах индуктора, автономные сердечники магнитопровода индуктора выполнены в виде колец с двумя полюсными выступами, расположенными вдоль направления рабочего перемещения якоря, в пазах между которыми установлены кольцевые фазные катушки, а магнитопровод якоря имеет форму цилиндра с кольцевидными полюсными выступами и расположен соосно внутри или снаружи сердечников магнитопровода индуктора, причем шаг (продольный сдвиг) сердечников индуктора равен
Figure 00000002
, где tn - шаг (сдвиг) полюсных выступов якоря, m - число фаз обмотки, n=1, 2, 3..., причем промежутки между кольцевыми выступами индуктора и якоря заполнены немагнитным неэлектропроводящим антифрикационным материалом, а на индукторе соосно установлены антифрикационные втулки.
Магнитопроводы индуктора и якоря выполнены из сплошного магнитомягкого материала с коэрцетивной силой не более 20 А/м и удельными магнитными потерями не более 20 Вт/кг.
Сердечники магнитопровода индуктора могут быть выполнены из двух колец с разъемом по ярму, соединяющему полюсные выступы, а фазные катушки намотаны на немагнитные неэлектропроводящие кольцевые каркасы, которые установлены между кольцами сердечников.
Сердечники магнитопроводов индуктора и якоря также набраны из пластин тонколистовой электротехнической стали, ориентированных вдоль оси электродвигателя, и с внутренней образующей колец или цилиндра сердечников пластины прилегают одна к другой, а вблизи внешней образующей они содержат выступы для прилегания.
Пластины также могут быть изогнуты вокруг оси электродвигателя по дуге до их плотного прилегания одна к другой по всей поверхности от внутренней до внешней образующей кольца или цилиндра сердечников.
В качестве полюсных выступов магнитопровода якоря могут быть применены также кольцеобразные постоянные магниты, установленные с чередующейся полярностью и продольным сдвигом, равным полюсному делению фазной обмотки индуктора.
Положительный эффект состоит в том, что в предлагаемом линейном электродвигателе выполнение сердечников магнитопроводов индуктора и якоря цилиндрическими с кольцевидными полюсными выступами значительно упрощает конструкцию двигателя, не требует крепления сердечников, которые кольцами набираются в трубчатой конструкции корпуса. Упрощается технология изготовления и укладки обмотки, состоящей из простых кольцевых катушек. Значительно уменьшаются габариты двигателя, так как катушки обмотки не содержат лобовых частей, а только пазовую, в поперечном направлении сердечники магнитопроводов не содержат пазов, снижающих коэффициент использования внутреннего объема двигателя. Кольцевая конструкция сердечников позволяет производить механическую обработку (точение, шлифование) цилиндрических поверхностей магнитопроводов индуктора и якоря, обеспечивая высокую точность сопрягаемых размеров и минимальный рабочий зазор линейного электродвигателя. Поэтому электродвигатель потребляет минимальное количество электроэнергии и имеет высокий КПД. Благодаря заполнению промежутков между кольцевыми выступами антифрикационным материалом упрощается стабилизация положения якоря со скольжением относительно индуктора при его перемещении.
На фиг.1 показано продольное сечение линейного электродвигателя.
На фиг.2 показано продольное сечение разъемного сердечника магнитопровода индуктора и фазной катушки, намотанной на каркасе.
На фиг.3 и 4 показаны варианты выполнения сердечников магнитопроводов индуктора и якоря из пластин листовой стали.
На фиг.5 показано продольное сечение линейного электродвигателя с постоянными магнитами на якоре.
На фиг.6 показано продольное сечение линейного электродвигателя с магнитопроводом якоря, расположенным снаружи магнитопровода индуктора.
Индуктор 1 (см. фиг.1) линейного электродвигателя состоит из ряда сердечников 2 магнитопровода индуктора, выполненных в виде колец, каждое из которых имеет два полюсных выступа 3, образующих кольцевые пазы, в которые уложены катушки 4 фазной обмотки индуктора 1. Промежутки между сердечниками 2 заполняются проставками 5 из немагнитного неэлектропроводящего антифрикационного материала, которые могут быть снабжены осевыми пазами или каналами для подвода охлаждения к торцевым поверхностям сердечников 2. В зависимости от числа фаз т обмотки индуктора шаг (продольный сдвиг) сердечников 2 равен
Figure 00000003
, где tn - шаг (продольный сдвиг) полюсных выступов якоря, n=1, 2, 3... Внутри кольцевых сердечников 2 с небольшим фиксированным зазором установлен якорь 6, содержащий цилиндрический магнитопровод 7 с кольцевыми полюсными выступами 8. Промежутки между выступами 8 также заполняются немагнитным неэлектропроводящим антифрикационным материалом, например, путем заливки с последующим отверждением и механической обработкой при необходимости. Зазор между магнитопроводами индуктора 1 и якоря 6 при рабочем возвратно-поступательном движении последнего поддерживается с помощью направляющих со скольжением взаимодействующих с поверхностью якоря 6 антифрикционных втулок 9, расположенных соосно на входе и выходе из индуктора 1 и при необходимости в его средней части. При нецелесообразности использования поверхности якоря для скользящего взаимодействия со втулками 9 вместо нее может быть применена установленная в продолжении якоря с обоих его концов или в его средней части дополнительная ось. Для фиксации зазора также могут быть использованы проставки 5, которые несколько выступают в зазор относительно сердечников 2 и выполняются из антифрикционного материала. Для лучшего скольжения цилиндрическая поверхность якоря шлифуется, а пазы между выступами 8 заполняются антифрикционным материалом.
Сердечники 2 и магнитопровод 7 выполняются из сплошного магнитомягкого материала с коэрцетивной силой не более 20 А/м и удельными магнитными потерями не более 20 Вт/кг методом литья, спекания или прессования.
