RU2248934C2 - Неорганические оксиды с мезопористостью или со смешанной мезо- и микропористостью и способ их получения - Google Patents

Неорганические оксиды с мезопористостью или со смешанной мезо- и микропористостью и способ их получения Download PDF

Info

Publication number
RU2248934C2
RU2248934C2 RU2002108704/15A RU2002108704A RU2248934C2 RU 2248934 C2 RU2248934 C2 RU 2248934C2 RU 2002108704/15 A RU2002108704/15 A RU 2002108704/15A RU 2002108704 A RU2002108704 A RU 2002108704A RU 2248934 C2 RU2248934 C2 RU 2248934C2
Authority
RU
Russia
Prior art keywords
inorganic oxide
micropores
mesopores
mixture
source
Prior art date
Application number
RU2002108704/15A
Other languages
English (en)
Other versions
RU2002108704A (ru
Inventor
Зхипинг СХАН (NL)
Зхипинг СХАН
Томас МАСМЕЙЕР (NL)
Томас МАСМЕЙЕР
Якобус Корнелис ЯНСЕН (NL)
Якобус Корнелис ЯНСЕН
Original Assignee
Технише Университет Дельфт
Абб Ламмус Глобал, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23541821&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2248934(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/390,276 external-priority patent/US6358486B1/en
Application filed by Технише Университет Дельфт, Абб Ламмус Глобал, Инк. filed Critical Технише Университет Дельфт
Publication of RU2002108704A publication Critical patent/RU2002108704A/ru
Application granted granted Critical
Publication of RU2248934C2 publication Critical patent/RU2248934C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • B01J35/60
    • B01J35/69
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/366Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions by hydrothermal processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/62Synthesis on support in or on other molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Abstract

Изобретение предназначено для химической промышленности и может быть использовано при получении носителей для катализаторов. Готовят смесь, содержащую воду, источник неорганического оксида, соединение, которое связывается с источником неорганического оксида водородными связями. Нагревают до температуры кипения воды для выпаривания воды и летучих органических веществ. Обжигают при температуре выше 300°С. В качестве источника неорганического оксида при получении двуокиси кремния можно использовать тетраэтилортосиликат, фумигированную двуокись кремния, силикат натрия или золь двуокиси кремния. В качестве соединения, которое связывается с источником неорганического оксида, можно использовать триэтаноламин, сульфолан, тетраэтиленпентамин, диэтилгликольдибензоат, глицерин, диэтиленгликоль, триэтиленгликоль или тетраэтиленгликоль. Смесь может дополнительно содержать агент для формирования микропор, например соль четвертичного аммония, источник ионов элементов IVA, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIA и IIIA групп; а также кристаллический цеолит с размером частиц 5-1500 нм. Площадь поверхности неорганического оксида по БЭТ 50-1250 м2/г. Полученный оксид содержит мезопоры и микропоры в количестве 3-60% от объема пор. Объединенный объем микро- и мезопор составляет 0,3-2,2 мл/г. Часть микропор имеет кристаллическую структуру. 4 н. и 17 з.п. ф-лы, 19 ил., 1 табл.

