RU2259994C1 - Способ получения ацетата железа (ii) - Google Patents

Способ получения ацетата железа (ii) Download PDF

Info

Publication number
RU2259994C1
RU2259994C1 RU2004104495/04A RU2004104495A RU2259994C1 RU 2259994 C1 RU2259994 C1 RU 2259994C1 RU 2004104495/04 A RU2004104495/04 A RU 2004104495/04A RU 2004104495 A RU2004104495 A RU 2004104495A RU 2259994 C1 RU2259994 C1 RU 2259994C1
Authority
RU
Russia
Prior art keywords
iron
acetic acid
acetate
oxide
iron oxide
Prior art date
Application number
RU2004104495/04A
Other languages
English (en)
Other versions
RU2004104495A (ru
Inventor
А.М. Иванов (RU)
А.М. Иванов
С.П. Алтухов (RU)
С.П. Алтухов
Д.С. Лоторев (RU)
Д.С. Лоторев
Original Assignee
Курский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Курский государственный технический университет filed Critical Курский государственный технический университет
Priority to RU2004104495/04A priority Critical patent/RU2259994C1/ru
Publication of RU2004104495A publication Critical patent/RU2004104495A/ru
Application granted granted Critical
Publication of RU2259994C1 publication Critical patent/RU2259994C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к технологии получения солей уксусной кислоты, в частности безводного ацетата железа(II). Способ получения безводного ацетата железа (II) включает взаимодействие металлического железа с уксусной кислотой в присутствии окислителей оксидов железа Fe2O3 или Fe3O4 и молекулярного йода, при мольном соотношении уксусная кислота: уксусный ангидрид: оксид железа, равном 100:(6÷20):(2÷2,5) и мольном соотношении оксид железа: йод, равном 100:6,3. Процесс ведут при 80°С в бисерной мельнице вертикального типа с высокооборотной лопастной мешалкой и обратном холодильнике-конденсаторе при массовом соотношении стеклянного бисера и жидкой фазы в загрузке, равном 1:1. Процесс ведут с периодическим отбором твердой фазы конечного продукта путем фильтрования и последующего возврата фильтрата с подпиткой уксусной кислоты и оксида железа. Для компенсации потерь компонентов жидкой фазы при фильтровании их возвращают в реактор на повторный процесс, который проводят не менее четырех раз подряд. Все операции основного процесса и фильтрование проводят в среде азота. Предпочтительно, в качестве оксида железа используют гематит, γ-оксид, железный сурик, магнетит или Fe3O4·4Н2O. Технический результат - возможность получения безводного ацетата железа(II) и упрощение способа за счет исключения стадии выпаривания при выделении соли. 2 з.п. ф-лы, 2 табл.

