RU2261918C2 - Способ и устройство для прямого восстановления железа с высокой производительностью - Google Patents

Способ и устройство для прямого восстановления железа с высокой производительностью Download PDF

Info

Publication number
RU2261918C2
RU2261918C2 RU2003127679/02A RU2003127679A RU2261918C2 RU 2261918 C2 RU2261918 C2 RU 2261918C2 RU 2003127679/02 A RU2003127679/02 A RU 2003127679/02A RU 2003127679 A RU2003127679 A RU 2003127679A RU 2261918 C2 RU2261918 C2 RU 2261918C2
Authority
RU
Russia
Prior art keywords
oxygen
reducing gas
gas
enriched
gas mixture
Prior art date
Application number
RU2003127679/02A
Other languages
English (en)
Other versions
RU2003127679A (ru
Inventor
Стивен К. МОНТАГ (US)
Стивен К. МОНТАГ
Рассел КАКАЛЕЙ (US)
Рассел КАКАЛЕЙ
Грегори Д. ХЬЮЗ (US)
Грегори Д. ХЬЮЗ
Гэри Э. МЕТИУС (US)
Гэри Э. МЕТИУС
Original Assignee
Мидрекс Текнолоджиз, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/781,817 external-priority patent/US20010034001A1/en
Application filed by Мидрекс Текнолоджиз, Инк. filed Critical Мидрекс Текнолоджиз, Инк.
Publication of RU2003127679A publication Critical patent/RU2003127679A/ru
Application granted granted Critical
Publication of RU2261918C2 publication Critical patent/RU2261918C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/02Casings; Linings; Walls characterised by the shape of the bricks or blocks used
    • F23M5/025Casings; Linings; Walls characterised by the shape of the bricks or blocks used specially adapted for burner openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/09002Specific devices inducing or forcing flue gas recirculation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

Изобретение относится к прямому восстановлению железа, восстанавливая оксид железа до металлизованного железа путем контактирования с горячим восстановительным газом. Способ включает обеспечение первого горячего восстановительного газа, содержащего СО и Н2, обеспечение дополнительного восстановительного газа за счет реакции газообразного или жидкого углеводородного топлива с кислородом, смешивание первого горячего восстановительного газа с дополнительным восстановительным газом с образованием восстановительной газовой смеси, обогащение смеси восстановительного газа путем добавления газообразного или жидкого углеводорода с образованием обогащенной газовой смеси, инжектирование кислорода или обогащенного кислородом воздуха в обогащенную газовую смесь и введение обогащенной газовой смеси в присоединенную шахтную печь прямого восстановления в качестве горячего восстановительного газа. Изобретение позволит увеличить количество восстановителя в газе, подаваемом в кольцевой распределитель печи, с одновременным регулированием оптимальной температуры подаваемого в кольцевой распределитель газа. 2 н. и 10 з.п. ф-лы, 1 ил.

