RU2262516C1 - Способ получения полиэфира - Google Patents

Способ получения полиэфира Download PDF

Info

Publication number
RU2262516C1
RU2262516C1 RU2004118348/04A RU2004118348A RU2262516C1 RU 2262516 C1 RU2262516 C1 RU 2262516C1 RU 2004118348/04 A RU2004118348/04 A RU 2004118348/04A RU 2004118348 A RU2004118348 A RU 2004118348A RU 2262516 C1 RU2262516 C1 RU 2262516C1
Authority
RU
Russia
Prior art keywords
phenylenediamine
polycondensation
polymer
acids
adipic
Prior art date
Application number
RU2004118348/04A
Other languages
English (en)
Inventor
Ю.С. Чулкова (RU)
Ю.С. Чулкова
В.Е. Немилов (RU)
В.Е. Немилов
Т.В. Орлова (RU)
Т.В. Орлова
Г.И. Царев (RU)
Г.И. Царев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" (СПГУТД)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" (СПГУТД) filed Critical Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" (СПГУТД)
Priority to RU2004118348/04A priority Critical patent/RU2262516C1/ru
Application granted granted Critical
Publication of RU2262516C1 publication Critical patent/RU2262516C1/ru

Links

Abstract

Изобретение относится к способу получения полиэфира методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой и к утилизации отходов лесохимической промышленности. Полученный полимер может быть использован в качестве связующего в производстве древесно-волокнистых или древесно-стружечных плит. Техническая задача - упрощение технологии получения полиэфира, снижение температуры плавления получаемого полимера и сохранение прочности композиционных материалов на основе данного полиэфира. Предложен способ получения полиэфира поликонденсацией между субериновыми кислотами (СК), адипиновой (АК) или себациновой (СебК) кислотой и диамином, выбранным из п-фенилендиамина (п-ФД), о-фенилендиамина (о-ФД) и гексаметилендиамина (ГМДА) при массовом соотношении СК:(АК или СебК):(п-ФД, или о-ФД, или ГМДА)=10:(2-4):(3,1-6,2), причем процесс проводят при температуре 150-220°С в течение 1,5-2,5 часа. 1 з.п. ф-лы, 2 табл.