Description

Данная заявка является частичным продолжением заявки США №09/390276, поданной 7 сентября 1999 г.
Изобретение относится к неорганическим оксидным материалам, имеющим и мезопоры и микропоры, или мезопоры с пониженным количеством микропор, или микропоры с пониженным количеством мезопор, и к способу их получения.
Цеолиты и родственные материалы обладают хорошо выраженной системой пор и имеют однородный размер пор. Однако такие материалы проявляют склонность иметь или только микропоры, или только мезопоры. Кроме того, такие материалы очень дороги при производстве.
Существует потребность в неорганических материалах и, в частности, в каталитических материалах (носителях для катализаторов), которые имели бы и мезо-, и микропоры.
Существует также потребность в новых способах получения неорганических материалов, которые имеют мезопоры и/или микропоры.
Следовательно, в соответствии с данным изобретением предлагается неорганический оксидный материал, имеющий пористую структуру, в которой, по меньшей мере, часть пор находится в интервале размера мезопор, а часть пор находится в интервале размера микропор, и способ получения такого материала, а также материалов, которые содержат практически только мезопоры (менее трех объемных процентов и обычно менее двух объемных процентов микропор), простым, недорогим и воспроизводимым образом.
Кроме того, целью настоящего изобретения является предложение силикатного материала, который может быть легко модифицирован для приобретения благоприятных свойств, таких как специфические каталитические свойства, например, заменой части атомов кремния атомами металла, такого как алюминий, титан, ванадий, галлий, железо и т.п. Другие цели и преимущества станут ясны из последующего описания.
В соответствии с одним аспектом изобретения неорганические оксиды, включающие микропоры и мезопоры, могут быть легко и просто получены при использовании некоторых соединений, дающих материалы, обладающие благоприятными свойствами, такими как специфическая структура пор, большой объем пор и способность к модификации как на поверхности, так и в самом материале.
В одном варианте осуществления материал по изобретению представляет собой неорганический оксид (предпочтительно силикат), имеющий бимодальную структуру микропор и мезопор, причем домены указанных микропор соединены с указанными мезопорами, где средний размер мезопор, определенный N2-порозиметрией, находится между 2 и 25 нм, а средний размер микропор, определенный N2-порозиметрией, находится между 0,4 и 2,0 нм, предпочтительно между 0,5 и 1,5 нм.
В соответствии с одним аспектом настоящего изобретения мезопоры материала имеют определенное распределение размера пор. Более конкретно, распределение размера мезопор таково, что на графике распределения размера пор, где производная объема пор отложена по оси у, а диаметр пор отложен по оси х, отношение ширины графика в точке оси у, которая составляет половину высоты графика, к диаметру пор при максимальной высоте графика, составляет не более чем 0,75 и предпочтительно не менее 0,01. Более предпочтительно, такое отношение не более 0,5.
Описание чертежей
Фиг.1A представляет рентгенограмму материала, полученного в примере 1;
фиг.1В представляет график производной объема пор как функцию диаметра пор для микропор материала примера 1;
фиг.1С представляет график производной объема пор как функцию диаметра пор для мезопор материала примера 1;
фиг.2A представляет рентгенограмму материала, полученного в примере 2;
фиг.2В представляет график производной объема пор как функцию диаметра пор для микропор материала примера 2;
фиг.2С представляет график производной объема пор как функцию диаметра пор для мезопор материала примера 2;
фиг.3A представляет рентгенограмму материала, полученного в примере 3;
фиг.3В представляет график производной объема пор как функцию диаметра пор для микропор материала примера 3;
фиг.3С представляет график производной объема пор как функцию диаметра пор для мезопор материала примера 3;
фиг.4 представляет рентгенограмму материала, полученного в примере 4;
фиг.5A представляет рентгенограмму материала, полученного в примере 5;
фиг.5В представляет график производной объема пор как функцию диаметра пор для микропор материала примера 5;
фиг.5С представляет график производной объема пор как функцию диаметра пор для мезопор материала примера 5;
фиг.6 представляет рентгенограмму материала, полученного в примере 6;
фиг.7(а-с) представляет рентгенограммы чистого бета-цеолита и материала, полученного в примере 8;
фиг.8 представляет изображение просвечивающей электронной микроскопии материала, полученного в примере 8;
фиг.9 представляет график производной объема пор как функцию диаметра пор для микропор материала примера 8;
фиг.10 представляет график температурно-программированной десорбции аммиака для материала, полученного в примере 8;
фиг.11 представляет изображение просвечивающей электронной микроскопии материала, полученного в примере 3.
Бимодальный неорганический материал, который включает и мезопоры, и микропоры, обычно включает по меньшей мере 3% об. микропор (предпочтительно по меньшей мере 5%) и обычно включает не более 60% об. микропор (предпочтительно не более 50%), где такие объемные проценты рассчитаны на объединенный объем мезопор и микропор.
В соответствии с аспектом настоящего изобретения предлагается неорганический оксид, включающий и мезопоры, и микропоры, который получают нагревом смеси (1) неорганического оксида в воде, и (2) органического материала, который хорошо смешивается с оксидом и предпочтительно образует с ним водородные связи. Смесь, необязательно, может включать также и матрицу такого типа, который используют для получения микропор при образовании молекулярных сит (в частности, цеолитов), причем указанный нагрев проводится при таком уровне температуры и в течение такого времени, которые достаточны для получения силиката, содержащего и мезопоры, и микропоры. Смесь может, необязательно, включать предварительно сформированный кристаллический цеолит в мелко измельченном виде для того, чтобы ввести кристаллическую микропористую фазу и помочь образованию микропористой кристаллической структуры в соответствии с изобретением.
Исходный материал обычно представляет собой аморфный материал и может содержать один или несколько неорганических оксидов, таких как оксид кремния или оксид алюминия, с добавочными оксидами металлов или без них. Добавочные металлы могут быть введены в материал перед началом процесса получения структуры, которая содержит мезопоры и микропоры, и/или металл может быть введен в смесь, которую применяют для получения неорганического оксида, содержащего и микро-, и мезопоры.
Органическим соединением (соединениями), которое присоединяется (присоединяются) к неорганическому оксиду за счет водородной связи, предпочтительно является многоатомный спирт, который включает две или более гидроксильных групп, или член (члены) группы, состоящей из триэтаноламина, сульфолана, тетраэтиленпентамина и диэтиленгликольдибензоата.
Агентом, формирующим матрицу или микропоры, который может быть объединен с материалом, образующим водородные связи с неорганическим оксидом, является агент такого типа, который обычно используют при приготовлении молекулярных сит или цеолитов из силикатов. Такие матрицы обычно хорошо известны в данной области техники.
В основном, матрицеобразующим агентом для образования микропор может быть органическое соединение, которое содержит элемент группы VA Периодической таблицы элементов, в частности азот, фосфор, мышьяк и сурьма, предпочтительно N или Р и наиболее предпочтительно N. Соединения также содержат по меньшей мере одну алкиленовую, алкильную или арильную группу, имеющую от 1 до 8 атомов углерода. Особо предпочтительными азотсодержащими соединениями для использования в качестве матрице образующих агентов являются амины и соединения четвертичного аммония, причем последние представлены обычно формулой R4N+, в которой R представляет алкильную или арильную группу, имеющую от 1 до 8 атомов углерода, или моно-, ди- и триамины, либо одни, либо в сочетании с соединением четвертичного аммония или с другим матрицеобразующим агентом. Примерами органических матрицеобразующих агентов являются следующие: соли тетраметиламмония ("ТМА"), тетраэтиламмония ("ТЭА"), тетра-н-пропиламмония ("ТПА"), тетраизопропиламмония и тетрабутиламмония, ди-н-пропиламин, ди-н-бутиламин, три-н-пропиламин, триэтиламин, трибутиламин, хинуклидин ("Q"), гидроксид метилхинуклидина, циклогексиламин, неопентиламины, N,N-диметилбензиламин, N,N-диметилэтаноламин, ди-н-пентиламин, изопропиламин, трет-бутиламин, этилендиамин, гексаметилендиамин, пирролидин, 2-имидазолидон, пиперидин, 2-метилпиридин, N,N’-диметилпиперазин, N-метилдиэтаноламин, N-метилэтаноламин, N-метилпиперидин, 3-метилпиперидин, N-метилциклогексиламин, 3-метилпиридин, 4-метилпиридин, ион диэтилпиперидиния ("ДЭПП"), триметилбензиламмония ("ТМБА"), тетраметилфосфония ("ТМФ"), 5-азонийспиро(4,4)нонана или биспирролидиния ("БП"), (2-гидрокси-этил)триметиламмония ("холин"), 1,4-диметил-1,4-диазониабицикло-(2,2,2)октана ("ДДО"), 1,4-диазониабицикло(2,2,2)октана ("ДО" или "ДАБКО"), N,N’-диметил-1,4-диазабицикло(2,2,2)октана и т.д.
Хотя в настоящем изобретении может быть использована матрица такого типа, какой обычно используют для получения молекулярного сита с микропорами, в сочетании с материалом, образующим водородную связь, и такие материалы во многих случаях известны для получения кристаллической структуры, причем при использовании в настоящем изобретении такие матрицы могут привести к образованию микропор без образования кристаллической структуры. С другой стороны, если кристаллическая структура образовалась, она может быть необнаружимой при дифракции рентгеновских лучей из-за ограниченного размера микропористых доменов. Однако такие микропористые домены могут измеримо повлиять на кислотность материала. Если вводят предварительно образованную цеолитную фазу, микропористые домены достаточно велики для того, чтобы их можно было обнаружить при дифракции рентгеновских лучей. Во многих случаях получаемый неорганический оксид, который включает и микропоры, и мезопоры, представляет собой псевдокристаллический материал, который, не являясь кристаллическим, включает упорядоченную или регулярную трехмерную структуру.
