RU2248064C1 - Источник ионов - Google Patents

Источник ионов Download PDF

Info

Publication number
RU2248064C1
RU2248064C1 RU2003128909/28A RU2003128909A RU2248064C1 RU 2248064 C1 RU2248064 C1 RU 2248064C1 RU 2003128909/28 A RU2003128909/28 A RU 2003128909/28A RU 2003128909 A RU2003128909 A RU 2003128909A RU 2248064 C1 RU2248064 C1 RU 2248064C1
Authority
RU
Russia
Prior art keywords
ion
removable
anode
sources
gap
Prior art date
Application number
RU2003128909/28A
Other languages
English (en)
Inventor
М.А. Парфененок (RU)
М.А. Парфененок
А.П. Телегин (RU)
А.П. Телегин
Original Assignee
Парфененок Михаил Антонович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Парфененок Михаил Антонович filed Critical Парфененок Михаил Антонович
Priority to RU2003128909/28A priority Critical patent/RU2248064C1/ru
Application granted granted Critical
Publication of RU2248064C1 publication Critical patent/RU2248064C1/ru

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

Изобретение относится к ионно-плазменной технике, в частности к источникам ионов с замкнутым дрейфом электронов, которые могут быть использованы при конструировании источников, формирующих ленточные пучки ионов инертных и химически активных газов. Сущность изобретения: в ионном источнике с замкнутым дрейфом электронов, содержащем полый корпус, служащий катодом, в торцевых стенках которого выполнены эмиссионная щель и каналы для напуска рабочего газа, магнитные наконечники, анод, установленный в полости корпуса напротив щели, источники магнитодвижущей силы, магнитные наконечники снабжены съемными защитными пластинами, установленными с соблюдением определенных геометрических соотношений между размерами пластин и апертурой эмиссионной щели. Техническим результатом изобретения является увеличение срока службы источника ионов за счет уменьшения эрозии магнитных наконечников, облегчение его разборки и снижение себестоимости его эксплуатации. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к ионно-плазменной технике, в частности к источникам ионов с замкнутым дрейфом электронов, которые могут быть использованы при конструировании источников, формирующих ленточные пучки ионов инертных или химически активных газов.
В устройствах ионно-лучевой обработки и нанесения пленок область ионизации и удержания плазмы рабочего газа, формирования пучка и ускорения ионов находится в источнике.
Сравнительно малые средние энергии ионов позволяют их использовать для нанесения пленок различных материалов путем осаждения материала непосредственно из пучка ионов. Применение источников ионов позволяет повысить адгезию пленок к подложке, уменьшить переходное сопротивление, уменьшить неровности на обрабатываемой поверхности, управлять структурой и свойствами пленки.
К технологическим источникам ионов, используемым в промышленном оборудовании, наряду с общими требованиями предъявляются и специфические. Для таких технологических операций как очистка поверхностей в вакууме, ионно-химическое травление требуется уменьшать энергию ионов и увеличивать их плотность. При распылении мишеней скорость распыления увеличивается с увеличением энергии ионов. Источники должны формировать пучки ионов из различных веществ, включая химически активные, например, фтор- или хлорсодержащие соединения, углеводороды, кислород, азот и т.д., при этом ионы должны обладать энергией от 0,05 до 5 кэВ в зависимости от требований технологии. Источники ионов должны обеспечивать обработку поверхности с заданной производительностью и равномерностью. Разнообразие форм и размеров обрабатываемых объектов требует создания источников ионов с различной конфигурацией пучка: однородные по плотности тока пучки большого диаметра, ленточные, сходящиеся, расходящиеся и другие формы пучков.
Наиболее полно перечисленным требованиям удовлетворяют источники ионов с холодным катодом, формирующие пучки ионов в скрещенных электрическом и магнитном полях, каждый из которых включает систему формирования полей в выходной эмиссионной щели. В таких источниках реализован замкнутый дрейф электронов в ускоряющем промежутке катод-анод размером порядка ларморовского радиуса электронов. Электроны, совершая замкнутый холловский дрейф в скрещенных электрическом и магнитном полях, ионизируют атомы или молекулы рабочего газа, которые ускоряются в промежутке катод-анод в области эмиссионной щели. Сформированный трубчатый ионный пучок, выходя из щели, распространяется вдоль оси источника. Ионизация практически любых газообразных веществ обеспечивается вторичными электронами, ускоряемыми в специально созданной потенциальной яме. Причем зона ионизации определяется траекториями электронов, задаваемыми конфигурацией и величиной магнитного поля.