Description

Перекрестная ссылка на родственные заявки
Данная заявка претендует на преимущества заявки №60/181945, поданной 11 февраля 2000 г., и является частичным продолжением находящейся на совместном рассмотрении заявки на патент США №09/456111, поданной 7 декабря 1999 г., которая является частичным продолжением заявки на патент США №08/924686, которая была подана 5 сентября 1997 г. и по которой в настоящее время выдан патент США №5997596, опубликованный 7 декабря 1999 г.
Область изобретения
Настоящее изобретение относится к способу и устройству для прямого восстановления железа с высокой производительностью, предназначенным для получения металлизованного железа или другого металла, а более конкретно - к устройству и способам для увеличения количества восстановителя в газе, подаваемом в кольцевой распределитель печи прямого восстановления, с одновременным регулированием оптимальной температуры подаваемого в кольцевой распределитель газа и регулированием оптимальной температуры слоя шихты.
Предшествующий уровень техники
В процессе прямого восстановления Midrex восстановление оксидов железа до металлизованного железа осуществляют образованием в шахтной печи слоя железосодержащей шихты, такой как оксид железа в форме гранул или кусков, с последующим инжектированием в шихту нагретого восстановительного газа, обычно смеси водорода и монооксида углерода, в течение периода времени, достаточного для по существу полного восстановления оксидов до металлизованного железа. Восстановительный газ обычно инжектируют в шихту с использованием системы кольцевого распределителя труб и фурм.
Имеющаяся проблема состоит в том, как повысить производительность новых и существующих печей процесса прямого восстановления без увеличения емкости традиционного оборудования для восстановительного газа.
Решение указанной проблемы в данной области техники в настоящее время сосредоточено на четырех направлениях:
1) введение обогатительной добавки - для риформинга in situ в восстановительной печи;
2) инжекция кислорода для повышения температуры слоя в печи с целью повышения использования восстановителя;
3) введение высокообогатительной добавки и инжекция кислорода - главным образом для риформинга in situ в восстановительной печи;
4) использование топливно-кислородных горелок для генерирования восстановителя за пределами печи.
Каждое из указанных решений содержит недостатки, представленные ниже.
1. Введение обогатительной добавки. В поток подаваемого в кольцевой распределитель газа добавляется углеводородное топливо (такое как природный газ, метан, этан, бутан, пропан, нафта). Для предотвращения метанирования содержание метана в подаваемом в кольцевой распределитель газе можно контролировать. Метан в данном случае представляет собой химическое сырье для риформинга in situ в печи, поэтому за счет получения большего количества восстановителя повышается производительность. Однако риформинг in situ потребляет тепло, поэтому высокие количества обогатительной добавки уменьшают температуры слоя в печи. Пониженные температуры слоя приводят к меньшему использованию восстановителя и к замедлению кинетики реакций восстановления. Если температуры слоя становятся слишком низкими, тогда химическое равновесие будет благоприятствовать реакциям науглерожирования: 2СО→[С]+СО2 и СО+H2→[С]+Н2О, которые потребляют часть восстановителя и в результате которых образуются окислители.
2. Для поддержания температуры слоя примерно 900°С, которая чуть ниже температуры кластерообразования шихтового материала, на многих заводах в процессе прямого восстановления в настоящее время используют инжекцию кислорода, обычно при низких уровнях метана в подаваемом в кольцевой распределитель газе (примерно 2,5%). Для баланса температур слоя может быть использовано небольшое количество обогатительной добавки. Высокие температуры подаваемого в кольцевой распределитель газа обеспечивают возможность повышения температур в слое печи до максимальной величины. Повышенные температуры слоя ускоряют кинетику реакций восстановления, увеличивают использование восстановителя и дают более высокую производительность печи. В результате добавления обогатительной добавки может происходить в небольшой степени риформинг in situ. Однако все оборудование, начиная со средств для инжекции кислорода и заканчивая печью, подвергается повышенным температурам, при этом повышается вероятность кластерообразования шихты, а также возрастают требования к оборудованию. Инжекцию кислорода ограничивают, когда температура подаваемого в кольцевой распределитель газа или температура слоя в печи являются достаточно высокими для того, чтобы вызвать кластерообразование материала в печи. Большая часть инжектированного кислорода сгорает с уже присутствующим в газовом потоке Н2 и СО, что приводит к повышенным температурам, но к меньшему содержанию восстановителя и худшему качеству (поскольку получаются Н2О и CO2). Вкратце, имеющиеся в настоящее время системы инжекции кислорода позволяют изменять скорость подачи кислородного потока для регулирования температуры, а некоторые системы изменяют скорость подачи природного газа для регулирования уровней метана без возможности повышения количества генерированного восстановителя или качества газового потока. Качество восстановительного газа определяется отношением восстановителей (H2+CO) к окислителям (СО22О), причем чем выше качество, тем лучше. Типичное значение отношения восстановителей к окислителям составляет примерно 12 к 1, при этом отношение Н2/СО составляет 1,5 к 1.