Не ограничивая настоящее изобретение, считается, что материал, который связан с неорганическим оксидом водородными связями (один или в сочетании с "матрицей"), вызывает образование оксидом тонкостенной структуры, имеющей мезопоры. Микропоры будут однородно распределены внутри стенок мезопористой структуры.
Соответственно, материал по изобретению представляет собой мезопористый неорганический оксидный материал или мезопористо-микропористый неорганический оксидный материал (предпочтительно силикат), который может, необязательно, содержать как часть мезопористой структуры ионы металлов групп IVA, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIА и IIIA, таких как алюминий или титан, либо добавленные во время приготовления и введенные непосредственно во время синтеза, либо те, которые могут быть введены в решетку путем обмена с ионами металла, которые присутствуют в решетке после получения. В зависимости от природы других ионов металла изменяются свойства материала. Например, введением алюминия в силикаты можно придать материалу кислотные свойства, тогда как некоторые другие металлы могут привести к щелочным свойствам, что делает материал полезным при приготовлении катализатора окисления.
Материал имеет взаимосвязанные мезопоры с диаметром пор между 2 и 25 нм. Считается, что мезопоры образованы полостями, имеющими подобие "структуры сосисок". Поры имеют почти сферическую форму с двумя или несколькими соединениями с другими порами на своих двух противоположных концах. Подтверждение такого типа структуры найдено просвечивающей электронной микроскопией материала, см. пример 3. С другой стороны, материал может также содержать домены или фазы микропор, которые соединены с мезопорами. Таким образом, в соответствии с аспектом настоящего изобретения предложен одностадийный способ получения бимодальной пористой системы.
В бимодальном неорганическом материале по настоящему изобретению на графике производной объема пор как функции размера пор существуют различимый пик микропор и различимый пик мезопор. В общем случае на графике Хорвата-Кавазое (Horvath-Kawazoe) ширина пика микропор на половине высоты пика не выше 2 ангстрем и обычно не больше 1 ангстрема.
Мезопористые и мезопористо-микропористые материалы по одному варианту осуществления изобретения являются псевдокристаллическим материалом (доступными ныне методами дифракции рентгеновских лучей кристалличность не обнаруживается). По одному варианту осуществления изобретения материалы имеют один пик на диаграмме дифракции рентгеновских лучей, где величина 29 имеет значение между 0,5 и 2,5°. Наличие одного пика означает, что материал имеет очень регулярную структуру, не будучи кристалличным. Указанная регулярная структура определяется по распределению толщины стенок в сочетании с узким распределением размеров мезопор. Расстояние от стенки до стенки мезопор должно быть предпочтительно между 3 и 25 нм.
В другом варианте осуществления смесь, из которой должен получаться бимодальный материал, включает также кристаллический цеолит в мелко измельченном виде. Целью данной процедуры является сохранение структуры кристаллического цеолита и получение хорошо распределенной цеолитной фазы в мезопористой структуре. Наличие кристаллического цеолита может помочь при получении кристаллической структуры в микропорах.
Цеолит может быть образован из того же материала, из которого получают неорганический оксидный материал, или цеолит может состоять из другого материала.
Цеолит, включенный в исходную смесь, обычно имеет средний размер частиц от 5 до 1500 нм. Такие материалы известны в данной области и могут быть получены известными способами.
Кристаллический цеолит суспендируют в воде и туда добавляют другие компоненты, в частности неорганический оксид и соединение, которое связывается с неорганическим оксидом водородными связями.
Такая смесь может включать или не включать матрицеобразующий агент такого типа, который обычно используют для получения цеолитов. Тип и концентрацию матрицеобразующего агента требуется выбрать так, чтобы предотвратить разрушение добавленного цеолита. Смесь, которая содержит цеолит, предпочтительно поддерживают при рН менее 11,4, хотя в некоторых случаях могут быть использованы более высокие значения рН. Умеренные условия рН минимизируют разрушение цеолитной структуры во время синтеза мезопористой или бимодальной структуры. С другой стороны, рН предпочтительно имеет значения выше 8 для того, чтобы получить достаточно высокие скорости гелеобразования. Гелеобразование максимально увеличивает вязкость синтезируемой смеси.
Смесь обычно выдерживают при перемешивании (например, при комнатной температуре) до тех пор, пока вязкость не достигнет значения, которое предотвращает осаждение из смеси тонко измельченного цеолита.
При включении кристаллического цеолита в исходную смесь и предотвращении разрушения цеолитной структуры, по меньшей мере, часть микропор имеет кристаллическую структуру.
Материал, имеющий бимодальную структуру пор, годится для всех типов химических реакций, которые требуют, с одной стороны, больших пор и, с другой стороны, малых пор. Примерами являются реакции, где большие молекулы могут легко войти в систему через мезопоры и затем реагировать или превращаться в микропорах. Это может привести к селективным реакциям. Материал по характеристике имеет большую площадь поверхности в сочетании с большими порами, что приводит к высокой доступности и, следовательно, к высокой характеристической объемной активности. Другим преимуществом создания упорядоченных микродоменов в стенках мезопористой структуры является возможность ввода каталитических центров с более высокой кислотной силой, чем было до сих пор возможно в чисто мезопористых материалах.
Другим примером возможного применения материала является нефтехимия, где большие молекулы сначала превращаются в мезопорах в более мелкие молекулы, которые затем реагируют в микропорах. Таким образом можно осуществить весьма управляемое и селективное превращение, например, нефтяных фракций.
Неорганический оксид может состоять только из кремния и кислорода. Часть кремния может быть замещена другим металлом, предпочтительно путем добавления источника указанного металла во время синтеза материала. Примерами подходящих металлов являются титан, ванадий, цирконий, галлий, марганец, цинк, железо и алюминий.
Кроме того, после синтеза материала возможно осуществить обмен катионов системы с другими ионами, такими как ионы щелочных металлов. Таким образом можно создать тщательно регулируемые свойства. Например, наличие в силикате титана в качестве добавочного компонента порождает дополнительные каталитические свойства (например, окислительные свойства) на внутренней поверхности материала, которые могут быть очень интересной характеристикой, особенно для тонкой химии.
Материал по изобретению обычно имеет среднюю площадь поверхности по определению методом БЭТ (N2) между 50 и 1250 м2/г. Объединенный объем микро- и мезопор в бимодальном материале или объем мезопор в мономодальном мезопористом материале, определенный по абсорбции азота, должен обычно быть между 0,3 и 2,2 мл/г.
Важным преимуществом материалов по настоящему изобретению является их стабильность. Было обнаружено, что данный материал более стабилен, чем обычные мезопористые материалы, такие как МСМ-41 фирмы Mobil. Такая стабильность определяется в терминах снижения интенсивности наиболее важного пика при дифракции рентгеновских лучей, объема пор и размера пор после обработки материала в кипящей воде в течение, например, примерно 2 часов.
Более конкретно, материал получают способом, который включает обеспечение водной фазой, содержащей диспергированный в ней предшественник неорганического оксида, такой как источник двуокиси кремния. Предпочтительно водная фаза представляет собой раствор подходящего силиката, фумигированной двуокиси кремния или золя двуокиси кремния. Обычно рН водной фазы должен предпочтительно быть выше 7. Водная фаза может, необязательно, содержать другие ионы металлов, такие как происходящие от соли алюминия. Водная фаза включает также органическое вещество, которое связывается с силикатом, в частности, водородными связями и помогает образованию мезопор. Вещество, которое связывается с двуокисью кремния, не должно быть настолько гидрофобным, чтобы образовывать отдельную фазу. Наконец, благоприятно, когда такое вещество имеет относительно высокую температуру кипения, такую как, по меньшей мере, 150°С. Примерами подходящих веществ являются триэтаноламин, сульфолан, тетраэтиленпентамин, диэтиленгликольдибензоат или соединения, которые включают две или более гидроксильных групп, такие как глицерин, диэтиленгликоль, триэтиленгликоль и тетраэтиленгликоль. Для того чтобы достичь хорошего смешения раствора предшественника неорганического оксида с водной смесью образующего водородную связь/ матрицеобразующего соединения, предпочтительно по каплям добавлять раствор матрицеобразующего/образующего водородную связь соединения к раствору фазы неорганического оксида. Скорость добавления обычно находится между 2 и 20 г/мин и предпочтительно между 3 и 8 г/мин.
Если в мезопористую фазу должны быть введены микропоры, предпочтительно использовать образующий микропоры агент такого типа, какой используют для создания микропор при получении цеолитов. Альтернативно смесь может включать кристаллический цеолит в тонко измельченном виде. С другой стороны, смесь может включать сочетание образующего микропоры агента и кристаллического цеолита.
