RU2270940C9 - Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках - Google Patents

Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках Download PDF

Info

Publication number
RU2270940C9
RU2270940C9 RU2003119570/11A RU2003119570A RU2270940C9 RU 2270940 C9 RU2270940 C9 RU 2270940C9 RU 2003119570/11 A RU2003119570/11 A RU 2003119570/11A RU 2003119570 A RU2003119570 A RU 2003119570A RU 2270940 C9 RU2270940 C9 RU 2270940C9
Authority
RU
Russia
Prior art keywords
magnetic
rotor
superconductors
permanent magnets
temperature
Prior art date
Application number
RU2003119570/11A
Other languages
English (en)
Other versions
RU2270940C2 (ru
RU2003119570A (ru
Original Assignee
Научно-учебный комплекс "Информатика и системы управления" Московского государственного технического университета им. Н.Э. Баумана" (НУК ИУ МГТУ им. Н.Э. Баумана)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-учебный комплекс "Информатика и системы управления" Московского государственного технического университета им. Н.Э. Баумана" (НУК ИУ МГТУ им. Н.Э. Баумана) filed Critical Научно-учебный комплекс "Информатика и системы управления" Московского государственного технического университета им. Н.Э. Баумана" (НУК ИУ МГТУ им. Н.Э. Баумана)
Priority to RU2003119570/11A priority Critical patent/RU2270940C9/ru
Publication of RU2003119570A publication Critical patent/RU2003119570A/ru
Application granted granted Critical
Publication of RU2270940C2 publication Critical patent/RU2270940C2/ru
Publication of RU2270940C9 publication Critical patent/RU2270940C9/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Изобретение относится к области прецизионного приборостроения и может быть использовано в системах управления и стабилизации летательных аппаратов, а также в любой отрасли машиностроения, в которой требуется уменьшение трения и исключение смазочных материалов, например при работе в вакууме и в условиях низких температур. Бесконтактная опора выполнена в виде двух пар коаксиально расположенных кольцевых постоянных магнитов, установленных на статоре и объединенных попарно по потоку магнитной индукции двумя кольцевыми магнитопроводами, и высокотемпературных сверхпроводников, захваченный магнитный поток которых центрирует ротор, закрепленных на роторе, размещенном в зазоре между постоянными магнитами. Для улучшения однородности магнитного поля в магнитном зазоре поверхности постоянных магнитов, обращенные в сторону магнитного зазора, снабжены кольцевыми пластинами из магнитомягкого материала, например пермаллоя или электротехнической стали. Техническим результатом является повышение жесткостных и нагрузочных характеристик опоры и уменьшение момента сопротивления вращению ротора. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области прецизионного приборостроения и может быть использовано в системах управления и стабилизации летательных аппаратов, а также в любой отрасли машиностроения, в которых требуется уменьшение трения и исключение смазочных материалов, например при работе в вакууме и в условиях низких температур.
Известны бесконтактные опоры, основанные на использовании высокотемпературных сверхпроводников. Например, патент США №5789837, заявленный 14 августа 1996 г. и выданный на имя Shin; Sung-chul (Daejoeon-Si, KR); Filatore; Alexei (Daejeon-Si, KR). В данном патенте представлена опора с центрированием ротора захваченным магнитным потоком, имеющая статор/ротор с короткозамкнутыми сверхпроводящими контурами, выполненными в виде элементов круглой или прямоугольной формы с центральными отверстиями, которые размещены в зазоре между кольцевыми магнитами. Данная форма сверхпроводящих элементов по мнению авторов патента позволяет снизить гистерезис нагрузочных характеристик опоры.
В патенте США №6175175, заявленном 10 сентября 1999 г. и выданном на имя John R. Hull, Downers Grouve, IL (US), представлена опора, в которой кольцевые коаксиально расположенные постоянные магниты левитируют над сплошными сверхпроводниками различных форм за счет сил диамагнитного отталкивания, что не обеспечивает жесткого центрирования ротора.
В статье "Study on characteristics of high temperature superconducting magnetic trust bearing for 25 kWh flywheel", опубликованной в журнале Physica С 357-360 (2001) 866-869 авторами S. Nagaya, N. Kashima, M. Minami at el., представлена конструкция опоры, включающая десять сплошных дисков из высокотемпературных сверхпроводящих материалов и четыре кольцевых коаксиально расположенных постоянных магнитов, закрепленных на роторе, который также свободно левитирует над сверхпроводниками и тоже не осуществляет центрирования ротора.
В известных технических решениях использование короткозамкнутых сверхпроводящих контуров в виде колец круглой или прямоугольной формы не позволяет получить высокие жесткостные и нагрузочные характеристики при смещении ротора относительно статора в осевом и радиальном направлениях, а в конструкциях, использующих сверхпроводящие элементы в виде сплошных дисков, над которыми левитируют магниты, не обеспечивается жесткость центрирования ротора по трем координатам. Также в известных технических решениях не предусмотрены средства для уменьшения момента сопротивления вращению ротора опоры, возникающие из-за неоднородности магнитного поля.