Description

Изобретение относится к технологии получения солей уксусной кислоты, в частности безводного ацетата железа (II), который используется в различных областях промышленности, аналитической и прикладной химии.
Известен способ получения ацетатов двухвалентных меди, никеля или кобальта растворением металлов в уксусной кислоте под давлением кислорода 0,4-0,6 МПа при 100-120°С и молярном соотношении металл:уксусная кислота 1:5,2÷5,3 (а.с. СССР №1097604).
Недостатком его является довольно высокие температуры проведения процесса, при которых растворимость кислорода как окислителя в жидкой фазе будет весьма незначительна даже при использовании повышенного давления.
Наиболее близким к заявляемому является способ получения ацетата кобальта (а.с. СССР № 1728222), в соответствии с которым в качестве окислителя используют перекись водорода или надуксусную кислоту, которую в смеси с уксусной кислотой в молярном соотношении 1:2 непрерывно подают в верхнюю часть колонны, заполненной металлическим кобальтом с удельной поверхностью 1-1000 см2/г с одновременным отбором из нижней части колонны водного раствора ацетата кобальта и упариванием последнего с целью выделения продукта путем кристаллизации.
Недостатками указанного способа являются:
1. В одноорганические среды предопределяют выделение целевого продукта путем выпаривания, что представляет собой самостоятельный процесс (или стадию), весьма энергоемкий и к тому же длительный, причем с талыми, перспективами утилизации вторичного пара.
2. Из водноорганических сред кристаллизуется только кристаллогидрат, в данном случае это, например, Со(С2Н3O2)2·4Н2O, но никак не безводная соль.
3. Используемый окислитель (пероксид водорода, в частности) никоим образом не отражен в массе получаемого продукта, хотя и принимает непосредственное участие в промежуточных стадиях данного сложного многостадийного окислительно-восстановительного процесса.
4. Кобальт с указанной удельной поверхностью нужно специально получать.
5. Модель данного процесса вряд ли может быть реализована для железа, поскольку ацетат железа (II) в растворе очень чувствителен к кислороду воздуха и легко окисляется в основной ацетат железа (III). Перекись водорода и перкислота окисляют ацетат железа (II) в соли железа (III) практически мгновенно. Поэтому даже в инертной атмосфере, но с такими окислителями более реально получение основного ацетата железа (III), но не ацетата железа (II), причем не безводного, а кристаллогидрата.
Задачей предлагаемого решения является получить безводный ацетат железа (II), исключить стадию выпаривания при выделении указанной соли в качестве целевого продукта, а также использовать окислитель, который бы привносил заметный вклад в массу получаемого продукта.
Поставленная задача достигается тем, что в качестве окислителя берут оксид железа Fe2О3 или Fe3O4 и молекулярный йод в начальном мольном соотношении 100:6,3, а сам процесс ведут в реакторе типа бисерной мельницы со стеклянным бисером в массовом соотношении с жидкой фазой 1:1 с высокооборотной механической мешалкой и обратным холодильником-конденсатором в среде азота с использованием железа в виде свернутой по типу обечайки ленты с равной рабочей высоте боковой поверхности реактора высотой и исходной загрузкой уксусной кислоты, уксусного ангидрида и оксида железа в мольном соотношении 100:(6÷20):(2÷2,5) при 80°С с периодическим отбором твердой фазы ацетата железа (II) путем фильтрования в среде азота, возвратом фильтрата вместе с подпиткой израсходованных на образование ацетата железа (II) уксусной кислоты и оксида железа, а также компенсацией потерь уксусной кислоты, ангидрида и йода при фильтровании в реактор на повторный процесс. При этом в качестве Fe2О3 берут гематит, γ-окись, железный сурик, а в качестве Fe3O4 магнетит и Fe3O4·4Н2О, а повторный процесс проводят не менее четырех раз подряд.
Характеристика используемого сырья
Железо реактивное по ТУ 6-09-2227-81
Железо карбонильное радиотехническое марка Р-20 по ГОСТ 13610-79
Оксиды железа:
гематит по ГОСТ 4173-77
сурик по ТУ 113-00-38-160-96
γ-окись по ГОСТ 3 540-82
магнетит по ГОСТ 26475-85
Йод кристаллический по ГОСТ 4159-79
Уксусная кислота по ГОСТ 61-75
Уксусный ангидрид по ГОСТ 5815-77
Сталь 3 по ЧМТУ 1-84-67