Description

Изобретение относится к области полимерной химии и утилизации отходов лесохимической промышленности, а именно к способу получения полиэфира, методом поликонденсации полифункциональных органических соединений природного происхождения с адипиновой или себациновой кислотой. Получаемый полимер может быть использован в качестве связующего в производстве древесно-волокнистых или древесно-стружечных плит.
Субериновые кислоты представляют собой смесь алифатических C1832 моно- и дикарбоновых насыщенных и ненасыщенных окси- и эпоксикислот. Наличие всех этих функциональных групп дает возможность использовать их в качестве мономеров при получении высокомолекулярных соединений по методу поликонденсации.
Таблица 1
Состав субериновых кислот
Кислота % по массе
Октадекан-9-ен-1,18-диовая 2,1-3,9
Октадекан-1,18-диовая 0,5-1,5
18-Гидроксиоктадец-9-еновая 6,0-17,1
9,16- и 10,16-Дигидроксигексадекановая 2,3-6,2
9,10-Эпокси-18-гидроксиоктадекановая 29,2-43,2
20-Гидроксиэйкозановая 2,3-4,4
9,10,18 - Тригидроксиоктадекановая 6,3-11,4
Докозан-1,22-диовая 3,6-7,4
22-Гидроксидокозановая 11,7-17,4
Прочие 9,5-14,7
В таблице 1 приведены кислоты с наибольшим содержанием в бересте (Кислицын А.Н. Экстрактивные вещества бересты: выделение, состав, свойства, применение. Химия древесины. - 1994. - №3. - C.11).
В уровне техники известны исследования в области получения полимеров на основе субериновых кислот, а именно: лаковых смол, получаемых методом конденсации бетулино-субериновых смесей с фталевым ангидридом (Поварнин И.Г. Спиртовые мебельные лаки отечественного лесохимического сырья. - М., 1949, с.78-80).
Существенным недостатком данного способа является то, что он требует большого количества времени и энергозатрат (продолжительность процесса конденсации составляет 16 часов, при температуре 170°С), что в свою очередь делает данный способ получения полимера экономически невыгодным. Дополняющим недостатком данных полимеров является то, что такие смолы после холодной сушки обладают плохими адгезионными свойствами, а после горячей сушки оказываются очень хрупкими.
Известны также полиуретаны, получаемые на основе субериновых кислот (Cordeiro N., Belgacem M.N., Candini A., Pascoal Neto С., Urethanes and polyurethanes from suberin: 1.Kinetic study// Industrial Crops and Products, Vol.6, Iss.2. - 1997. - P.163-167).
Недостатком таких полимеров является то, что они высокоэластичны и их переработка возможна только через растворы, что резко снижает их область применения в качестве связующих.
Также известны смолы, приготовляемые на основе этерифицированных бетулином субериновых кислот (Поварнин И.Г. Спиртовые мебельные лаки из отечественного лесохимического сырья. М., Всесоюзное кооперативное изд-во, 1949, с.71-73). Такие смолы хорошо растворяются в ряде органических растворителей, таких как скипидар, бензол, спиртбензол, ацетаты, этилметилкетон, и имеют хорошую адгезию к стеклу и металлу. Однако существенным недостатком этих смол является плохая адгезия к дереву, что исключает возможность их применения в производстве ДВП и ДСП.
Наиболее близким аналогом к заявляемому изобретению является способ получения полиэфира путем поликонденсации бетулина с дикарбоновой кислотой в инертной среде (азот) при постоянном перемешивании в диапазоне температур 256-260°С и продолжительности процесса 22-24 часа (патент РФ №2167892, МПК C 08 G 63/197, опубл. в Бюлл. изоб. №15, 27.05.2001; Орлова Т.В., Немилов В.Е., Царев Г.И., Войтова Н.В. Способ получения полиэфира). Температура плавления данных полиэфиров составляет 200-230°С. Древесно-волокнистые композиты на основе данных полиэфиров обладают прочностью на растяжение 65-77 МПа.
Недостаток данного способа получения связующего состоит в том, что он является достаточно энергоемким, поскольку температура процесса конденсации составляет 256-260°С и продолжительность соответственно 22-24 часа.
Техническим результатом настоящего изобретения является упрощение технологии получения полиэфира за счет снижения температуры поликонденсации и снижения продолжительности процесса при одновременном снижении температуры плавления полученного полимера, а также при одновременном сохранении прочности композиционных материалов на основе данного полиэфира.
Поставленная цель достигается тем, что в заявляемом способе получения полиэфира, заключающемся в поликонденсации полифункциональных органических соединений природного происхождения с адипиновой кислотой или себациновой при повышенной температуре в инертной среде (азот), процесс поликонденсации осуществляют между: субериновыми кислотами (СК), адипиновой кислотой (АК), n-фенилендиамином (n-ФД), себациновой кислотой (СебК), о-фенилендиамином (о-ФД), гексаметилендиамином (ГДА) при массовом соотношении СК: АК или СебК: n-ФД, или о-ФД, или ГДА - 10:(2÷4):(3,1÷6,2), причем процесс проводят при температуре 150-220°С и продолжительности процесса 1,5-2,5 часа.
Существенными отличиями заявляемого изобретения является использование в определенном соотношении с субериновыми кислотами дикарбоновой кислоты и диамина, в качестве которых используются адипиновая кислота или себациновая кислота и n-фенилендиамин, или о-фенилендиамин, или гексаметилендиамин. Выбор адипиновой кислоты и себациновой кислоты обусловлен тем, что они способны конденсироваться в линейную макромолекулу и тем самым препятствовать образованию пространственной сетки при поликонденсации субериновых кислот, а n-фенилендиамин, о-фенилендиамин и гексаметилендиамин были выбраны с целью регулирования температуры плавления и жесткости цепи полимера.