3. Введение высокообогатительной добавки и инжекция кислорода. Когда используется комбинация инжекции кислорода и введения высокообогатительной добавки, то температуры слоя в печи до максимума не повышаются. Работа при высоком содержании метана в подаваемом в кольцевой распределитель газе (примерно 6%) обеспечивает максимальный риформинг in situ в восстановительной печи, вследствие чего температуры в слое печи находятся в диапазоне от 800 до 820°С. Производительность повышается, главным образом, за счет риформинга in situ. Небольшое повышение производительности может быть реализовано за счет небольших увеличений температур слоя вследствие повышенного использования и усовершенствованной кинетики реакций восстановления. К сожалению, степень, до которой могут быть инжектированы чистый кислород и природный газ, ограничена высокими температурами подаваемого в кольцевой распределитель газа, которые могут вызвать кластерообразование около дырочных плиток, то есть в том месте, в котором подаваемый газ поступает в печь. Если температура слоя в печи является низкой, тогда остаточное содержание восстановителя в колошниковом газе после протекания реакций восстановления будет выше и остаточное содержание метана в колошниковом газе после протекания реакций риформинга in situ будет также выше, что приведет к получению колошникового газа с повышенной теплотворной способностью. Когда повышенная теплотворная способность превышает количество тепла, необходимое для процесса восстановления, генерируется топливо, подлежащее удалению. В результате в процессе прямого восстановления возрастает расход природного газа и не обеспечиваются какие-либо преимущества, кроме образования топлива, подлежащего удалению.
4. Топливно-кислородные горелки в установках для прямого восстановления (DR) не используются. Топливно-кислородные горелки обладают способностью генерировать восстановительный газ за пределами восстановительной печи без значительного увеличения температур, подаваемого в кольцевой распределитель газа. Генерированный восстановитель имеет более высокое качество, чем то, которое может быть достигнуто, если те же количества кислорода и природного газа добавляют через типичную систему, использующую инжекцию кислорода + введение обогатительной добавки. Однако топливно-кислородные горелки могут не обладать способностью продуцировать восстановительный газ с требуемой температурой для подаваемого в кольцевой распределитель газа. Восстановительный газ, генерируемый топливно-кислородными горелками, не будет иметь избыточного тепла, необходимого для поддержания высоких температур в слое печи. Для того чтобы топливно-кислородные горелки давали высококачественный восстановительный газ, отношение кислорода к топливу должно регулироваться в определенных пределах. Такое отношение препятствует необходимому повышению топливно-кислородными горелками температуры газа, подаваемого в кольцевой распределитель. Если топливно-кислородная горелка работает при отношении кислород/топливо, которое является слишком высоким, тогда горелка может быть разрушена за счет высоких температур. И наоборот, если горелка работает при отношении кислород/топливо, которое является слишком низким, то может образовываться углерод, который будет забивать горелку. Возможно, что для повышения температуры подаваемого в кольцевой распределитель газа может быть использовано большее число топливно-кислородных горелок, но при этом предотвращается работа установки с горелками, дающими низкие количества дополнительного восстановительного газа при высоких температурах в слое печи. Конечно, потребность в большем количестве топливно-кислородных горелок, предназначенных для повышения температуры подаваемого в кольцевой распределитель газа, будет также приводить к большим капитальным затратам.
Родственная ссылка предшествующего уровня
Процесс прямого восстановления Midrex раскрыт в патентах США №№3748120 и 3749386 на имя Беггса (Beggs).
Сущность изобретения
