RU2252243C1 - Способ получения дизельного топлива с улучшенными экологическими характеристиками - Google Patents

Способ получения дизельного топлива с улучшенными экологическими характеристиками Download PDF

Info

Publication number
RU2252243C1
RU2252243C1 RU2004100554/04A RU2004100554A RU2252243C1 RU 2252243 C1 RU2252243 C1 RU 2252243C1 RU 2004100554/04 A RU2004100554/04 A RU 2004100554/04A RU 2004100554 A RU2004100554 A RU 2004100554A RU 2252243 C1 RU2252243 C1 RU 2252243C1
Authority
RU
Russia
Prior art keywords
catalyst
reactor
layer
diameter
ppm
Prior art date
Application number
RU2004100554/04A
Other languages
English (en)
Inventor
А.А. Коновалов (RU)
А.А. Коновалов
А.Г. Олтырев (RU)
А.Г. Олтырев
В.В. Самсонов (RU)
В.В. Самсонов
О.В. Левин (RU)
О.В. Левин
А.Б. Голубев (RU)
А.Б. Голубев
А.А. Ламберов (RU)
А.А. Ламберов
Original Assignee
Открытое акционерное общество Новокуйбышевский нефтеперерабатывающий завод
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество Новокуйбышевский нефтеперерабатывающий завод filed Critical Открытое акционерное общество Новокуйбышевский нефтеперерабатывающий завод
Priority to RU2004100554/04A priority Critical patent/RU2252243C1/ru
Application granted granted Critical
Publication of RU2252243C1 publication Critical patent/RU2252243C1/ru

Links

Abstract

Изобретение относится к нефтепереработке, в частности к способам получения экологически чистых дизельных топлив. Сущность: проводят гидроочистку смеси прямогонной дизельной фракции и дистиллятов коксования и каталитического крекинга. Слои катализаторов расположены следующим образом. Первый по ходу движения газосырьевого потока защитный слой - широкопористый низкопроцентный Ni-Co-Mo/Al2O3 катализатор, сформованный в виде пустотелых цилиндров. Второй - катализатор с диаметром гранул 4,5-5,0 мм. Третий - основной катализатор, сформованный в виде гранул диаметром 2,0-2,8 мм. Основной катализатор имеет поверхность 250-290 м2/г, объем пор 0,45-0,6 см3/г, в котором не менее 80% порометрического объема образовано сквозными внутренними порами преимущественно цилиндрической формы диаметром 4,0-14,0 нм. Последний по ходу сырья слой организован аналогично второму. Загрузка 2-4 слоев осуществляется методом плотной упаковки. ТЕХНИЧЕСКИЙ РЕЗУЛЬТАТ - получение дизельного топлива с улучшенными экологическими характеристиками, содержащего серы менее 350 ppm, из смеси прямогонной фракции и дистиллятов коксования и каталитического крекинга, содержащей до 1,3% мас. серы, при низкой жесткости процесса и продолжительном межрегенерационном цикле. 6 з.п. ф-лы, 2 табл.