Для удобства укладки фазных катушек 4 и повышения надежности их изоляции сердечники 2 выполняются разъемными по ярму, соединяющему полюсные выступы 3, и состоят из двух колец 10 и 11 (см. фиг.2). При этом фазные катушки 4 наматываются на каркасы 12, изготовленные из немагнитного и неэлектропроводящего материала и имеющие форму катушки с размерами, соответствующими пазу, образованному полюсными выступами колец 10 и 11. Выводы катушек 4 пропускаются через отверстия в полюсных выступах или через углубления, выполненные на поверхностях разъема сердечников и их внешней цилиндрической поверхности, для электрического соединения с другими катушками фазной обмотки.
Варианты изготовления сердечников 2 и 7 из пластин тонколистовой электротехнической стали, представленные на фиг.3 и 4, применяются для электродвигателей с большими рабочими индукциями (1,8-2,2 Тл) и высокими частотами фазовой коммутации. Пластины 13 и 14 (см. фиг.3) штампуются из листовой стали, имеют П-образную форму (два полюсных выступа, соединенные ярмом) и выступ на боковой поверхности вблизи внешней образующей кольца или цилиндра сердечника. Выступ образован простым изгибом пластины с линией перегиба, параллельной оси двигателя. Пластины 13 и 14 попарно прилегают между собой от внутренней кромки до выступа и по внешним кромкам между соседними парами. Зазоры между пластинами 13 и 14 заполняются пропиточным компаундом до образования монолитной конструкции сердечника. Выступы на пластинах 13 и 14 могут быть любой другой формы и в другом количестве. Пластины 15 (см. фиг.4) штампуются также П-образной формы и изгибаются по дуге с радиусом, обеспечивающим прилегание пластин 15 по всей поверхности между собой без зазоров от внутренней до внешней образующей кольца или цилиндра сердечников индуктора и якоря.
Якорь 16 (см. фиг.5) линейного электродвигателя содержит магнитопровод 17, на котором вместо кольцевых полюсных выступов установлены кольцевые постоянные магниты 18 с продольным сдвигом между ними, равным полюсному делению τ обмотки индуктора 19. Полюсное деление τ при питании обмотки синусоидальным переменным током равно половине шага (продольного сдвига) катушек одной фазы. Вдоль оси двигателя полярность магнитов 18 чередуется. Промежутки 20 между магнитами 18 заполнены немагнитным неэлектропроводящим антифрикционным материалом, несколько выступающим в зазор относительно кольцевого магнита 18 для предохранения постоянных магнитов от соударений с индуктором и обеспечения скольжения без трения в направляющих антифрикционных втулках 21.
На фиг.1-5 приведены примеры выполнения линейного электродвигателя с магнитопроводом якоря, расположенным соосно внутри магнитопровода индуктора. При необходимости аналогичные решения позволяют выполнить электродвигатель с магнитопроводом якоря, расположенным соосно снаружи магнитопровода индуктора (см. фиг.6).
Индуктор 22 содержит кольцевые сердечники 23 с полюсными выступами 24, в пазах между которыми уложены катушки 25 фазной обмотки. Между сердечниками 23 также устанавливаются кольцевые проставки 26 из немагнитного неэлектропроводящего антифрикационного материала. Снаружи индуктора 22 с минимальным зазором соосно установлен якорь, состоящий из цилиндрического магнитопровода 27 с кольцевыми полюсными выступами, запрессованного в корпус 28 трубчатой формы. На торцевых стенках корпуса 28 соосно с якорем закреплена направляющая ось 29, предназначенная для фиксации рабочего зазора электродвигателя, вдоль которой перемещается индуктор 22, на концах которого и при необходимости в его средней части соосно установлены направляющие антифрикционные втулки 30 и 31, взаимодействующие со скольжением с осью 29.
При работе линейного электродвигателя фазы обмотки индуктора подключаются поочередно к источнику постоянного тока через электронный коммутатор по командам датчика положения якоря. При этом рабочий магнитный поток, создаваемый катушками 4 подключенной фазы, проходит по сердечникам 2 и полюсным выступам 3 индуктора 1 через рабочий зазор между индуктором и якорем, по полюсным выступам 8 и замыкается на спинке магнитопровода 7 якоря 6. В результате магнитного тяжения выступов 8 якоря 6 к полюсным выступам 3 индуктора 1 образуется тяговое усилие, перемещающее якорь 6 в положение, при котором полюсные выступы индуктора и якоря, принадлежащие данной фазе, устанавливаются напротив или вблизи друг друга. В этот момент по сигналу датчика положения ток с данной фазы переключается на другую фазу, полюсные выступы которой находятся теперь в таком же исходном положении, как и предыдущая фаза, чтобы обеспечить тяговое усилие от другой фазы в том же направлении.
Таким образом, цикл образования тягового усилия повторяется для каждой фазы, а затем снова начинается с первой фазы. Скорость перемещения якоря равна v=tn·ƒ, где ƒ - частота коммутации фазы обмотки.
Работа линейного электродвигателя в варианте с постоянными магнитами (см. фиг.5) отличается тем, что фазная обмотка питается переменным синусоидальным или близким к нему по форме током через вентильный коммутатор по командам датчика положения якоря. Рабочий магнитный поток, возбуждаемый постоянными магнитами 20, взаимодействует с бегущим магнитным полем, образованным фазной обмоткой, в результате чего создается тяговое усилие линейного электродвигателя. При этом скорость перемещения якоря равна v=2τ·ƒ, где ƒ - частота питания фазной обмотки.
На основании вышеизложенного и по результатам проведенного патентно-информационного поиска считаем, что предлагаемый линейный электродвигатель отвечает критериям «новизна», «изобретательский уровень», «промышленная применимость» и может быть защищен патентом Российской Федерации.