Данное изобретение предусматривает способ прямого восстановления железа с высокой производительностью, в котором оксид железа восстанавливают до металлизованного железа путем контактирования с горячим восстановительным газом, включающий в себя обеспечение первого горячего восстановительного газа, содержащего СО и Н2, обеспечение дополнительного восстановительного газа за счет реакции газообразного или жидкого углеводородного топлива с кислородом, смешивание упомянутого первого горячего восстановительного газа с упомянутым дополнительным восстановительным газом с образованием восстановительной газовой смеси, обогащение упомянутой восстановительной газовой смеси путем добавления газообразного или жидкого углеводорода с образованием обогащенной газовой смеси, инжектирование кислорода или обогащенного кислородом воздуха в упомянутую обогащенную газовую смесь, и введение упомянутой обогащенной газовой смеси в присоединенную печь прямого восстановления в качестве упомянутого горячего восстановительного газа.
Данное изобретение предусматривает также устройство для прямого восстановления железа с высокой производительностью, в котором оксид железа восстанавливается до металлизованного железа путем контактирования с горячим восстановительным газом, содержащее печь прямого восстановления, средства для обеспечения первого горячего восстановительного газа, содержащего СО и Н2, средства для реагирования газообразного или жидкого углеводородного топлива с кислородом с получением дополнительного восстановительного газа, средства для смешивания упомянутого первого горячего восстановительного газа с упомянутым дополнительным восстановительным газом с образованием восстановительной газовой смеси, средства для обогащения упомянутой восстановительной газовой смеси путем добавления газообразного или жидкого углеводорода с образованием обогащенной газовой смеси, средства для инжекции кислорода или обогащенного кислородом воздуха в упомянутую обогащенную газовую смесь и средства для введения упомянутой обогащенной газовой смеси в упомянутую печь прямого восстановления в качестве упомянутого горячего восстановительного газа.
Задачи изобретения
Основная задача настоящего изобретения заключается в том, чтобы предоставить усовершенствованный способ увеличения количества восстановителя в газе, подаваемом в кольцевой распределитель печи прямого восстановления, с одновременным регулированием оптимальной температуры подаваемого в кольцевой распределитель газа и регулированием оптимальной температуры слоя.
Дополнительная задача изобретения заключается в том, чтобы предоставить устройство для осуществления вышеуказанного способа.
Другая задача изобретения заключается в том, чтобы повысить производительность печи прямого восстановления без повышения емкости или размера традиционного оборудования для восстановительного газа.
Краткое описание чертежа
Вышеуказанные и другие задачи будут более очевидны со ссылкой на следующее подробное описание и чертеж, который представляет собой технологическую схему предпочтительного варианта осуществления изобретения.
Подробное описание
Для повышения производительности новых и существующих печей прямого восстановления без повышения емкости традиционного оборудования для восстановительного газа в настоящем изобретении используют топливно-кислородные горелки, введение обогатительной газовой добавки и инжекцию кислорода. Данный способ максимально повышает риформинг in situ при одновременной максимизации кинетики восстановления.
Регулирование оптимальной температуры подаваемого в кольцевой распределитель газа до значения более 900°С обеспечивает тепло, необходимое для риформинга in situ, и максимально повышает количество восстановительного газа в печи. Регулирование оптимальной температуры слоя до значения более 850°С ускоряет кинетику реакций, увеличивает использование восстановителя, обеспечивает тепло, которое может быть использовано для крекинга углеводородов в нижнем конусе печи и уменьшает генерацию подлежащего удалению топлива.
Как следует из чертежа, печь прямого восстановления, такая как шахтная печь 10, имеет систему 12 кольцевого распределителя и фурм, сообщающуюся с трубопроводом 14 для восстановительного газа. Горячий восстановительный газ из источника 16 подают в указанный трубопровод. Сообщающимися с трубопроводом 14 выполнены одна или большее количество топливно-кислородных горелок 20. Каждая горелка питается из источника 22 природным газом или другим углеводородным топливом, таким как метан, этан, бутан, пропан, нафта (тяжелый бензин) или смесь из любых указанных типов топлива. Кислород подают в горелку из источника 24 кислорода.