Description

Изобретение относится к нефтепереработке, в частности к способам получения экологически чистых дизельных топлив.
Известен способ получения экологически безопасного дизельного топлива с содержанием серы не более 500 ppm, в соответствии с которым дизельные фракции подвергают гидроочистке с использованием каталитической системы, состоящей из алюмоникельмолибденового катализатора, активированного этилмеркаптаном, и алюмокобальтмолибденового катализатора, активированного элементной серой (Пат. РФ 2103324, от 27.01.98).
Известен также способ получения малосернистого дизельного топлива путем гидроочистки при повышенных температуре и давлении в присутствии катализаторов, предварительно активированных в среде водородосодержащего газа элементной серой или сырьем при температуре 350-400°С, отличающийся тем, что с целью увеличения глубины гидрооблагораживания в состав пакета катализаторов входит от 1 до 0,1 об. доли алюмокобальтмолибденового катализатора ГО-70 и/или ГО-86 при условии, что активация пакета проводится элементной серой, взятой в количестве не более 30% мас. от общего веса каталитического пакета, или дистиллятной нефтяной фракцией с содержанием серы S(С+Н)/С, где S - содержание серы в сырье гидроочистки, мас. %; С - доля катализаторов ГО-70 и/или ГО-86 в каталитическом пакете; Н - доля алюмоникельмолибденового катализатора в каталитическом пакете (Пат. РФ 2074877, от 10.03.97).
Наиболее близким способом того же назначения к заявляемому изобретению по совокупности признаков является способ получения малосернистых дизельных топлив путем гидроочистки дизельных фракций, отличающийся тем, что используют пакет катализаторов, содержащий 30-80% мас. алюмокобальтмолибденового катализатора в верхней части реактора и 20-70% мас. алюмоникельмолибденового катализатора в нижнем по ходу движения сырья слое при условии, что активацию катализаторов проводят диметилдисульфидом, взятым в количестве [0,2-К/(К+Н)] кг на 1 кг каталитической системы, где К - содержание алюмокобальтмолибденового катализатора в пакете (кг), Н - содержание алюмоникельмолибденового катализатора в пакете (кг), с последующим доосернением каталитической композиции сырьем при температуре 330-340°С (Пат. РФ 2140963, от 10.11.99).
Предлагаемыми изобретениями задача получения экологически чистых дизельных топлив решается путем совершенствования состава каталитической системы и способа приготовления входящих в нее катализаторов без учета комплексного характера технологии получения экологически чистых топлив из сырья, содержащего трудно разлагаемые сернистые соединения. По этой причине известные способы не позволяют получать дизельное топливо с содержанием серы менее 350 ppm из смеси прямогонной фракции и дистиллятов вторичного происхождения, содержащей до 1,3% мас. серы, при низких температурах и продолжительном межрегенерационном цикле.
Условия достижения вышеуказанного технического результата, т.е. получения низкосернистого продукта из сырья, содержащего стабильные дибензтиофеновые структуры, заключаются не только в достижении высокой каталитической активности, но и в обеспечении оптимальных условий контакта каждой гранулы катализатора с газосырьевой смесью, создании условий минимального сопротивления газосырьевому потоку, способах активации катализатора и вывода установки на рабочий режим.
ЗАДАЧА ИЗОБРЕТЕНИЯ - получение дизельного топлива с содержанием серы менее 350 ppm из сырья, содержащего кроме прямогонных фракций дистилляты коксования и каталитического крекинга.
Поставленная задача достигается следующим образом. В реактор гидроочистки загружают методом плотной упаковки последовательно снизу вверх:
- слой Со-Мо/Аl2О3 катализатора с диаметром гранул 4,5-5,0 мм, причем высота слоя составляет 0,06-0,12 внутреннего диаметра реактора,
- основной слой Со-Мо/Аl2О3 катализатора с диаметром гранул 2,0-2,8 мм, удельной поверхностью 250-290 м2/г, объемом пор 0,45-0,6 см3/г, в котором не менее 80% порометрического объема образовано сквозными внутренними порами преимущественно цилиндрической формы диаметром 4,0-14,0 нм,
- слой Со-Мо/Аl2О3 катализатора предварительной обработки сырья с диаметром гранул 4,5-5,0 мм, причем высота слоя составляет 0,06-0,12 внутреннего диаметра реактора,
- защитный слой широкопористого низкопроцентного Ni-Мо/Аl2О3 катализатора, сформованного в виде пустотелых цилиндров, причем высота слоя составляет 0,12-0,25 внутреннего диаметра реактора.
Движение сырья осуществляется сверху вниз.
В верхней части реактора монтируют распределительное устройство для обеспечения тщательного смешения газовой и жидкой фаз и равномерного распределения газосырьевой смеси по сечению реактора.
Загруженный катализатор активируют прямогонной дизельной фракцией в две стадии с добавлением легко разлагаемого органического соединения. Дозирование серосодержащего соединения и подъем температуры в реакторе ведут, исходя из условий постепенного нарастания концентрации сероводорода на выходе из реактора от 1000 до 3000 ppm в интервале температур 180-240°С до 15000-20000 ppm в интервале температур 240-320°С. При температуре 320°С и концентрации сероводорода на выходе из реактора 15000-20000 ppm делают выдержку (не меняя температуры) в течение 2-4 часов.