В предпочтительном осуществлении смесь включает также спирт, предпочтительно алканол. Спирт может быть добавлен в смесь или может быть получен путем разложения материала, используемого как источник оксида металла. Например, при использовании в качестве источника двуокиси кремния тетраэтилортосиликата образуется этанол, или при использовании в качестве источника окиси алюминия изопропоксида алюминия образуется пропанол. Таким образом, в предпочтительном осуществлении спирт может быть включен в смесь или генерирован из одного из веществ, используемых в ходе процесса.
В зависимости от типа источника неорганического оксида смесь для синтеза может быть сначала состарена при температуре, например, от 5°С до 45°С, т.е. при комнатной температуре в течение времени, достаточного для удаления всех органических соединений из источника неорганического оксида (такого как тетраэтилортосиликат, фумигированная двуокись кремния, силикат натрия, золь двуокиси кремния), например, вполоть до 48 часов. Если в смесь для синтеза введен цеолит, старение продолжают до момента, при котором вязкость смеси возрастает достаточно для того, чтобы предотвратить осаждение частиц цеолита. Как обсуждалось здесь выше, увеличение рН путем добавления, например, органического основания к смеси синтеза увеличивает скорость гелеобразования во время стадии старения. С другой стороны, разрушение цеолитной фазы при последующих стадиях должно быть предотвращено путем ограничения величины рН. В предпочтительном осуществлении величина рН находится между 9 и 11,4.
После стадии старения материал постепенно нагревают до температуры, близкой к температуре кипения воды. Благодаря этому вода и органические компоненты, образовавшиеся из источника неорганического оксида (такие как метанол или этанол) выпариваются. Для того чтобы получить продукт с желаемой высокой целостностью, предпочтительно обеспечить равномерную скорость нагрева и отсутствие температурного профиля в фазе предшественника во время данной стадии сушки. Этого достигают максимизацией поверхности теплопереноса геля во время выпаривания, используя, например, мелкие слои, измельчение твердой фазы после сушки или используя роторные испарители. Во время данной стадии сушки органические молекулы, которые помогают образованию микро- и мезопор, не должны существенно удаляться из системы. Соответственно, органическое вещество, которое связывается с неорганическим оксидом, должно предпочтительно иметь более высокую температуру кипения, по меньшей мере 150°С. Сушка может занимать, например, от 6 до 48 часов.
После стадии сушки для удаления воды, которая может длиться, например, в течение примерно 6-48 часов, неорганический оксид, который все еще содержит образующий мезопоры агент, нагревают до температуры, при которой происходит существенное образование мезопор, т.е. до температуры, которая выше температуры кипения воды и доходит до температуры кипения образующего мезопоры агента. Температура системы может быть увеличена до температуры обжига, например, до температур от 300°С до 1000°С, предпочтительно до температуры, по меньшей мере, 400°С, и система может выдерживаться при такой температуре в течение времени, достаточного для того, чтобы вызвать обжиг материала. Для предотвращения "горячих пятен" скорость нагрева должна быть достаточно низкой, и высота слоя образца должна быть ограничена. Скорость нагрева во время обжига предпочтительно находится между 0,1 и 25°С/мин, более предпочтительно между 0,5 и 15°С/мин, и наиболее предпочтительно между 1 и 5°С/мин. Материал может быть подвергнут гидротермальной обработке перед сушкой или после сушки и перед обжигом, например, в герметически закрытом аппарате при создающемся самопроизвольно давлении и температурах выше 100°С и обычно не превышающих 350°С. На размер мезопор и объем микропор в конечном продукте влияют продолжительность и температура стадии гидротермальной обработки. В общем случае наблюдалось, что процентное содержание мезопор в конечном продукте возрастает, а процентное содержание микропор понижается при возрастании температуры и увеличении продолжительности гидротермальной обработки. Для сохранения объема микропор предпочтительно не использовать стадию гидротермальной обработки. Возможно также увеличить длительность гидротермальной обработки так, чтобы объем микропор стал пренебрежимо мал и материал содержал практически одни только мезопоры.
В объем изобретения входит удаление из неорганического оксида молекул, являющихся матрицами для мезопор, до того как будет достигнута температура, при которой в основном формируются мезопоры, путем, например, экстракции, что приводит к образованию материала с порами меньше 20 ангстрем, который содержит также и мезопоры, однако не имеет различимого пика мезопор на графике производной объема пор как функции размера пор. Например, мезопоры, в основном, не образуются при температуре ниже 100°С, однако возможен нагрев до температур, несколько превышающих 100°С без образования мезопор.
Во время обжига окончательно формируется структура материала, в то время как сверх того органические молекулы выводятся из системы и могут быть уловлены для повторного использования. Если требуется, материал может быть промыт, хотя обычно тип компонентов таков, что промывка не требуется, так как никакие дополнительные компоненты не присутствуют в системе. Благодаря такому способу получения не образуются сточные воды. Дополнительным преимуществом представляемого изобретения является то, что способ получения высокоэффективен благодаря 100% использованию двуокиси кремния и возможности улавливания органических соединений.
Если требуется, могут быть предприняты дополнительные шаги для добавления ионов металлов, таких как титан, ванадий, цирконий, галлий, марганец, цинк, никель, кобальт, хром, молибден или железо, путем пропитки, ионообмена или замещения части атомов решетки, как описано в G.W.Skeels and E.M. Flanigen, in M.Occelli, et al. eds., A.C.S. Symposium Series, Vol. 398, Butterworth, p.p.420-435 (1989). Для силикатных структур возможно также обработать поверхностный слой внутри пор таким образом, чтобы силикатный материал превратился в цеолитную структуру путем, например, пропитки водным раствором матрицы. Таким образом при бимодальном размере пор был получен материал, имеющий поры с цеолитной внутренней структурой. Это может быть осуществлено путем "модификации кожи", что означает, что подходящий материал или матрицеобразующий ион наносят на стенку с последующей тепловой обработкой. Такой метод "модификации кожи" был описан в пленарном докладе "Zeolite Coatings" by J.C.Jansen, at the 12th IZC, Baltimore, July 1998 (Proc. 12th IZC, Baltimore, M.M.J. Treacy et al. eds., MRS Warrendale (PA), (1999), I, 603-611) и в источниках, цитировавшихся в данной лекции.
Возможно также изменить свойства материала каталитически активным веществом, таким как драгоценный металл, путем пропитки или сочетания ионообмена и восстановления. Более того, возможно также присоединить (привить) функциональные компоненты на стенку путем реакции гидроксильных групп поверхности с соединением в газовой или жидкой фазе.
В настоящем описании указывался размер микропор и размер мезопор. Микропоры определялись как поры, имеющие диаметр менее 2,0 нм. Мезопоры определялись как поры в интервале от 2 до 50 нм. Распределение размера пор материала, полученного по настоящему изобретению, может быть определено по адсорбции и десорбции азота и получено при обработке данных графика производной объема пор как функции диаметра пор.
Данные по адсорбции и десорбции азота могут быть получены с применением приборов, используемых в данной области (например, Micrometeric ASAP 2010), каковые способны также получить кривую производной объема пор как функцию диаметра пор. В интервале микропор такая кривая может быть получена при использовании щелевой геометрии пор по модели Хорвата-Ковазое, описанной в G.Horvath, K.Kawazoe, J.Chem.Eng.Japan, 16(6), (1983), 470. В интервале мезопор такая кривая может быть получена по методике, описанной в E.P.Barrett, L.S.Joyner and P.P.Halenda, J.Am.Chem.Soc., 73 (1951), 373-380.
В осуществлении изобретения распределение размера пор материала, полученного по настоящему изобретению, в интервале мезопор таково, что кривая распределения размера пор, показывающая производную объема пор (dV) как функцию диаметра пор, такова, что в точке кривой, которая лежит на половине ее высоты, отношение ширины кривой (разницы между максимальным диаметром пор и минимальным диаметром пор на половине высоты) к диаметру пор при максимальной высоте кривой (как описано здесь выше) не превышает 0,75.
Изобретение будет далее описано, принимая во внимание нижеследующие примеры, но не ограничивая ими объема изобретения.
Примеры
Пример 1: Синтез бимодальной двуокиси кремния/окиси алюминия
Сначала 1,3 г изопропоксида алюминия растворяли в 39,1 г водного раствора (40%) гидроксида тетрапропиламмония (ТРАОН).
Затем смешивали 47,88 г триэтаноламина (97%, ACROS) и 14,0 г воды. Смесь триэтаноламина добавляли по каплям (8-10 г/мин) при перемешивании к смеси, содержащей алюминий. Наконец, к полученной смеси добавляли по каплям (4-6 г/мин) 33,1 г тетраэтилортосиликата (98%, ACROS), продолжая перемешивание. Конечную смесь подвергали старению при комнатной температуре в течение 48 ч, выливали в чашку для образования слоя с высотой 1,0-1,2 см и сушили при 100°С в течение 18 ч в неподвижной воздушной печи. Полученный материал обжигали на воздухе, используя следующую процедуру: нагрев со скоростью 1°С/мин до 500°С, выдержка в течение 4 ч, нагрев со скоростью 1°С/мин до 550°С, выдержка в течение 10 ч. Рентгенограмма полученного продукта показана на фиг.1A. Результаты N2-порозиметрии приведены в таблице.