Для генерации восстановительного газа может быть использовано множество топливно-кислородных горелок 20. Размер и количество указанных горелок будут изменяться в зависимости от поставщика и требований/ограничений, предъявляемых к установке. Отношение кислород/топливо для горелок регулируют таким образом, чтобы генерировался высококачественный восстановительный газ. Топливно-кислородные горелки пополняют поток восстановительного газа, подаваемого в печь прямого восстановления. Отношение кислород/топливо можно регулировать с целью максимального повышения качества сгенерированного восстановительного газа, т.е. [(Н2+СО)/(H2O+CO2)]. Топливно-кислородная горелка может работать при оптимальном отношении для максимального повышения качества без превышения пределов температуры горелки. Поток поступает при требуемом соотношении в регулятор 26, который регулирует количество кислорода, протекающего через клапан 28 в горелку 20, и количество углеводородного газа, протекающего через клапан 30 в горелку.
Добавление обогатительного углеводородного газа осуществляют инжекцией природного газа или других углеводородов, таких как метан, этан, бутан, пропан, нафта или смесь углеводородов, из источника 38 в трубопровод 14, размещенный перед кольцевым распределителем 12. Обогатительный поток контролируют путем анализа содержания метана в подаваемом газе с помощью газоанализатора 40, размещенного по соседству с кольцевым распределителем 12. Анализатор 40 сообщается с регулятором 42 потока углеводорода, работа которого косвенно регулирует температуру слоя в печи. Обогатительная добавка обеспечивает возможность независимого и точного регулирования и оптимизации температур в слое печи. Обогатительный поток регулируют таким образом, чтобы получить повышенные температуры слоя с целью обеспечения повышенного использования восстановительного газа и пониженной генерации подлежащего удалению топлива. Повышенные температуры слоя могут быть использованы в нижнем конусе печи для добавления полученного углерода и генерирования дополнительного количества восстановителя в печи. Обогатительная добавка может быть предварительно нагрета, или же предварительный нагрев может быть исключен.
Инжекция кислорода регулирует температуру подаваемого в кольцевой распределитель газа. Кислород может быть инжектирован в трубопровод 14 для восстановительного газа через единственную трубу 48 или через многосопловое устройство. Для инжекции кислорода могут быть также использованы другие более сложные системы, такие как оптимизированная система инжекции кислорода, которая объединяет введение обогатительной добавки и инжекцию кислорода в одном устройстве. Контрольно-измерительный прибор 50 для измерения температуры сообщается с трубопроводом 14 для восстановительного газа и контролирует работу регулятора 52 кислородного потока для оптимизации температуры подаваемого в кольцевой распределитель газа.
Инжекция кислорода обеспечивает возможность независимого и точного регулирования и оптимизации температуры подаваемого в кольцевой распределитель газа. Температуру подаваемого в кольцевой распределитель газа устанавливают настолько высокой, насколько это возможно, но при этом такая температура не должна вызывать кластерообразование около дырочных плиток. Повышенные температуры подаваемого в кольцевой распределитель газа обеспечивают энергию, необходимую для риформинга in situ, что приводит к получению печного газа более высокого качества. Высокие температуры также обеспечивают энергию, необходимую для поддержания высоких температур слоя.
В заявленном способе любое из типов топлива или кислород могут быть холодными или предварительно нагретыми. Последовательность инжекции кислорода и введения обогатительной добавки может быть, по желанию, изменена на обратную.
Оптимальная производительность достигается при максимальном повышении температуры восстановления шихты и качества восстановительного газа, поступающего в шахтную печь. Указанные два фактора являются ключевыми для оптимизации производительности любой печи прямого восстановления и связанного с ней оборудования для генерирования газа. За счет использования инжекции кислорода и топливно-кислородных горелок, как показано на чертеже, а также за счет поддержания природного газа в потоке восстановительного газа можно независимо регулировать температуру шихты в шахтной печи и температуру восстановительного газа. Это позволяет оператору максимально повысить производительность шахтной печи за счет максимального использования в печи восстановительных газов.
Выводы о достижении задач изобретения
Из вышеизложенного очевидно, что заявитель изобрел усовершенствованный способ и устройство для увеличения количества восстановителя в подаваемом в кольцевой распределитель газе, печи прямого восстановления, с одновременным регулированием оптимальной температуры подаваемого в кольцевой распределитель газа и регулированием оптимальной температуры слоя.
Понятно, что представленное выше описание и конкретные варианты приведены только с целью иллюстрации наилучшего варианта осуществления изобретения и его идей, и что специалистами в данной области могут быть сделаны различные модификации и добавления в отношении устройства без отклонения от сущности и объема изобретения, которые, как понятно, ограничены только объемом приложенной формулы изобретения.