После активации катализатора рабочий цикл начинают на прямогонном сырье при пониженной температуре, поднимая ее не более чем на 1-3°С/сутки до достижения требуемого остаточного содержания серы, стабилизируют температуру и постепенно добавляют сырье вторичного происхождения.
Гидроочистку смеси прямогонной фракции дизельного топлива и дистиллятов коксования и каталитического крекинга осуществляют при температуре 330-370°С, парциальном давлении водорода в реакционной зоне не менее 2,4 МПа, объемной скорости подачи сырья не более 2,5 ч-1.
ОТЛИЧИТЕЛЬНЫМИ ПРИЗНАКАМИ предлагаемого способа являются:
- плотная упаковка слоев катализатора с постепенным нарастанием активности и минимальным сопротивлением газосырьевому потоку,
- оптимальная пористая структура основного катализатора: не менее 80% порометрического объема образовано сквозными внутренними порами преимущественно цилиндрической формы диаметром 4,0-14,0 нм,
- применение защитного слоя широкопористого низкопроцентного Ni-Mo/Аl2О3 катализатора, сформованного в виде пустотелых цилиндров,
- активация катализатора прямогонной дизельной фракцией в две стадии с добавлением легко разлагаемого сернистого соединения,
- пуск установки на прямогонном сырье при пониженной температуре процесса с последующим подъемом температуры на 1-3°С/сутки до достижения требуемого остаточного содержания серы и постепенным добавлением сырья вторичного происхождения.
ТЕХНИЧЕСКИЙ РЕЗУЛЬТАТ предложенного изобретения - это получение дизельного топлива с содержанием серы менее 350 ppm из смеси прямогонной фракции и дистиллятов вторичного происхождения, содержащей до 1,3% мас. серы, при низкой жесткости процесса и продолжительном межрегенерационном цикле.
Способы получения экологически чистого дизельного топлива с применением комплекса описанных технологий неизвестны. Таким образом, данное техническое решение соответствует критериям “НОВИЗНА” и “ИЗОБРЕТАТЕЛЬСКИЙ УРОВЕНЬ”.
ПРИМЕРЫ ИСПОЛНЕНИЯ ИЗОБРЕТЕНИЯ
Пример 1 (прототип). Гидроочистке подвергали смесь прямогонной дизельной фракции 180-360°С (79,9%), газойлей коксования (8,7%) и каталитического крекинга (11,4%), содержащую 1,3% мас. серы, в присутствии каталитического пакета, состоящего из 50% алюмокобальтмолибденового катализатора (нижний слой) и 50% алюмоникельмолибденового катализатора (верхний слой). Катализатор активировали прямогонной дизельной фракцией с добавлением диметилдисульфида.
Гидроочистку указанного сырья в присутствии активированного каталитического пакета проводили при температурах 320-380°С, парциальном давлении водорода в реакционной зоне 2,4 МПа, объемной скорости подачи сырья 2,5 час-1.
Показатели процесса гидроочистки по способу, указанному в прототипе, представлены в таблице 1.
Таблица 1
Показатели Температура, °С
320 330 340 350 360 370
Выход гидрогенизата, % маcс. 97,0 96,8 96.6 96,3 96,0 95,7
Содержание серы в гидрогенизате, ррm 1061 842 694 564 425 345
Пример 2. В соответствии с предлагаемым изобретением в промышленный реактор гидроочистки диаметром 2,6 м методом плотной упаковки загружали последовательно снизу вверх:
- слой высотой 0,25 м Со-Мо/Аl2О3 катализатора с диаметром гранул 5,0 мм,
- основной слой Со-Мо/Аl2О3 катализатора с диаметром гранул 2,5 мм, удельной поверхностью 250 м2/г, объемом пор 0,45 см3/г, в котором 80% порометрического объема образовано сквозными внутренними порами преимущественно цилиндрической формы диаметром 4,0-14,0 нм,
- слой высотой 0,25 м Со-Мо/Аl2О3 катализатора с диаметром гранул 5,0 мм,
- защитный слой высотой 0,5 м широкопористого низкопроцентного Ni-Мо/Аl2О3 катализатора, сформованного в виде пустотелых цилиндров.
Движение сырья осуществляется сверху вниз.
В верхней части реактора смонтировали распределительное устройство.
Катализатор сушили в потоке водородосодержащего газа при температуре 150°С. При температуре 160°С в течение двух часов подавали прямогонную дизельную фракцию 180-360°С, затем проводили первую стадию сульфидирования. При температурах 180-240°С дозировали диметилдисульфид до концентрации сероводорода на выходе из реактора 1000 ppm. Вторую стадию сульфидирования проводили при температурах 240-320°С, расход диметилдисульфида регулировали, поддерживая концентрацию сероводорода на выходе из реактора 15000-20000 ppm, после чего при температуре 320°С делали выдержку (не меняя температуру) в течение 2 часов.
После активации катализатора подавали прямогонную дизельную фракцию 180-360°С при температуре в реакторе 315°С с последующим подъемом температуры на 3°С в сутки. При температуре 330°С получили гидрогенизат с содержанием серы 315 ppm и затем постепенно добавляли легкие газойли коксования (до 8,7%) и каталитического крекинга (до 11,4%), содержащие до 1,3% мас. серы. Процесс вели в температурном интервале 330-370°С, при парциальном давлении водорода в реакционной зоне 2,4 МПа и объемной скорости подачи сырья 2,5 час-1. Показатели процесса приведены в таблице 2.
Таблица 2
Показатели Температура, °С
320 330 340 350 360 370
Выход гидрогенизата, % маcс. 97,5 97,3 97,1 96,9 96,7 96,5
Содержание серы в гидрогенизате, ррm 525 342 308 275 251 230
Из таблицы 2 видно, что по сравнению с прототипом применение предлагаемого способа позволяет получать экологически чистое дизельное топливо с содержанием серы менее 350 ppm при относительно низких температурах процесса гидроочистки.
Таким образом, предлагаемый способ получения экологически чистого дизельного топлива соответствует критерию “ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ”.