Claims (5)

1. Линейный электродвигатель, содержащий индуктор и якорь, установленный с возможностью рабочего перемещения относительно индуктора, магнитопроводы которых выполнены в виде автономных сердечников с полюсными выступами, расположенными вдоль направления рабочего перемещения якоря, и фазные катушки, расположенные на полюсных выступах индуктора, отличающийся тем, что автономные сердечники магнитопровода индуктора выполнены из двух колец с разъемом по ярму, соединяющему полюсные выступы, а фазные катушки намотаны на немагнитные неэлектропроводящие кольцевые каркасы, которые вместе с катушками установлены между кольцами сердечников.
2. Линейный электродвигатель по п.1, отличающийся тем, что магнитопроводы индуктора и якоря выполнены из сплошного магнитомягкого материала с коэрцетивной силой не более 20 А/м и удельными магнитными потерями не более 20 Вт/кг.
3. Линейный электродвигатель по п.1, отличающийся тем, что сердечники магнитопроводов индуктора и якоря набраны из пластин тонколистовой электротехнической стали, ориентированных вдоль оси электродвигателя, и с внутренней образующей колец или цилиндра пластины прилегают одна к другой, а вблизи внешней образующей они содержат выступы для прилегания.
4. Линейный электродвигатель по п.3, отличающийся тем, что пластины изогнуты по дуге вокруг оси электродвигателя до плотного прилегания одна к другой по всей поверхности от внутренней до внешней образующей кольца или цилиндра сердечников.
5. Линейный электродвигатель по любому из пп.1-4, отличающийся тем, что в качестве полюсных выступов магнитопровода якоря применены кольцевые постоянные магниты, установленные с чередующейся полярностью с продольным сдвигом, равным полюсному делению обмотки индуктора.
RU2004113274/11A 2004-04-29 2004-04-29 Линейный электродвигатель RU2275732C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004113274/11A RU2275732C2 (ru) 2004-04-29 2004-04-29 Линейный электродвигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004113274/11A RU2275732C2 (ru) 2004-04-29 2004-04-29 Линейный электродвигатель

Publications (2)

Publication Number Publication Date
RU2004113274A RU2004113274A (ru) 2005-10-20
RU2275732C2 true RU2275732C2 (ru) 2006-04-27