Проведение процесса заявляемым способом следующее. В бисерную мельницу вертикального типа со стеклянным (для продукта реактивной чистоты) или же стальным (для получения технического продукта) корпусом и мешалкой лопастного типа из плотной и инертной пластмассы или стали, а также с обратным холодильником-конденсатором помещают с небольшим зазором к корпусу согнутую по типу обечайки железную или стальную ленту с высотой, отвечающей рабочей высоте реактора. Соединяют корпус мельницы с крышкой, имеющей сальниковую коробку мешалки, приспособления для контроля за температурой, отбора проб и обеспечения протока газа и загрузочный патрубок. Через последний вводят расчетные количества смеси уксусной кислоты и уксусного ангидрида, а также оксида железа, йода и стеклянного бисера в качестве перетирающего агента. Включают перемешивание и обогрев. После этого организуют проток азота через газовое пространство бисерной мельницы. К выходу температуры на заданный режим остатки кислорода воздуха практически полностью расходуются на химические превращения и, начиная с этого момента, основным сырьем для получения ацетата становятся оксид железа и железо. Растворимость ацетата железа (II) в выбранных среде и условиях довольно невелика и спустя небольшое время вся образующаяся в дальнейшем соль переходит в твердую фазу. Начиная с этого момента, реакционная смесь превращается в соответствующую сложную суспензию с твердыми фазами оксида железа и соли. По достижении практически полного израсходования оксида железа суспензию ацетата железа (II) через сетку в нижнем патрубке мельницы для отделения от стеклянного бисера направляют на фильтрование, после чего фильтрат возвращают обратно в реактор, проводят ввод очередной порции оксида железа, а также подпитку затраченной на образование ацетата железа (II) уксусной кислоты и компенсацию потерь компонентов жидкой фазы при фильтровании, после чего проводят повторный процесс получения целевой соли. Подпитку уксусным ангидридом и йодом в целях указанной компенсации допускается проводить не каждый раз. Процесс прекращают при необходимости перезарядки ленты или после получения требуемого количества соли.
Сушку отфильтрованной соли проводят в среде азота.
Пример № 1
В стеклянный корпус бисерной мельницы вертикального типа внутренним диаметром 63,7 мм и высотой 109 мм вставляют обечайку из полосы железа толщиной ~0,8 мм с внешним диаметром ~62 мм, высотой 65 мм и массой 77,85 г. После этого корпус подсоединяют к закрепленной стационарно на каркасе крышке с механической мешалкой лопастного типа из тефлона и обратным холодильником-конденсатором. Через загрузочный люк в крышке последовательно вводят 110,85 г стеклянного бисера диаметром 0,9÷1,6 мм, 100 г ледяной уксусной кислоты, 10,2 г уксусного ангидрида, 6,67 г гематита и 0,667 г молекулярного йода. Закрывают загрузочный люк, подводят жидкостную обогревающую баню снизу таким образом, чтобы рабочая часть бисерной мельницы была погруженной в предварительно нагретую до 65°С жидкость, снова включают обогрев в бане, включают механическое перемешивание в бисерной мельнице со скоростью 1260 об/мин и подают проток азота через газовое пространство реактора с расходом 0,28 л/мин. Через 20 мин температура в зоне реакции достигает 80°С. Стабилизируют температуру на этом уровне и проводят процесс в течение 140 мин, проводя контроль за расходованием оксида методом отбора и анализа проб. За это время практически весь введенный гематит успевает полностью прореагировать в соль, основная масса которой оказывается в твердой фазе.
Полученную суспензию с равномерно распределенной по объему твердой фазой направляют в атмосфере азота на фильтрование, после чего фильтрат в количестве 91,6 г возвращают в бисерную мельницу на повторный процесс. Вместе с ним в реактор вводят 19 г ледяной уксусной кислоты и 6,7 г гематита в качестве компенсации прореагировавших реагентов и потерь жидкой фазы при фильтровании. Стабилизируют температуру на уровне 80°С и проводят процесс в течение 110 мин, за которые весь введенный во второй раз гематит успевает превратиться в ацетат железа (II). Проводят вновь отделение реакционной смеси от бисера, фильтрование твердой фазы ацетата железа (II), возврат фильтрата в количестве 91,1 г в бисерную мельницу, ввод новой порции гематита, подпиток уксусной кислоты и других компонентов жидкой фазы. Далее проводят стабилизацию температуры, следующий процесс в течение 135 мин, снова цикл отделений, подпиток, следующий повторный процесс и т.д.
В частности во втором, третьем и четвертом повторных процессах ввод гематита составил по 6,7 г каждый раз, ввод уксусной кислоты был 20, 20 и 22 г, уксусного ангидрида по 1,5 г и молекулярного йода по 0,114 г перед третьим и четвертым повторными процессами. Длительность второго, третьего и четвертого повторных процессов 114, 97 и 105 мин. За пять последовательных процессов получено 104,7 г высушенного в атмосфере азота ацетата железа (II). Содержание ацетата железа в суспензии перед фильтрованием колебалось в диапазоне 1,00-1,15 моль/кг. Дальнейшее накопление продукта в суспензии было нецелесообразным из-за резкого снижения скорости протекания химических взаимодействий в таких условиях.
Примеры 2-7.