Claims (7)

1. Способ получения дизельного топлива с улучшенными экологическими характеристиками, включающий гидроочистку смеси прямогонных дизельных фракций и сырья вторичного происхождения в присутствии слоев катализаторов, отличающийся тем, что смесь прямогонной дизельной фракции с дистиллятами коксования и каталитического крекинга подвергают гидроочистке в присутствии слоев катализаторов, которые загружают методом плотной упаковки последовательно: слой Со-Мо/Аl2О3 катализатора с диаметром гранул 4,5-5,0 мм, причем высота слоя составляет 0,06-0,1 внутреннего диаметра реактора; основной слой Со-Мо/Аl2О3 катализатора с диаметром гранул 2,0-2,8 мм, удельной поверхностью 250-290 м2/г, объемом пор 0,45-0,6 см3/г, в котором не менее 80% порометрического объема образовано сквозными внутренними порами преимущественно цилиндрической формы диаметром 4,0-14,0 нм; слой Со-Мо/Аl2О3 катализатора предварительной обработки сырья с диаметром гранул 4,5-5,0 мм, причем высота слоя составляет 0,06-0,1 внутреннего диаметра реактора; защитный слой широкопористого низкопроцентного Ni-Мо/Аl2O3 катализатора, сформованного в виде пустотелых цилиндров, причем высота слоя составляет 0,12-0,25 внутреннего диаметра реактора.
2. Способ по п.1, отличающийся тем, что слои катализаторов организованы с постепенным нарастанием активности и минимальным сопротивлением газосырьевому потоку.
3. Способ по п.1, отличающийся тем, что в верхней части реактора монтируется распределительное устройство, предназначенное для тщательного смешения газовой и жидкой фаз и равномерного распределения смеси по сечению реактора.
4. Способ по п.3, отличающийся тем, что изменение состава дисперсной фазы в любой точке по сечению реактора составляет не более 2%.
5. Способ по п.1, отличающийся тем, что активация катализатора осуществляется прямогонной дизельной фракцией в две стадии с добавлением легко разлагаемого органического серосодержащего соединения.
6. Способ по п.5, отличающийся тем, что дозирование серосодержащего соединения и подъем температуры в реакторе ведут, исходя из условия постепенного нарастания концентрации сероводорода на выходе из реактора до 1000-3000 ppm в интервале температур 180-240°С и до 15000-20000 ppm в интервале температур 240-320°С.
7. Способ по п.5, отличающийся тем, что при температуре 320°С и концентрации сероводорода на выходе из реактора 15000-20000 ppm делают выдержку в течение 2-4 ч.
RU2004100554/04A 2004-01-05 2004-01-05 Способ получения дизельного топлива с улучшенными экологическими характеристиками RU2252243C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004100554/04A RU2252243C1 (ru) 2004-01-05 2004-01-05 Способ получения дизельного топлива с улучшенными экологическими характеристиками