Для решения поставленных задач предложенная бесконтактная опора на высокотемпературных сверхпроводниках с центрированием ротора захваченным магнитным потоком содержит коаксиально расположенные кольцевые постоянные магниты, установленные на статоре, и сверхпроводниковые элементы, выполненные, например, в виде сплошных дисков, закрепленных на роторе, размещенном в магнитном зазоре постоянных магнитов. Для улучшения однородности магнитного поля в магнитном зазоре поверхности магнитных колец, обращенные в сторону магнитного зазора, снабжены кольцевыми пластинами из магнитомягкого материала, например пермаллоя.
На фиг.1 изображена конструкция бесконтактной радиально-упорной опоры на высокотемпературных сверхпроводниках в разрезе. Она включает корпус 1, статор, состоящий из верхнего магнитопровода 2 с закрепленными на нем коаксиально расположенными кольцевыми магнитами 3 с пермаллоевыми пластинами 4 на поверхности, нижнего магнитопровода 5 с закрепленными на нем коаксиально расположенными кольцевыми магнитами 6 с пермаллоевыми пластинами 7 на поверхности и центрирующих колец из немагнитного материала 8, 9, магнитный зазор 10, диск ротора 11 с размещенными на нем высокотемпературными сверхпроводниками в виде дисков 12, вал ротора 13, установочную втулку 14, штифт 15.
На фиг.2 представлена фотография узлов магнитной опоры: корпус 1, кольцевые постоянные магниты 3, 6, диск ротора 11, дисковые элементы из высокотемпературного сверхпроводника 12.
На фиг.3 представлена фотография общего вида магнитной опоры.
Бесконтактная радиально-упорная опора работает при температуре жидкого азота. Кольцевые постоянные магниты 3 индуцируют в магнитном зазоре 10 противоположно направленное осесимметричное магнитное поле с максимальной индукцией 0,7 Тл и радиальным градиентом 0,132 Тл/мм. Семь монодоменных сверхпроводящих дисков 12 из иттрий-бариевой керамики диаметром 28 мм и толщиной 4 мм закреплены концентрически на диске ротора 11 и размещены в магнитном зазоре 10 в области максимального градиента. Перед охлаждением вал ротора 13 опоры центрируется в исходном положении установочной втулкой 14, закрепленной на нем с помощью штифта 15. После завершения процесса охлаждения втулка 14 удаляется.
При охлаждении ниже критической температуры 90 К диски 12 переходят в сверхпроводящее состояние и захватывают пронизывающее их магнитное поле. Взаимодействие захваченного сверхпроводниками 12 магнитного потока с магнитным полем постоянных магнитов 3 создает силу, противодействующую смещению в аксиальном и радиальном направлениях. В охлажденном состоянии после удаления втулки 14 последующее центрирование ротора осуществляется силами магнитного взаимодействия, создающими жесткую самостабилизирующуюся систему сверхпроводник-магнит, которая обеспечивает бесконтактное взвешивание и центрирование ротора по трем линейным и двум угловым координатам и не препятствует его вращению вокруг оси опоры. В предлагаемой бесконтактной радиально-упорной опоре применены сверхпроводники в виде сплошных пластин (дисков) вместо колец, используемых для снижения гистерезиса, как предложено в патенте США №5789837. При использовании сплошных пластин взамен колец увеличивается объем и площадь рабочей поверхности сверхпроводника, взаимодействующего с постоянными магнитами, и, соответственно, пропорционально повышаются нагрузочные и жесткостные параметры. В то же время для снижения гистерезисных явлений используются монодоменные сверхпроводники состава YBa2Cu3O7 с высоким пиннингом магнитных вихрей, который обеспечивает захват магнитного поля большой величины ≥1 Тл. Проведенные исследования показали, что величина смещения ротора опоры, вызываемая приложенной нагрузкой, зависит от силы пиннинга магнитных вихрей в структуре сверхпроводника, и чем сила пиннинга выше, тем большую нагрузку, не приводящую к гистерезису смещения, может выдержать опора. Измерения нагрузочных характеристик предложенной опоры с использованием указанных сверхпроводников с высоким пиннингом выявили зону безгистерезисного (упругого) смещения ротора как в радиальном, так и в осевом направлениях в диапазоне нагрузок до 7 Н, что не наблюдалось в известных технических решениях.
Кроме того, в предлагаемом изобретении в отличие от работ (патент США №6175175 и статья "Study on characteristics of high temperature superconducting magnetic trust bearing for 25 kWh flywheel", опубликованной в журнале Physica С 357-360) центрирование ротора осуществляется магнитным потоком, захваченным сверхпроводниками, охлажденными в градиентном магнитном поле зазора, что создает связанную воедино магнитным потоком самостабилизирующуюся систему. Это означает, что смещение ротора относительно статора в любом направлении, приводящее к изменению магнитного потока, пронизывающего сверхпроводник, вызывают возникновение противодействующей электромагнитной силы, действующей как отрицательная обратная связь и стремящейся возвратить систему в исходное состояние.
Для уменьшения магнитной компоненты момента сопротивления вращению, возникающей из-за неоднородности магнитного поля, используются кольцевые пластины из магнитомягкого материала (например, пермаллоя) толщиной ≤0,2 мм, которые устанавливаются на поверхности магнитов, обращенные в сторону зазора. Это позволяет улучшить однородность распределения магнитной индукции над поверхностью магнитов на 40%.
По сравнению с известными изобретениями предлагаемое изобретение обеспечивает устойчивое центрирование ротора по 5 степеням свободы и его свободное вращение вокруг оси при одновременном повышении нагрузочных и жесткостных характеристик и уменьшении потерь при вращении.