Пример 2: Синтез бимодальной двуокиси кремния
При перемешивании добавляли по каплям 17,37 г триэтаноламина (75%, ACROS) при 4-6 г/мин к смеси 94,72 г тетраэтилортосиликата (98%, ACROS) и 136,87 г воды. Гомогенную смесь подвергали старению при комнатной температуре в течение 16 ч. Состаренную смесь переносили в чашку для образования слоя с высотой 1,8-2,0 см и сушили при 100°С в течение 24 ч в неподвижной воздушной печи. Затем высушенный продукт подвергали гидротермальной обработке при 190°С в течение 48 ч. Обжиг проводили на воздухе при нагреве со скоростью 1°С/мин до 550°С и выдержке в течение 10 ч.
Рентгенограмма полученного продукта показана на фиг.2A. Результаты азотной порозиметрии приведены на фиг.2В, 2С и в таблице.
Пример 3: Синтез бимодальной двуокиси кремния/окиси алюминия
Готовили смесь 2,1 г изопропоксида алюминия и 60,6 г изопропанола. К данной смеси добавляли по каплям (8-10 г/мин) 53,06 г тетраэтилортосиликата (98%, ACROS). Далее к указанной выше смеси добавляли по каплям (8-10 г/мин) смесь 38,39 г триэтаноламина (97%, ACROS) и 114,37 г воды. Наконец, при перемешивании медленно (4-6 г/мин) добавляли 31,5 г гидроксида тетраэтиламмония. Конечную смесь подвергали старению при комнатной температуре в течение 24 ч. Состаренную смесь переносили в чашку для образования слоя с высотой 1,8-2,0 см и сушили при 100°С в течение 24 ч в неподвижной воздушной печи. Высушенный продукт подвергали гидротермальной обработке при 190°С в течение 24 ч. Обжиг проводили на воздухе при нагреве со скоростью 1°С/мин до 500°С и выдержке в течение 4 ч с последующим нагревом со скоростью 1°С/мин до 600°С и выдержкой в течение 10 ч. На фиг.3A показана картина дифракции рентгеновских лучей продукта. Результаты N2-пирозиметрии приведены на фиг.3В, 3С и в таблице. Изображение проникающей электронной микроскопии структуры приведено на фиг.11.
Пример 4: Синтез мезопористой двуокиси кремния
Смесь 29,12 г тетраэтиленгликоля (99%, ACROS) и 107,46 г воды медленно (4-6 г/мин) добавляли при перемешивании к 63,42 г тетраэтилортосиликата (98%, ACROS). Смесь синтеза подвергали старению при комнатной температуре в течение 22 ч. Смесь синтеза переносили в чашку для образования слоя приблизительно 1,8-2,0 см и сушили при 100°С в течение 24 ч в неподвижной воздушной печи. Гидротермальную обработку проводили в автоклаве при 190°С в течение 24 ч. Образец обжигали на воздухе при 550°С в течение 10 ч, обжиг вели при скорости нагрева 1°С/мин. Фиг.4 представляет картину дифракции рентгеновских лучей продукта. Результаты азотной порозиметрии приведены в таблице.
Пример 5: Синтез и испытание бимодального Ti-силиката
Смесь 25,29 г триэтаноламина, 17,29 г гидроксида тетраэтиламмония (25%) и 18,01 г воды добавляли по каплям (4-6 г/мин) при перемешивании к другой смеси 1,1 г N-бутоксида титана(IV) и 39,95 г ТЭОС. Конечную гомогенную смесь подвергали старению при комнатной температуре в течение 24 ч. Смесь переносили в чашку для образования слоя приблизительно 1,8-2,0 см и сушили в неподвижной воздушной печи при 100°С в течение 24 ч. Высушенный продукт обжигали на воздухе при 600°С в течение 10 ч при скорости нагрева 1°С/мин.
Пористость материала определяли, используя изотерму адсорбции азота, которую измеряли при 77 К с применением Micrometiric ДАР 2000. Фиг.5A представляет картину дифракции рентгеновских лучей продукта. Результаты азотной порозиметрии приведены на фиг.5В, 5С и в таблице. Химический состав анализировали, используя спектроскопию при индуктивной сопряженной плазменно-атомной эмиссии, которая показала 1,65% масс. Ti.
Каталитическую активность оценивали, используя в качестве модельной реакции эпоксидирование циклогексена, которое проводили при 40°С в токе азота в колбе с обратным конденсатором. Гидроперекись трет-бутила (ГПТБ) (70% водный раствор) в качестве окислителя сушили перед применением, используя безводный сульфат магния. Циклогексен (99%) и 11 ммоль ГПТБ добавляли к 10 мл дихлорметана, содержащего 5 ммоль мезитилена в качестве внутреннего стандарта. После того как температура достигала 40°С, в реакционную смесь вводили 0,11 г катализатора. Образцы анализировали методом ГХ (WAX 52 СВ). Степень превращения, определенная как число проконвертировавших молей циклогексена на моль титана в час, достигла после 6 ч величины 20,2 ч-1. Это примерно в 5 раз больше, чем на содержащем титан катализаторе МСМ-41 при таких же условиях реакции, что описано в C.H.Rhee, J.S.Lee, Catal.Lett., 1996, Vol.40, 261-264.
Пример 6: Синтез мезопористой двуокиси кремния
25,55 г тетраэтилортосиликата (98%, ACROS) медленно (4-6 г/мин) добавляли при перемешивании к смеси 17,37 г триэтаноламина (97%, ACROS) 56,98 г воды. Полученную гомогенную смесь синтеза подвергали старению при комнатной температуре в течение 24 ч. Далее смесь переносили в чашку для образования слоя высотой 1,8-2,0 см и сушили при 100°С в течение 18 ч в неподвижной воздушной печи. Высушенный образец обжигали на воздухе при 550°С при скорости нагрева 1°С/мин.
Фиг.6 представляет картину дифракции рентгеновских лучей продукта. Результаты азотной порозиметрии приведены в таблице.
Пример 7: Синтез двуокиси кремния только с микропорами
Смесь 29,12 г тетраэтиленгликоля (99%, ACROS) и 107,46 г воды медленно (4-6 г/мин) добавляли при перемешивании к 63,42 г тетраэтилортосиликата (98%, ACROS). Смесь синтеза подвергали старению при комнатной температуре в течение 22 ч. Смесь синтеза переносили в чашку для образования слоя приблизительно 1,8-2,0 см и сушили при 100°С в течение 24 ч в неподвижной воздушной печи. Высушенный образец экстрагировали хлороформом в экстракторе Сокслета в течение 2 суток и сушили на воздухе при 100°С. На диаграмме дифракции рентгеновских лучей образец не имел пика при 2θ между 0,5 и 50°. Результаты азотной порозиметрии приведены в таблице.
Figure 00000002
Пример 8: Синтез мезопористого материала с бета-кристаллами цеолита
Сначала 1,48 г обожженного бета-цеолита с соотношением Si/Al 4,9 и средним размером частиц 1 мкм суспендировали в 16,32 г воды и перемешивали в течение 30 минут. Затем при перемешивании к суспензии добавляли 20,32 г тетраэтилортосиликата (ТЭОС) (98%, ACROS). После продолжения перемешивания в течение еще половины часа добавляли 9,33 г триэтаноламина (98%, ACROS). После перемешивания в течение еще 30 минут к смеси по каплям добавляли 4,02 г водного раствора гидроксида тетраэтиламмония (35%, Aldrich) для повышения рН. После перемешивания в течение примерно 2 часов смесь образовывала густой гель, который не обладал текучестью. Данный гель подвергали старению при комнатной температуре при статических условиях в течение 17 часов. Далее гель сушили на воздухе при 100°С в течение 28 часов. Высушенный гель переносили в 50 мл автоклав и подвергали гидротермальной обработке при 170°С в течение 17,5 ч. Наконец, его обжигали на воздухе при 600°С в течение 10 ч при скорости подъема температуры 1°С/мин.
Конечный продукт, обозначенный как бета-TUD-1 имел общую массу 7,43 г. Теоретическое количество бета-цеолита, присутствующего в продукте, составляло поэтому 20% масс. Материал характеризовали путем дифракции рентгеновских лучей (ДРЛ), проникающей электронной микроскопии (ПЭМ), азотной порозиметрии, аргонной порозиметрии и десорбцией NН3 при программировании температуры (ТПД).
Картина ДРЛ чистого бета-цеолита, фиг.7, а, показывает наиболее выраженные характеристические отражения при 26 примерно 7,7° и 22,2°. Картина ДРЛ мезопор с бета-кристаллами цеолита показана на фиг.7, b. Наблюдается интенсивный пик при низком угле, показывая, что бета-TUD-1 представляет собой материал с мезоструктурой. Пики бета-цеолита невелики, поскольку (максимальное) содержание цеолита в конечном продукте всего около 20% масс. Если время сканирования увеличить с 33 минут до 45 часов, характеристические пики бета-цеолита становятся ясно видимыми, см. фиг.7, с.
Фиг.8 представляет картину ПЭМ бета-TUD-1, показывающую признаки бета-кристаллов цеолита. Это подтверждает, что некоторые кристаллы бета-цеолита присутствуют в мезопористой матрице.
Адсорбция азота показывает, что бета-TUD-1 имеет узкое распределение размера мезопор, центрированное главным образом при примерно 9,0 нм, высокую площадь поверхности в 710 м2/г и высокий общий объем пор 1,01 см3/г. Микропористость определяли, используя адсорбцию аргона. Фиг.9 показывает распределение микропор с пиком при примерно 0,64 нм, соответствующим размеру пор бета-цеолита. Объем микропор для пор с диаметром менее 0,7 нм составил 0,04 см3. Это составляет примерно 15,5% от объема микропор чистого бета-цеолита. Такой процент близок к добавленному количеству 20%, расчетному процентному содержанию бета-цеолита в конечном продукте. Результат показывает, что цеолит может быть сохранен при условиях синтеза мезопористой двуокиси кремния. Кроме того, он показывает, что объем микропор является доступным после синтеза.
Измерения NН3-ТПД для бета-TUD-1 показали два пика десорбции (см. фиг.10), указывая на то, что присутствуют сильные кислотные центры, подобные таковым в цеолитах. Из сравнения с профилем ТПД для мезопористого материала целиком из двуокиси кремния, полученного по примеру 2, ясно, что добавление бета-цеолита вводит сильные кислотные центры в мезопористую матрицу.
Понятно, что хотя в предпочтительном осуществлении неорганический материал получают из одной двуокиси кремния или из двуокиси кремния в сочетании с другими оксидами металлов, в суть и объем изобретения входит получение неорганического оксида из других оксидов одного металла (например, оксида алюминия, оксида титана, оксида циркония и т.д.) или сочетания металлов, которые не включают оксид кремния.
В свете указанного возможны многочисленные модификации и вариации настоящего изобретения, и потому изобретение может реализовываться иначе, чем конкретно описано, в рамках прилагаемой формулы изобретения.