Claims (12)

1. Способ прямого восстановления железа с высокой производительностью, в котором оксид железа восстанавливают до металлизованного железа путем контактирования с горячим восстановительным газом, включающий в себя обеспечение первого горячего восстановительного газа, содержащего СО и Н2, обеспечение дополнительного восстановительного газа за счет реакции газообразного или жидкого углеводородного топлива с кислородом, смешивание упомянутого первого горячего восстановительного газа с упомянутым дополнительным восстановительным газом с образованием восстановительной газовой смеси, обогащение упомянутой восстановительной газовой смеси путем добавления газообразного или жидкого углеводорода с образованием обогащенной газовой смеси, инжектирование кислорода или обогащенного кислородом воздуха в упомянутую обогащенную газовую смесь и введение упомянутой обогащенной газовой смеси в присоединенную печь прямого восстановления в качестве упомянутого горячего восстановительного газа.
2. Способ по п.1, в котором упомянутое углеводородное топливо на стадии обеспечения дополнительного восстановительного газа выбирают из группы, состоящей из природного газа, сжиженного природного газа, метана, этана, бутана, пентана, пропана, нафты, нефтяного топлива или любой их смеси.
3. Способ по п.1, который дополнительно включает в себя регулирование температуры упомянутой обогащенной газовой смеси, подаваемой в кольцевой распределитель печи прямого восстановления, посредством контроля температуры обогащенной газовой смеси, подаваемой в кольцевой распределитель печи прямого восстановления, и корректирования скорости инжекции кислорода.
4. Способ по п.1, который дополнительно включает в себя регулирование отношения кислорода и топлива, подаваемых в топливно-кислородную горелку для обеспечения упомянутого дополнительного восстановительного газа.
5. Способ по п.1, который дополнительно включает в себя контроль температуры упомянутой обогащенной газовой смеси и корректирование скорости добавления путем инжекции газообразного или жидкого углеводорода в ответ на нее.
6. Способ по п.1, который дополнительно включает в себя контроль качества упомянутой обогащенной газовой смеси и корректирование скорости инжекции кислорода или обогащенного кислородом воздуха в ответ на него.
7. Устройство для прямого восстановления железа с высокой производительностью, в котором оксид железа восстанавливается до металлизованного железа путем контактирования с горячим восстановительным газом, содержащее печь прямого восстановления, средства для обеспечения первого горячего восстановительного газа, содержащего СО и H2, средства для реагирования газообразного или жидкого углеводородного топлива с кислородом с получением дополнительного восстановительного газа, средства для смешивания упомянутого первого горячего восстановительного газа с упомянутым дополнительным восстановительным газом с образованием восстановительной газовой смеси, средства для обогащения упомянутой восстановительной газовой смеси путем добавления газообразного или жидкого углеводорода с образованием обогащенной газовой смеси, средства для инжекции кислорода или обогащенного кислородом воздуха в упомянутую обогащенную газовую смесь и средства для введения упомянутой обогащенной газовой смеси в упомянутую печь прямого восстановления в качестве упомянутого горячего восстановительного газа.
8. Устройство по п.7, в котором упомянутая печь прямого восстановления представляет собой шахтную печь.
9. Устройство по п.7, в котором упомянутые средства для реагирования газообразного или жидкого углеводородного топлива с кислородом представляют собой топливно-кислородную горелку.
10. Устройство по п.9, которое дополнительно содержит средства, связанные с топливно-кислородной горелкой для регулирования отношения кислорода и топлива, подаваемых в топливно-кислородную горелку.
11. Устройство по п.7, которое дополнительно содержит средства для контроля температуры упомянутой обогащенной газовой смеси и корректирования скорости добавления путем инжекции газообразного или жидкого углеводорода в ответ на нее.
12. Устройство по п.7, которое дополнительно содержит средства для контроля качества упомянутой обогащенной газовой смеси и корректирования скорости инжекции кислорода или обогащенного кислородом воздуха в ответ на него.
RU2003127679/02A 2001-02-12 2002-02-08 Способ и устройство для прямого восстановления железа с высокой производительностью RU2261918C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/781,817 2001-02-12
US09/781,817 US20010034001A1 (en) 2000-02-24 2001-02-12 Low NOx emissions, low noise burner assembly and method for reducing the NOx content of furnace flue gas