Claims (3)

1. Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках с центрированием ротора магнитным потоком, захваченным сверхпроводниками, и работающая при температуре жидкого азота, отличающаяся тем, что она выполнена по меньшей мере в виде двух пар коаксиально расположенных кольцевых постоянных магнитов, установленных на статоре, объединенных попарно по потоку магнитной индукции магнитопроводами, создающих рабочий магнитный зазор, и высокотемпературных сверхпроводников, закрепленных на роторе и размещенных в зазоре между постоянными магнитами.
2. Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках по п.1, отличающаяся тем, что сверхпроводники выполнены в виде сплошных пластин, установленных на роторе.
3. Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках по п.1, отличающаяся тем, что она снабжена кольцевыми пластинами из магнитомягкого материала, например пермаллоя, установленными на поверхностях постоянных магнитов, обращенных в сторону рабочего зазора.
RU2003119570/11A 2003-07-02 2003-07-02 Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках RU2270940C9 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003119570/11A RU2270940C9 (ru) 2003-07-02 2003-07-02 Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003119570/11A RU2270940C9 (ru) 2003-07-02 2003-07-02 Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках

Publications (3)

Publication Number Publication Date
RU2003119570A RU2003119570A (ru) 2005-01-27
RU2270940C2 RU2270940C2 (ru) 2006-02-27
RU2270940C9 true RU2270940C9 (ru) 2006-07-10

Family

ID=35138246

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003119570/11A RU2270940C9 (ru) 2003-07-02 2003-07-02 Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках

Country Status (1)

Country Link
RU (1) RU2270940C9 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2459190C2 (ru) * 2007-03-08 2012-08-20 Дженерал Электрик Компани Способ тестирования роторно-статорного узла (варианты)
RU2551864C1 (ru) * 2014-04-04 2015-05-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Сверхпроводящий магнитный подвес для кинетического накопителя энергии
RU174146U1 (ru) * 2016-12-01 2017-10-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Магнитный подшипник на высокотемпературных сверхпроводниках для кинетического накопителя энергии
RU2659661C1 (ru) * 2017-08-17 2018-07-03 Акционерное общество "Научно-производственный центр газотурбостроения" "Салют" (АО НПЦ газотурбостроения "Салют") Магнитная опора на высокотемпературных сверхпроводниках для горизонтальных валов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2459190C2 (ru) * 2007-03-08 2012-08-20 Дженерал Электрик Компани Способ тестирования роторно-статорного узла (варианты)
RU2551864C1 (ru) * 2014-04-04 2015-05-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Сверхпроводящий магнитный подвес для кинетического накопителя энергии
RU174146U1 (ru) * 2016-12-01 2017-10-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Магнитный подшипник на высокотемпературных сверхпроводниках для кинетического накопителя энергии
RU2659661C1 (ru) * 2017-08-17 2018-07-03 Акционерное общество "Научно-производственный центр газотурбостроения" "Салют" (АО НПЦ газотурбостроения "Салют") Магнитная опора на высокотемпературных сверхпроводниках для горизонтальных валов

Also Published As

Publication number Publication date
RU2270940C2 (ru) 2006-02-27
RU2003119570A (ru) 2005-01-27

Similar Documents

Publication Publication Date Title
US5256638A (en) Magnetically leviated superconducting bearing
JP2968999B2 (ja) 高スラスト及び高安定性の磁石−超伝導体システム
US4939120A (en) Superconducting rotating assembly
US5330967A (en) Superconducting bearing device stabilized by trapped flux
Werfel et al. HTS magnetic bearings in prototype application
US4886778A (en) Superconducting rotating assembly
US5196748A (en) Laminated magnetic structure for superconducting bearings
WO1995020264A1 (fr) Dispositif de sustentation magnetique
Deng et al. Levitation performance of rectangular bulk superconductor arrays above applied permanent-magnet guideways
Xu et al. A fully superconducting bearing system for flywheel applications
JPH0737812B2 (ja) 超電導軸受装置
RU2270940C9 (ru) Бесконтактная радиально-упорная опора на высокотемпературных сверхпроводниках
Zheng et al. Modeling study on high-temperature superconducting bulk’s growth anisotropy effect on magnetization and levitation properties in applied magnetic fields
Sotelo et al. Tests with a hybrid bearing for a flywheel energy storage system
Yang et al. Low frequency rotational loss in a high-temperature superconducting bearing and its application in micro-thrust measurement for space propulsion
Kurbatova Comparative analysis of the specific characteristics of the magnetic bearings with HTS elements transactions on applied superconductivity
Werfel et al. Technical progress in HTS magnetic bulk application development
RU2610880C1 (ru) Комбинированный сверхпроводящий магнитный подвес для кинетического накопителя энергии
Nicolsky et al. Superconducting axial bearing for induction machines with active radial magnetic bearings
Minamitani et al. Design of the magnetic circuit to improve stability of the magnetic bearing using HTS
Davey et al. Design and analysis of passive homopolar null flux bearings
Strasik et al. Performance of a conduction-cooled high-temperature superconducting bearing
JP4473470B2 (ja) 遠心分離物を受容するために設けられているロータを有する遠心分離機
Komori et al. Evaluations of a hybrid-type superconducting magnetic bearing system
Li et al. Effects of magnetic flux leakage of axial electromagnetic bearing on bearing system

Legal Events

Date Code Title Description
TH4A Reissue of patent specification
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060703

NF4A Reinstatement of patent

Effective date: 20071220

MM4A The patent is invalid due to non-payment of fees

Effective date: 20080703