Claims (21)

1. Способ получения неорганического оксида, который содержит микропоры и мезопоры, включающий нагрев смеси, содержащей воду, источник неорганического оксида и, по меньшей мере, одно соединение, которое связывается с источником неорганического оксида водородными связями, из ряда, включающего триэтаноламин, сульфолан, тетраэтиленпентамин, диэтилгликольдибензоат, двух- или трехатомный спирт, причем указанный нагрев включает поддержание смеси примерно при температуре кипения воды для выпаривания воды и летучих органических веществ из предшественника неорганического оксида с последующим обжигом при температуре выше 300°С.
2. Способ по п.1, в котором смесь дополнительно включает агент формирования микропор.
3. Способ по п.2, в котором указанным агентом формирования микропор является соль четвертичного аммония.
4. Способ по п.1, в котором неорганическим оксидом является аморфный силикат.
5. Способ по п.1, в котором двух- или трехатомный спирт имеет температуру кипения, по меньшей мере, 150°С.
6. Способ по п.1, в котором источником неорганического оксида является источник двуокиси кремния, выбранный из группы, состоящей из тетраэтилортосиликата, фумигированной двуокиси кремния, силиката натрия и золя двуокиси кремния.
7. Способ по п.1, в котором двух- или трехатомный спирт выбирают из группы, состоящей из глицерина, диэтиленгликоля, триэтиленгликоля и тетраэтиленгликоля.
8. Способ по п.7, в котором смесь дополнительно содержит источник ионов, выбранных из элементов групп IVA, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIА и IIIA.
9. Способ по п.8, в котором смесь дополнительно содержит источник ионов алюминия.
10. Способ по п.1, в котором неорганический оксид дополнительно включает оксид алюминия.
11. Способ по п.1, в котором смесь дополнительно включает кристаллический цеолит в тонко измельченном виде.
12. Способ по п.11, в котором средний размер частиц цеолита составляет от 5 до 1500 нм.
13. Продукт, включающий: неорганический оксид, который включает мезопоры и микропоры, причем указанные микропоры присутствуют в количестве от 3 до 60% от объема пор в расчете на микропоры и мезопоры, имеющий, по меньшей мере, один пик в дифракционном спектре рентгеновских лучей.
14. Продукт по п.13, в котором площадь поверхности по БЭТ составляет от 50 до 1250 м2/г.
15. Продукт по п.13, в котором объединенный объем микро- и мезопор составляет от 0,3 до 2,2 мл/г.
16. Продукт по п.13, в котором распределение размера мезопор дает график распределения размера пор, на котором отношение ширины графика на половине высоты графика к диаметру пор при максимальной высоте графика составляет не более чем 0,75.
17. Продукт по п.13, в котором график распределения размера мезопор и микропор включает различимые пики мезопор и микропор.
18. Продукт по п.13, в котором, по меньшей мере, часть микропор имеет кристаллическую структуру.
19. Продукт по п.16, в котором, по меньшей мере, часть микропор имеет кристаллическую структуру.
20. Способ получения неорганического оксида, который содержит мезопоры и менее 3 об.% микропор, включающий нагрев смеси, содержащей воду, источник неорганического оксида и, по меньшей мере, одно соединение, которое связывается с источником неорганического оксида водородными связями, причем указанный нагрев включает поддержание смеси примерно при температуре кипения воды для выпаривания воды и летучих органических веществ из предшественника неорганического оксида с последующим обжигом при температуре выше 300°С, а перед обжигом проводят гидротермальный нагрев указанного неорганического оксида для снижения содержания в нем микропор до менее 3% от объема мезопор и микропор.
21. Способ получения неорганического оксида, содержащего более 50 об.% микропор, включающий нагрев смеси, содержащей воду, источник неорганического оксида и, по меньшей мере, одно соединение, которое связывается с источником неорганического оксида водородными связями, в котором указанный нагрев включает поддержание смеси примерно при температуре кипения воды для выпаривания воды и летучих органических веществ из предшественника неорганического оксида.
RU2002108704/15A 1999-09-07 2000-03-16 Неорганические оксиды с мезопористостью или со смешанной мезо- и микропористостью и способ их получения RU2248934C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/390,276 US6358486B1 (en) 1988-09-17 1999-09-07 Inorganic oxides with mesoporosity or combined meso-and microporosity and process for the preparation thereof
US09/390,276 1999-09-07