Реактор, порядок загрузки реагентов, последовательности операций проведения процесса, отделения суспензии от бисера и твердого ацетата железа из суспензии, температурный режим, число повторных процессов аналогичны описанным в примере 1. Отличаются природой оксида железа и мольными соотношениями уксусная кислота: уксусный ангидрид: оксид железа, дозагрузками на повторные процессы. Полученные результаты сведены в табл.1
Figure 00000001
Figure 00000002
Пример №8.
В бисерную мельницу из нержавеющей стали, корпус которой имеет размеры: диаметр 80 мм, высота 200 мм, толщина стенок 11 мм, как можно с меньшим зазором вставляют обечайку из стали 3 высотой 110,9 мм и массой 384,5 г. Корпус с обечайкой подсоединяют к крышке с лопастной мешалкой, обратным холодильником-конденсатором и загрузочным люком. Вал мешалки гибкой связью соединен с электродвигателем, жестко установленным на верхней площадке каркасной рамы. Через загрузочный люк вводят 350 г стеклянного бисера диаметром 0,9÷2,1 мм и 350 г смеси, содержащей 298,4 г ледяной уксусной кислоты и 50 г уксусного ангидрида. Далее вводят 1,60 г твердого йода и 23,15 г магнетита. Мольное соотношение уксусная кислота: укссный ангидрид: оксид железа 100:9,86:2, а мольное соотношение оксид железа: йод 100:6,3. Закрывают загрузочный люк, подают проток азота с расходом 0,36 л/мин через газовое пространство бисерной мельницы, корпус последней помещают в перемещающуюся вдоль продольной оси реактора нагревательную жидкостную баню, включают обогрев последней и механическое перемешивание в бисерной мельнице лопастной мешалкой со скоростью 1440 об/мин. Выводят температуру на 80°С, на что потребовалось 37 мин. Стабилизируют температуру на этом уровне и в таких условиях продолжают перемешивание в течение 75 мин. Результаты контроля методом отбора проб показывают, что к этому моменту практически весь магнетит прореагировал и содержание молекулярного йода в реакционной смеси близко к нулю.
Прекращают перемешивание в бисерной мельнице, нагревательную баню опускают вниз настолько, чтобы сливной патрубок корпуса мельницы, содержащей в верхней части сетку для отделения бисера от суспензии реакционной смеси, оказался доступным для подсоединения к узлу фильтрования, проводят такое подсоединение, используя его в качестве холодильника для охлаждения суспензии, открывают запорный кран на патрубке и проводят фильтрование ацетата железа (II). При этом проток азота через газовое пространство бисерной мельницы перенаправляют на узел фильтрования.
Фильтрат возвращают на повторный процесс, увеличивая его массу добавкой 52 г уксусной кислоты и 3 г уксусного ангидрида в целях компенсации расходования первой на образование соли, а также неизбежных при фильтровании потерь (на смоченном осадке, стенках фильтра, приемной емкости и т.д.). Дозируют и 23,2 г магнетита, после чего выполняют все операции по выводу и стабилизации температуры, проведению процесса, контролю за ним, прекращению на отделение твердого продукта, самого отделения путем фильтрования и повторения всего описанного на второй повторный процесс. Всего проведено четыре повторных процесса, хотя ограничений на возможное число их не выявлено. Вопрос состоит в том, насколько полно и удачно проводится компенсация уксусной кислоты, уксусного ангидрида и йода перед каждым повторным процессом. Выполненные варианты сведены в табл.2
Таблица 2
Компенсируемый и вводимый компонент Дозировка в г
втором третьем четвертом
Уксусная кислота 52,3 45,8 49,9
Уксусный ангидрид 4,1 7,2 3,8
йод 0,21 0,21 0,23
магнетит 23,27 23,19 23,11
За эти пять процессов получено 331,7 г сухого твердого ацетата железа (II), на что затрачено 534 мин (по повторным процессам: первому 23+84, второму 27+77, третьему 19+80 и четвертому 21+91) из них на вывод температуры на режим 127 мин. Кроме того, осталось 308 г раствора ацетата железа (II) в смеси уксусной кислоты и уксусного ангидрида с добавкой йода (в основном в виде FeJ2), который вполне можно использовать на продолжение процесса в последующих повторных процессах.
Положительный эффект предлагаемого решения заключается в следующем:
1. Данный процесс не требует высоких температур и довольно прост в аппаратурном оформлении. В нем используется доступное сырье, причем не обязательно реактивной чистоты.
2. Выделение продукта не является самостоятельной стадией, а происходит по ходу процесса. При этом вместо энергоемкого и длительного выпаривания используется гораздо более простое в работе фильтрование.
3. Получаемый продукт в безводной среде не содержит кристаллизационную воду. Следовательно, не нужна и специальная стадия для ее удаления.
4. Основные загрязнения продукта приходятся на йодид железа (II) и в меньшей степени на молекулярный йод. Эти примеси легко удаляются при перекристаллизации продукта из смеси уксусной кислоты и уксусного ангидрида. Причем получаемый после отделения перекристаллизованного продукта фильтрат возвращается в основной процесс либо как исходная жидкая среда, либо в качестве подпиточных жидких фаз.