Publications (2)

Publication Number Publication Date
RU2003127679A RU2003127679A (ru) 2005-05-10
RU2261918C2 true RU2261918C2 (ru) 2005-10-10

Family

ID=25124031

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003127679/02A RU2261918C2 (ru) 2001-02-12 2002-02-08 Способ и устройство для прямого восстановления железа с высокой производительностью

Country Status (4)

Country Link
AU (1) AU2002238080B2 (ru)
MX (1) MXPA03007201A (ru)
RU (1) RU2261918C2 (ru)
WO (1) WO2002097138A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306024B3 (de) 2003-02-13 2004-05-06 Siemens Ag Multivariate, prädiktive Regelung eines Herstellungsprozesses, insbesondere eines Direktreduktionsprozesses

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997596A (en) * 1997-09-05 1999-12-07 Spectrum Design & Consulting International, Inc. Oxygen-fuel boost reformer process and apparatus

Also Published As

Publication number Publication date
AU2002238080B2 (en) 2005-06-02
WO2002097138A1 (en) 2002-12-05
RU2003127679A (ru) 2005-05-10
MXPA03007201A (es) 2005-02-14

Similar Documents

Publication Publication Date Title
RU2195425C2 (ru) Способ и устройство для ускоренного риформинга топлива с кислородом
CN102165257B (zh) 用于加料控制的方法、系统和设备
CA2914784C (en) System and method for reducing iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas
CN103608468A (zh) 使用焦炉气和氧气炼钢炉气将氧化铁还原为金属铁的系统和方法
US6506230B2 (en) Method for increasing productivity of direct reduction process
KR20180109064A (ko) 고로 샤프트부로의 수소 함유 환원 가스 공급 방법
CN106854127A (zh) 烃制乙炔和/或合成气的方法及装置
CN101448962B (zh) 通过注入含烃气体制造铁水的方法和使用该方法制造铁水的设备
CZ281854B6 (cs) Způsob výroby oceli za použití vsázky tuhých železonosných látek
RU2261918C2 (ru) Способ и устройство для прямого восстановления железа с высокой производительностью
GB2188066A (en) Increasing carbon content of hot directly reduced iron
US20020007699A1 (en) Apparatus and method for optimizing the use of oxygen in the direct reduction of iron
GB2188067A (en) Increasing carbon content of direct reduced iron
US6602317B2 (en) Method and apparatus for controlling temperature uniformity of the burden in a direct reduction shaft furnace
NL8102654A (nl) Werkwijze voor het bedrijven van een hoogoven.
CN205328629U (zh) 制备电石的装置
AU2002238080A1 (en) Method and apparatus for increasing productivity of direct reduction process
FR2847659A1 (fr) Procede d'optimisation en energie d'un site industriel, par enrichissement en oxygene d'air de combustion
WO2005119380A2 (en) Computer implemented control process for the production of molten pig iron
LU500699B1 (en) Method for operating a shaft furnace plant
RU2788662C1 (ru) Способ производства минеральной изоляции
WO2022184692A1 (en) Oxy-fuel burner, ignition and flame control system and method for controlling ignition and flame
US20240230087A9 (en) Oxy-fuel burner, ignition and flame control system and method for controlling ignition and flame
CN205313104U (zh) 制备电石的装置
EP1604373B1 (en) Method and apparatus for controling temperature uniformity of the burden in a direct reduction shaft furnace

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190209