Publications (2)

Publication Number Publication Date
RU2002108704A RU2002108704A (ru) 2003-10-27
RU2248934C2 true RU2248934C2 (ru) 2005-03-27

Family

ID=23541821

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002108704/15A RU2248934C2 (ru) 1999-09-07 2000-03-16 Неорганические оксиды с мезопористостью или со смешанной мезо- и микропористостью и способ их получения

Country Status (11)

Country Link
EP (1) EP1214272B1 (ru)
JP (1) JP2003508333A (ru)
CN (2) CN1234456C (ru)
AT (1) ATE486044T1 (ru)
AU (1) AU770364B2 (ru)
BR (1) BR0013787B1 (ru)
CA (1) CA2384090C (ru)
DE (1) DE60045157D1 (ru)
ES (1) ES2355468T3 (ru)
RU (1) RU2248934C2 (ru)
WO (1) WO2001017901A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800856C2 (ru) * 2018-09-25 2023-07-31 Эвоник Оперейшнс Гмбх Способ получения порошкообразных пористых кристаллических силикатов металлов с использованием пламенного распылительного пиролиза

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762143B2 (en) 1999-09-07 2004-07-13 Abb Lummus Global Inc. Catalyst containing microporous zeolite in mesoporous support
US7084087B2 (en) * 1999-09-07 2006-08-01 Abb Lummus Global Inc. Zeolite composite, method for making and catalytic application thereof
JP4151884B2 (ja) 2001-08-08 2008-09-17 独立行政法人理化学研究所 固体表面に複合金属酸化物のナノ材料が形成された材料の製造方法
ES2275117T3 (es) 2002-06-28 2007-06-01 Haldor Topsoe A/S Utilizacion de un catalizador que comprende beta zeolitas en una procedimiento de conversion de hidrocarburos.
JP2005053744A (ja) 2003-08-05 2005-03-03 Dsl Japan Co Ltd 高吸油性非晶質シリカ粒子
US8439047B2 (en) 2003-12-22 2013-05-14 Philip Morris Usa Inc. Composite mesoporous/microporous materials and their use in smoking articles for removing certain gas phase constituents from tobacco smoke
US7985400B2 (en) * 2004-01-26 2011-07-26 Lummus Technology Inc. Method for making mesoporous or combined mesoporous and microporous inorganic oxides
US7589041B2 (en) 2004-04-23 2009-09-15 Massachusetts Institute Of Technology Mesostructured zeolitic materials, and methods of making and using the same
EP1791640A2 (en) * 2004-09-07 2007-06-06 Abb Lummus Global Inc. Hydroprocessing catalyst with zeolite and high mesoporosity
CN100429148C (zh) * 2004-10-21 2008-10-29 中国石油天然气股份有限公司 一种微孔分子筛表面附晶生长介孔分子筛的方法
US7988947B2 (en) 2004-11-23 2011-08-02 E. I. Du Pont De Nemours And Company Mesoporous oxide of titanium
US7601327B2 (en) 2004-11-23 2009-10-13 E.I. Du Pont De Nemours And Company Mesoporous oxide of hafnium
US20060263291A1 (en) 2004-11-23 2006-11-23 Carmine Torardi Mesoporous amorphous oxide of titanium
US7601326B2 (en) 2004-11-23 2009-10-13 E. I. Du Pont De Nemours And Company Mesoporous oxide of zirconium
FR2886636B1 (fr) * 2005-06-02 2007-08-03 Inst Francais Du Petrole Materiau inorganique presentant des nanoparticules metalliques piegees dans une matrice mesostructuree
FR2886637B1 (fr) * 2005-06-02 2007-08-03 Inst Francais Du Petrole Materiau mesostructure a forte teneur en aluminium
WO2007041851A1 (en) * 2005-10-12 2007-04-19 Valorbec Societe En Commandite, Represented By Gestion Valéo, S.E.C. Silica nanoboxes, method of making and use thereof
US7678955B2 (en) 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
WO2008048427A1 (en) * 2006-10-17 2008-04-24 Abb Lummus Global, Inc. Bimetallic alkylation catalysts
FR2909012B1 (fr) * 2006-11-23 2009-05-08 Inst Francais Du Petrole Catalyseur a base d'un materiau a porosite hierarchisee comprenant du silicium et procede d'hydrocraquage/ hydroconversion et d'hydrotraitement de charges hydrocarbonees.
US7858066B2 (en) 2007-05-08 2010-12-28 E.I. Du Pont De Nemours And Company Method of making titanium dioxide particles
US8080209B2 (en) 2008-02-25 2011-12-20 Jgc Catalysts And Chemicals Ltd. Exhaust gas treatment apparatus
CN102333728A (zh) 2009-01-19 2012-01-25 里福技术股份有限公司 在低Si/Al沸石中引入介孔
SG177396A1 (en) 2009-07-03 2012-02-28 Univ Nanyang Tech Method of forming single-walled carbon nanotubes
US8685875B2 (en) 2009-10-20 2014-04-01 Rive Technology, Inc. Methods for enhancing the mesoporosity of zeolite-containing materials
MX2010005333A (es) * 2010-05-14 2011-11-23 Mexicano Inst Petrol Proceso para modificar las propiedades fisicoquimicas de zeolitas del tipo faujasita y.
CN102476975B (zh) * 2010-11-25 2014-04-30 中国石油化工股份有限公司 一种镁和铝改性的钛硅分子筛催化氧化环酮的方法
WO2012138910A2 (en) 2011-04-08 2012-10-11 Rive Technology, Inc. Mesoporous framework-modified zeolites
US9376324B2 (en) 2012-01-13 2016-06-28 Rive Technology, Inc. Introduction of mesoporosity into zeolite materials with sequential acid, surfactant, and base treatment
AU2013207736B2 (en) 2012-01-13 2015-04-09 Rive Technology, Inc. Introduction of mesoporosity into low silica zeolites
US8765660B1 (en) 2013-03-08 2014-07-01 Rive Technology, Inc. Separation of surfactants from polar solids
US9662640B2 (en) 2013-12-27 2017-05-30 Rive Technology, Inc. Introducing mesoporosity into zeolite materials with a modified acid pre-treatment step
WO2015155216A1 (en) * 2014-04-10 2015-10-15 Danmarks Tekniske Universitet A general method to incorporate metal nanoparticles in zeolites and zeotypes
US9604194B2 (en) * 2014-10-14 2017-03-28 Saudi Arabian Oil Company Synthesis of ordered microporous carbons by chemical vapor deposition
US9963349B2 (en) 2014-12-11 2018-05-08 Rive Technology, Inc. Preparation of mesoporous zeolites with reduced processing
US10626019B2 (en) 2014-12-30 2020-04-21 W. R. Grace & Co.-Conn. Methods for preparing zeolites with surfactant-templated mesoporosity and tunable aluminum content
CN108431059B (zh) 2015-10-21 2023-10-10 沙特阿拉伯石油公司 阳离子聚合物和多孔材料
JP6733501B2 (ja) * 2016-01-18 2020-08-05 東ソー株式会社 芳香族化合物製造触媒及び芳香族化合物の製造方法
CN109216548A (zh) * 2018-10-22 2019-01-15 东莞理工学院 一种钙钛矿太阳能电池的刮涂制备方法
CN109368653B (zh) * 2018-10-24 2021-07-20 深圳大学 一种双介孔Co-TUD-1分子筛及其制备方法
CN116328784B (zh) * 2023-05-24 2023-08-11 山东公泉化工股份有限公司 一种炼油催化剂及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1139733A (en) * 1979-01-15 1983-01-18 Francis G. Dwyer Form of zeolite zsm-11, preparation thereof and catalytic conversion therewith
AU579656B2 (en) * 1984-09-04 1988-12-01 W.R. Grace & Co.-Conn. Process to make small crystallites of zsm-5
EP0987220A1 (en) * 1998-09-17 2000-03-22 Technische Universiteit Delft Mesoporous amorphous silicate materials and process for the preparation thereof
JPH0825921B2 (ja) * 1990-08-10 1996-03-13 株式会社ジャパンエナジー 芳香族炭化水素の製造方法および触媒並びにその触媒の製造方法
AU642817B2 (en) * 1991-06-14 1993-10-28 Mobil Oil Corporation A method of synthesizing zeolite beta
US5601798A (en) * 1993-09-07 1997-02-11 Pq Corporation Process for preparing zeolite Y with increased mesopore volume
IT1270230B (it) * 1994-06-16 1997-04-29 Enichem Sintesi Composizione catalitica e processo per l'alchilazione di composti aromatici
US5672556A (en) * 1994-08-22 1997-09-30 Board Of Trustees Operating Michigan State University Crystalline silicate compositions and method of preparation
US5795555A (en) * 1994-11-24 1998-08-18 Alive; Keshavaraja Micro-meso porous amorphous titanium silicates and a process for preparing the same
US5538710A (en) * 1994-12-14 1996-07-23 Energy Mines And Resources-Canada Synthesis of mesoporous catalytic materials
JPH09208219A (ja) * 1995-12-01 1997-08-12 Toray Ind Inc モルデナイト構造を有するゼオライトおよびその製造方法
JP3684265B2 (ja) * 1996-03-26 2005-08-17 触媒化成工業株式会社 均一なミクロポアと均一なメソポアの2種類の細孔を有するフォージャサイト型ゼオライトおよびその製造方法
JPH09295811A (ja) * 1996-04-30 1997-11-18 Lion Corp 無定形多孔体及びその製造方法
US5849258A (en) * 1996-06-06 1998-12-15 Intevep, S.A. Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same
US5919430A (en) * 1996-06-19 1999-07-06 Degussa Aktiengesellschaft Preparation of crystalline microporous and mesoporous metal silicates, products produced thereby and use thereof
JPH11226391A (ja) * 1998-02-19 1999-08-24 Toyota Motor Corp 排ガス浄化用ゼオライト及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПЕТРОВ А.А. и др., Органическая химия, Москва, Высшая школа, 1973, с.с.130, 136. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800856C2 (ru) * 2018-09-25 2023-07-31 Эвоник Оперейшнс Гмбх Способ получения порошкообразных пористых кристаллических силикатов металлов с использованием пламенного распылительного пиролиза