Family

ID=35863004

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004113274/11A RU2275732C2 (ru) 2004-04-29 2004-04-29 Линейный электродвигатель

Country Status (1)

Country Link
RU (1) RU2275732C2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662962A3 (de) * 2012-05-11 2016-05-04 Waltec Maschinen GmbH Nach dem Longitudinalflussprinzip ausgebildeter Linearmotor
RU2603630C2 (ru) * 2011-12-01 2016-11-27 И.Эм.Ай.Пи. ПТИ ЛТД Способ и устройство для преобразования между электрической и механической энергией
RU2669019C1 (ru) * 2014-09-09 2018-10-05 Ксихуань ЖАО Ступень погружного винтового скважинного нефтяного насоса с погружным приводом
RU2707467C1 (ru) * 2016-02-01 2019-11-26 Текнолоджиз Ланка Инк. Приводы дверей, встроенный привод дверей
RU2750646C1 (ru) * 2019-11-05 2021-06-30 Дмитрий Валерьевич Хачатуров Линейный вентильный электродвигатель
RU2758999C1 (ru) * 2021-01-21 2021-11-08 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госпорпорация "Росатом") Глубоководный электромеханический исполнительный механизм
RU2762288C1 (ru) * 2019-11-05 2021-12-17 Дмитрий Валерьевич Хачатуров Способ построения линейного электропривода

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603630C2 (ru) * 2011-12-01 2016-11-27 И.Эм.Ай.Пи. ПТИ ЛТД Способ и устройство для преобразования между электрической и механической энергией
EP2662962A3 (de) * 2012-05-11 2016-05-04 Waltec Maschinen GmbH Nach dem Longitudinalflussprinzip ausgebildeter Linearmotor
RU2669019C1 (ru) * 2014-09-09 2018-10-05 Ксихуань ЖАО Ступень погружного винтового скважинного нефтяного насоса с погружным приводом
RU2707467C1 (ru) * 2016-02-01 2019-11-26 Текнолоджиз Ланка Инк. Приводы дверей, встроенный привод дверей
RU2750646C1 (ru) * 2019-11-05 2021-06-30 Дмитрий Валерьевич Хачатуров Линейный вентильный электродвигатель
RU2762288C1 (ru) * 2019-11-05 2021-12-17 Дмитрий Валерьевич Хачатуров Способ построения линейного электропривода
RU2758999C1 (ru) * 2021-01-21 2021-11-08 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госпорпорация "Росатом") Глубоководный электромеханический исполнительный механизм

Also Published As

Publication number Publication date
RU2004113274A (ru) 2005-10-20

Similar Documents

Publication Publication Date Title
KR100622890B1 (ko) 전자식피스톤엔진
AU2023203810B2 (en) Electric motors
US6087742A (en) Hybrid linear motor
EP0319096B1 (en) Linear motor with angularly indexed magnetic poles
US20120133241A1 (en) Short-flux path motors / generators
Wang et al. Analysis of a short-stroke, single-phase, quasi-Halbach magnetised tubular permanent magnet motor for linear compressor applications
KR20050036949A (ko) 전기 기계용 다상 클로 폴 구조체
JP3876611B2 (ja) 流体搬送装置
RU2603680C2 (ru) Электродвигатель с обмоткой, не содержащей железа
CN110880850B (zh) 一种定子永磁型动铁芯式无弹簧直线振荡电机
EP2528207A1 (en) Brushless electric machine
CN104578635A (zh) 一种不对称双定子圆筒型永磁直线电机
RU2275732C2 (ru) Линейный электродвигатель
MX2011004709A (es) Motor lineal/alternador de multiples armaduras que tiene muelle magnetico sin campos marginales y salida de energia incrementada.
KR100396775B1 (ko) 왕복동식 모터
KR100484535B1 (ko) 선형 왕복운동 기기
US10720817B1 (en) DC induction motor driven by a unidirectional current induced in to a rotor ring
RU2538377C2 (ru) Погружной линейный электродвигатель
RU2085010C1 (ru) Индукторная электрическая машина
JP3975442B2 (ja) リニアモータ
RU2810637C1 (ru) Линейная магнитоэлектрическая машина
RU2543512C1 (ru) Линейный электродвигатель
RU2517437C2 (ru) Линейный двигатель
RU72366U1 (ru) Электрическая моментная машина с постоянными магнитами
RU2286642C2 (ru) Электрический двигатель постоянного тока индукторного типа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060430

NF4A Reinstatement of patent

Effective date: 20071220

PC4A Invention patent assignment

Effective date: 20071226

MM4A The patent is invalid due to non-payment of fees

Effective date: 20080430