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004100554/04A RU2252243C1 (ru) 2004-01-05 2004-01-05 Способ получения дизельного топлива с улучшенными экологическими характеристиками

Publications (1)

Publication Number Publication Date
RU2252243C1 true RU2252243C1 (ru) 2005-05-20

Family

ID=35820571

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004100554/04A RU2252243C1 (ru) 2004-01-05 2004-01-05 Способ получения дизельного топлива с улучшенными экологическими характеристиками

Country Status (1)

Country Link
RU (1) RU2252243C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680386C1 (ru) * 2017-12-28 2019-02-20 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Способ гидрогенизационной переработки углеводородного сырья
RU2699225C1 (ru) * 2018-12-27 2019-09-04 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Катализатор защитного слоя и способ его использования
RU2734919C1 (ru) * 2019-12-30 2020-10-26 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Катализатор защитного слоя, способ его приготовления и использования

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680386C1 (ru) * 2017-12-28 2019-02-20 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Способ гидрогенизационной переработки углеводородного сырья
RU2699225C1 (ru) * 2018-12-27 2019-09-04 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Катализатор защитного слоя и способ его использования
RU2734919C1 (ru) * 2019-12-30 2020-10-26 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Катализатор защитного слоя, способ его приготовления и использования

Similar Documents

Publication Publication Date Title
RU2495082C2 (ru) Способ и катализатор гидропереработки
Song An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel
CA2510668C (fr) Procede d'hydrodesulfuration des essences mettant en oeuvre un catalyseur a porosite controlee
EP2161076B1 (fr) Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré de composition spécifique
KR101355722B1 (ko) 초저황 경유 기재 또는 초저황 경유 조성물의 제조 방법
JPS5850636B2 (ja) 重質炭化水素油の脱硫処理方法
RU2715713C2 (ru) Катализатор гидрокрекинга среднего дистиллята, содержащий базовый экструдат, имеющий высокий объём нанопор
WO2006011300A1 (ja) 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法
FR2900157A1 (fr) Procede de desulfuration d'essences olefiniques comprenant au moins deux etapes distinctes d'hydrodesulfuration
RU2720007C2 (ru) Катализатор гидроизомеризации, изготовленный с использованием алюминийоксидных носителей с высоким объемом нанопор, и способ гидроизомеризации с его использованием
EP2644683B1 (fr) Procédé d'hydrogenation selective d'une essence
TW201120205A (en) Aviation fuel oil composition
Sun et al. Hydrofining of coal tar light oil to produce high octane gasoline blending components over γ-Al2O3-and η-Al2O3-supported catalysts
KR101452793B1 (ko) 수소화 정제방법
RU2252243C1 (ru) Способ получения дизельного топлива с улучшенными экологическими характеристиками
FR2993571A1 (fr) Procede de desulfuration d'une essence
JP4658491B2 (ja) 環境対応軽油の製造方法
KR101514954B1 (ko) 가솔린 기재의 제조방법 및 가솔린
FR3000964A1 (fr) Procede de production d'une essence basse teneur en soufre
KR20090025241A (ko) 수소화 처리방법, 환경친화형 가솔린 기재 및 무연 가솔린 조성물
CN107001947A (zh) 脱除烯烃汽油的硫醚型化合物的方法
JPWO2004078886A1 (ja) 軽油留分の水素化処理方法
FR3061038A1 (fr) Procede de sulfuration d'un catalyseur a partir d'une coupe d'hydrocarbures prealablement hydrotraitee et d'un compose soufre.
JP4854075B2 (ja) 超低硫黄軽油基材の製造方法及び該超低硫黄軽油基材を含む超低硫黄軽油組成物
JP2006035052A (ja) 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120106