Согласно заявляемому техническому решению поликонденсация мономеров происходит за счет взаимодействия реакционноспособных групп субериновых кислот, таких как карбоксильные, гидроксильные и эпоксидные группы между собой и с аминогруппами n-фенилендиамина (о-фенилендиамина или гексаметилендиамина) и карбоксильными группами адипиновой кислоты (себациновой кислоты), эти взаимодействия можно изобразить с помощью следующих реакций.
Из представленных выше реакций отчетливо видно, что в структуре получаемого полимера образуются простые эфирные связи (реакция 2), сложные эфирные связи (реакция 1), амидные связи (реакция 4) и аминные связи (реакция 5).
Таким образом получены новые полиэфироамиды, сополимеры субериновых кислот, адипиновой кислоты (или себациновой) и n-фенилендиамина (или о-фенилендиамина, или гексаметилендиамина), обладающие разветвленной структурой и степенью превращения до 0,99.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Заявляемый способ реализуется следующим образом.
Пример 1. В реактор загружаются субериновые кислоты, адипиновая кислота и n-фенилендиамин в соотношении СК:АК:ПФД, равном 10:2:3,1, подается азот, после чего реактор нагревается до 150°С, и реакцию поликонденсации проводят в течение 1,5 часа при перемешивании, после окончания процесса полученный полимер выгружается.
В таблице 2 приведены параметры и показатели процесса и характеристики готовой продукции.
Преимущество предлагаемого изобретения по сравнению с прототипом заключается в том, что процесс поликонденсации субериновых кислот с бифункциональными веществами, такими как адипиновая, себациновая кислоты, n-фенилендиамин, о-фенилендиамин и гексаметилендиамин, осуществляется при более низкой температуре (до 220°С) и продолжительности процесса 1,5-2,5 часа, что значительно упрощает технологию процесса синтеза полимера. Дополнительным преимуществом является то, что температура плавления полученных полиэфироамидов ниже, чем у прототипа, и составляет 133-149°С.
Полученные полиэфиры с показателями по степени превращения 0,80-0,99 и температурой плавления 133-149°С берут в соотношении 20:80 с древесным волокном, прессуют при t - 200°С и давлении 6 МПа в течение 1 мин/мм толщины. Готовая продукция (древесно-волокнистые плиты) обладают прочностью 77-83 МПа, что в 1,5-2 раза выше показателя ГОСТ на промышленно выпускаемые аналоги. Прочность оценивалась по методике ГОСТ 11262-80.
Из экспериментальных данных, приведенных в таблице 2, видно, что в сравнении с прототипом по заявляемому способу получен полиэфир с температурой плавления 133-149°С, что дает возможность его использования в качестве связующего в технологии полимерных композиционных материалов. Получаемые таким образом материалы обладают высокими прочностными свойствами, не уступающими прототипу.
Из таблицы 2 видно, что при повышении температуры процесса поликонденсации (примеры №1-3) степень превращения полученного полиэфира увеличивается, а также увеличивается прочность древесно-волокнистых плит.
При увеличении продолжительности процесса (примеры №2, 4, 5) также наблюдается возрастание степени превращения и температуры плавления получаемых полиэфиров, при этом прочность плит лежит в диапазоне, соответствующем прочности плит, получаемых по прототипу.
Изменение соотношения компонентов (примеры №1, 7, 12) во всем диапазоне заявляемых температур и продолжительности процесса позволяет получить плиты с прочностью, равной прочности плит, соответствующих прототипу.
Таблица 2
Параметры процесса поликонденсации и характеристики получаемых полимеров
№/№ Соотношение компонентов, мас.% Температура,
°С
Продолжительность процесса, ч Степень превращения Температура плавления, °С Прочность плит, МПа
Субериновые кислоты: адипиновая кислота: n-фенилендиамин
1 10:2:3,1 150 1,5 0,85 139 77
2 10:2:3,1 180 1,5 0,87 142 78
3 10:2:3,1 220 1,5 0,88 143 79
4 10:2:3,1 180 2 0,90 146 79
5 10:2:3,1 180 2,5 0,95 148 83
6 10:3:4,6 150 1,5 0,83 138 77
7 10:3:4,6 180 1,5 0,88 143 78
8 10:3:4,6 220 1,5 0,94 148 83
9 10:3:4,6 150 2 0,86 140 78
10 10:3:4,6 150 2,5 0,93 147 83
11 10:4:6,2 150 1,5 0,80 137 77
12 10:4:6,2 180 1,5 0,89 145 79
13 10:4:6,2 220 1,5 0,95 149 79
14 10:4:6,2 150 2 0,86 140 78
15 10:4:6,2 150 2,5 0,97 149 78
Субериновые кислоты: адипиновая кислота: о-фенилендиамин
16 10:3,8:6,0 200 2,3 0,98 146 78
Субериновые кислоты: себациновая кислота: n-фенилендиамин
17 10:3,4:6,1 215 2,5 0,98 146 77
Субериновые кислоты: себациновая кислота: о-фенилендиамин
18 10:3,1:6,1 210 2,4 0,99 144 78
Субериновые кислоты: адипиновая кислота: гексаметилендиамин
19 10:3,9:6,0 220 2,5 0,98 136 77
Субериновые кислоты: себациновая кислота: гексаметилендиамин
20 10:3,8:6,0 215 2,5 0,99 133 77
Прототип (Бетулин: себациновая кислота)
21 1:1,034 260 23 0,996 200 65-77
Замена адипиновой кислоты на себациновую кислоту в полиэфире (пример №18) также позволяет получить плиты с прочностью, не уступающей прототипу. Замена n-фенилендиамина на о-фенилендиамин (пример №17, 19) или гексаметилендиамин (пример №20, 21) в случае использования себациновой или адипиновой кислоты также позволяет получить плиты с прочностью соответствующей прочности плит по прототипу.
Также надо отметить, что во всех случаях степень превращения полиэфиров по заявляемому способу ниже, чем у прототипа, но прочность получаемых плит равна прочности плит по прототипу. Температура плавления получаемых полиэфиров по заявляемому способу не зависимо от соотношения компонентов и компонентного состава меньше, чем у прототипа, что делает процесс получения древесно-волокнистых плит более экономичным.