Also Published As

Publication number Publication date
WO2001017901A1 (en) 2001-03-15
CA2384090C (en) 2009-02-03
ATE486044T1 (de) 2010-11-15
JP2003508333A (ja) 2003-03-04
CN100509623C (zh) 2009-07-08
BR0013787B1 (pt) 2010-11-16
AU3893900A (en) 2001-04-10
EP1214272B1 (en) 2010-10-27
EP1214272A1 (en) 2002-06-19
CN1827525A (zh) 2006-09-06
CA2384090A1 (en) 2001-03-15
DE60045157D1 (de) 2010-12-09
CN1234456C (zh) 2006-01-04
ES2355468T3 (es) 2011-03-28
AU770364B2 (en) 2004-02-19
CN1387496A (zh) 2002-12-25
BR0013787A (pt) 2002-08-27

Similar Documents

Publication Publication Date Title
RU2248934C2 (ru) Неорганические оксиды с мезопористостью или со смешанной мезо- и микропористостью и способ их получения
KR100733188B1 (ko) 중간세공율 또는 중간세공율과 미소세공율의 복합 특성을지니는 무기 산화물 및 이의 제조 방법
US6960327B2 (en) Methods for removing organic compounds from nano-composite materials
US5672556A (en) Crystalline silicate compositions and method of preparation
US6930217B2 (en) Catalyst containing microporous zeolite in mesoporous support and method for making same
US5800800A (en) Crystalline inorganic oxide compositions prepared by neutral templating route
JP2003525188A5 (ru)
Serrano et al. Crystallization mechanism of all-silica zeolite beta in fluoride medium
US5785946A (en) Crystalline inorganic oxide compositions prepared by neutral templating route
KR101147669B1 (ko) 규칙적 또는 불규칙적으로 배열된 메조기공을 포함하는 제올라이트 또는 유사 제올라이트 물질 및 그의 제조 방법
Eimer et al. Mesoporous titanosilicates synthesized from TS-1 precursors with enhanced catalytic activity in the α-pinene selective oxidation
KR910004854B1 (ko) 결정성 알루미늄포스페이트 조성물
CN112203763A (zh) 在有机含氮结构化试剂的存在下合成非常高纯度afx结构沸石的方法
EP1002764B1 (en) Method for preparation of small zeotype crytals
US6814950B1 (en) Inorganic oxides with mesoporosity or combined meso-and microporosity and process for the preparation thereof
WO2019121939A1 (en) Process for the manufacture of hollow zsm-5 and ts-1 zeolites
JP2002528368A (ja) ミクロおよびメソポーラス特性を有する酸オキシドitq−36
EA000013B1 (ru) Способ получения микромезопористого геля
KR101069904B1 (ko) 메조-나노 세공크기를 갖는 세공체를 제조하는 방법
Chaudhari Synthesis, characterization and catalytic properties of mesoporous molecular sieves
Kiricsi A. Carati, C. Flego, D. Berti, R. Millini, B. Stocchi, C. Perego EniTecnologie, Via Maritano 26, I-20097 San Donato Milanese, Italy. Fax 39-02-520-56364 Structural properties and morphology of TS-1 samples are strongly affected by synthesis

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120317