Claims (3)

1. Способ получения ацетата железа (II), взаимодействием металлического железа с уксусной кислотой в присутствии окислителя, отличающийся тем, что в качестве окислителя берут оксид железа Fe2O3 или Fe3O4 и молекулярный йод в начальном мольном соотношении 100:6,3, а сам процесс ведут в реакторе типа бисерной мельницы со стеклянным бисером в массовом соотношении с жидкой фазой загрузки 1:1, с высокооборотной механической мешалкой и обратным холодильником-конденсатором в среде азота с использованием железа в виде свернутой по типу обечайки ленты высотой, равной рабочей высоте боковой поверхности реактора, и исходной загрузкой уксусной кислоты, уксусного ангидрида и оксида железа в мольном соотношении 100:(6÷20):(2÷2,5) при 80°С, с периодическим отбором твердой фазы ацетата железа (II) путем фильтрования в среде азота, возвратом фильтрата вместе с подпиткой израсходованных на образование ацетата железа (II) уксусной кислоты и оксида железа, а также компенсацией потерь уксусной кислоты, ангидрида и йода при фильтровании в реактор на повторный процесс.
2. Способ по п.1, отличающийся тем, что в качестве оксида железа используют гематит, γ-оксид, железный сурик, магнетит и Fe3O4·4H2O.
3. Способ по п.1, отличающийся тем, что повторный процесс проводят не менее четырех раз подряд.
RU2004104495/04A 2004-02-16 2004-02-16 Способ получения ацетата железа (ii) RU2259994C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004104495/04A RU2259994C1 (ru) 2004-02-16 2004-02-16 Способ получения ацетата железа (ii)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004104495/04A RU2259994C1 (ru) 2004-02-16 2004-02-16 Способ получения ацетата железа (ii)

Publications (2)

Publication Number Publication Date
RU2004104495A RU2004104495A (ru) 2005-07-20
RU2259994C1 true RU2259994C1 (ru) 2005-09-10

Family

ID=35842260

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004104495/04A RU2259994C1 (ru) 2004-02-16 2004-02-16 Способ получения ацетата железа (ii)

Country Status (1)

Country Link
RU (1) RU2259994C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550618B2 (en) 2007-10-18 2009-06-23 Korea Institute Of Geoscience & Mineral Resources Preparation of iron(II) acetate powder from a low grade magnetite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550618B2 (en) 2007-10-18 2009-06-23 Korea Institute Of Geoscience & Mineral Resources Preparation of iron(II) acetate powder from a low grade magnetite

Also Published As

Publication number Publication date
RU2004104495A (ru) 2005-07-20

Similar Documents

Publication Publication Date Title
Wang et al. Three-dimensional lanthanide polyoxometalate organic complexes: correlation of structure with properties
AU636920B2 (en) Rare earth carbonates using supercritical carbon dioxide
KR20130113502A (ko) 혼합액 제조 장치 및 혼합액 조제 방법
RU2259994C1 (ru) Способ получения ацетата железа (ii)
CN110102234A (zh) 一种光反应生产设备
US4440729A (en) Procedure for chemical, automatic dissolution of molybdenum core wire in tungsten filament coil and a device for implementing the procedure
CN110283333A (zh) 一种三维层柱结构双配体锌配合物及其制备方法
CN106928463A (zh) 一种一维链状铽(iii)有机配位聚合物及其制备方法和应用
Chen et al. A green separation process of Ag via a Ti 4 (embonate) 6 cage
RU2373186C2 (ru) Способ получения основного фталата железа (iii)
RU2292331C1 (ru) Способ получения формиата железа (ii)
CS232711B2 (en) Parting method of ferrous,clayey and manganous impurities from magnesium chloride solution in hydrogen chloride
CN110330515A (zh) 一种氮氧混合配体锌配合物及其制备方法
RU2316536C1 (ru) Способ получения формиата марганца (ii)
RU2269508C2 (ru) Способ получения ацетата железа (ii)
US1770791A (en) Process for treating manganese ores and the like
RU2269509C2 (ru) Способ получения ацетата железа (ii)
RU2296745C1 (ru) Способ получения формиата железа (iii) в присутствии пероксида водорода как окислителя
RU2326861C1 (ru) Способ получения бензоата железа (iii)
RU2331629C1 (ru) Способ получения салицилата марганца (ii)
RU2225842C2 (ru) Способ получения окислов марганца
RU2373217C1 (ru) Способ получения фумарата железа (ii)
CN108484528B (zh) 具有抗氧化自由基活性的有机硒类化合物及其合成方法和应用
RU2359956C1 (ru) Способ получения оксалата марганца (ii)
JP4101898B2 (ja) 酸化剤として有用な新規化成二酸化マンガンの製造方法及び該化成二酸化マンガンを用いた基質の酸化方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060217