Claims (2)

1. Способ получения полиэфира, заключающийся в поликонденсации полифункциональных органических соединений природного происхождения с адипиновой кислотой или себациновой при повышенной температуре в инертной среде, отличающийся тем, что процесс поликонденсации осуществляют между субериновыми кислотами, адипиновой кислотой или себациновой и n-фенилендиамином, или о-фенилендиамином, или гексаметилендиамином при массовом соотношении субериновые кислоты: адипиновая или себациновая кислота: п-фенилендиамин, или о-фенилендиамин, или гексаметилендиамин - 10:(2÷4):(3,1÷6,2) при температуре 150-220°С.
2. Способ по п.1, отличающийся тем, что продолжительность процесса поликонденсации составляет 1,5-2,5 ч.
RU2004118348/04A 2004-06-16 2004-06-16 Способ получения полиэфира RU2262516C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004118348/04A RU2262516C1 (ru) 2004-06-16 2004-06-16 Способ получения полиэфира

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004118348/04A RU2262516C1 (ru) 2004-06-16 2004-06-16 Способ получения полиэфира

Publications (1)

Publication Number Publication Date
RU2262516C1 true RU2262516C1 (ru) 2005-10-20

Family

ID=35863113

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004118348/04A RU2262516C1 (ru) 2004-06-16 2004-06-16 Способ получения полиэфира

Country Status (1)

Country Link
RU (1) RU2262516C1 (ru)

Similar Documents

Publication Publication Date Title
RU2448126C2 (ru) Клеевая композиция низкомолекулярной полиамидоамин-эпигалогидриновой (паэ) смолы и белка
CN116323125A (zh) 适用于增强含有植物纤维的物体的弯曲性质的组合物
CN106817901A (zh) 包含ii型纤维素的粘合剂组合物
CN116648490A (zh) 用于纤维复合制品的包含聚氨基酸的基料组合物
JP2024503588A (ja) 複合物品用のアミノ酸ポリマーおよび炭水化物を含むバインダー組成物
US20130123513A1 (en) Adhesive Compositions for Bonding Composites
JPS6090283A (ja) リグノセルロース複合材料の製造法
RU2013133646A (ru) Способ получения проклеенных и/или влагостойких бумаг, картонов и тонких картонов
RU2262516C1 (ru) Способ получения полиэфира
JP2016155971A (ja) 微細セルロース繊維複合体
US5869576A (en) Graft copolymerized compositions
US5149746A (en) Semi-interpenetrating polymer network for tougher and more microcracking resistant high temperature polymers
Saud et al. Introduction of eco-friendly adhesives: source, types, chemistry and characterization
JPH0158208B2 (ru)
JP2001506697A (ja) グラフト共重合組成物
US5098961A (en) Semi-interpenetrating polymer network for tougher and more microcracking resistant high temperature polymers
WO2024008939A1 (en) Compositions for fibreboards with enhanced properties upon fast-curing at low temperature
US4400495A (en) Wood modifying composition
WO2024008938A1 (en) Compositions for fibreboards with enhanced properties upon fast-curing at low temperature
WO2024038152A1 (en) Compositions for fibreboards with enhanced properties upon fast-curing at low temperature
RU2696859C1 (ru) Аминопластичная смола
WO2024038153A1 (en) Compositions for fibreboards with enhanced properties upon fast-curing at low temperature
WO2024008940A1 (en) Compositions for fibreboards with enhanced properties upon fast-curing at low temperature
EP3286236B1 (en) Production process of the resins containing polyflavonoid and derivatives and their application in the wood based composite board products
Nguyen et al. Synthesis of lignin-based phenol-formaldehyde adhesive-A sustainable alternative to petrochemical

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080617