На основе рассмотренных выше физических принципов формирования пучков ионов различных веществ был разработан ряд источников ионов.
Наибольшее распространение получили источники ионов с холодным катодом, содержащие разрядную камеру, ускорительную ступень и магнитную систему (RU, 1 144548, кл. H 01 J 27/04, 1995 г.). Известные источники формируют трубчатые пучки ионов. Изготовленный из магнитомягкого материала катод с кольцевой щелью служит одновременно магнито-проводом и ускоряющим электродом (катодом). Кольцевой анод охлаждается водой. Радиальное магнитное поле создается соленоидом и системой магнитопроводов. Газообразное вещество подается через канал в камеру и через кольцевое отверстие в центральном магнитопроводе поступает в промежуток анод-катод.
Известен источник ионов, содержащий полые анод и катод с соосными щелевыми апертурами в обращенных друг к другу торцевых стенках. Магнитная система источника состоит из двух постоянных магнитов и двух пар полюсных наконечников, симметрично расположенных в полости катода на противоположных краях контрагирующего отверстия, выполненного в форме прямоугольной щели. Система обеспечивает на краях катодной контрагирующей щели встречные магнитные поля, перпендикулярные продольной оси симметрии щели. Ионно-оптическая система образована стенкой полого катода, противоположной контрагирующей щели, и извлекающим электродом, в которых выполнены соосные отверстия (RU, 1766201, кл. Н 01 J 27/04, 1995 г.).
Наиболее близким по технической сущности и достигаемому результату к заявленному устройству является источник ионов с замкнутым дрейфом электронов, содержащий магнитопроводящий полый корпус, служащий катодом, в торцевых стенках которого выполнены эмиссионная щель и каналы для напуска рабочего газа, магнитные наконечники и анод, установленный в полости корпуса напротив щели, источники магнитодвижущей силы (RU, 2030807, кл. H 01 J 27/04, 1995 г.). В известном устройстве в одной торцевой стенке корпуса выполнены каналы для напуска рабочего газа. Выходная эмиссионная щель выполнена в другой торцевой стенке корпуса, являющейся одновременно ускоряющим электродом и катодом. В ускоряющем промежутке (зазоре между катодом и анодом) создается радиальное магнитное поле. Геометрия полюсных деталей определяет распределение магнитного поля. Электроны, совершая замкнутый холловский дрейф в скрещенных электрическом и магнитном полях, ионизируют атомы рабочего газа, в результате чего происходит формирование трубчатого ионного пучка, который, выходя из щели, распространяется вдоль оси источника. Рабочее давление составляет (2-8)×10-2 Па, диапазон энергий ионов 800-3000 Эв, максимальная плотность пучка менее 10 А/см2, плотность зоны обработки около 500 см2.
Использование известного устройства показало, что ему присущи следующие недостатки. Затруднительно обрабатывать с заданной равномерностью объекты большой протяженности и площади; при определенных условиях формирования пучка ионов имеет место распыление материала ускоряющих электродов и, как следствие, загрязнение осаждаемых покрытий или обрабатываемых поверхностей. Кроме того, износ этих электродов вследствие эрозии уменьшает срок службы источника ионов. Зона, подверженная эрозии, соответствует высокому радиальному магнитному полю. Магнитные наконечники расположены в этой зоне таким образом, что постоянно подвергаются интенсивной эрозии в результате ионной бомбардировки. Поскольку источник содержит практически не демонтируемые наконечники, то их замена на новые затруднена. Трудности с разборкой устройства связаны в свою очередь с большими эксплуатационными расходами.
В рамках данной заявки решается задача разработки такой конструкции источника ионов, чтобы обеспечить увеличение срока службы источника ионов за счет уменьшения эрозии магнитных наконечников, облегчить его разборку и снизить себестоимость его эксплуатации.
Поставленная задача решается тем, что в ионном источнике с замкнутым дрейфом электронов, содержащем полый корпус, служащий катодом, в торцевых стенках которого выполнены эмиссионная щель и каналы для напуска рабочего газа, магнитные наконечники, анод, установленный в полости корпуса напротив щели, источники магнитодвижущей силы, магнитные наконечники снабжены съемными электропроводящими пластинами, определяющими апертуру щели шириной w, при этом толщина t пластины связана с величиной апертуры соотношением t$ 8w, при этом расстояние g от поверхности анода до съемной пластины не превышает величины 8w, а ширина d поверхности анода со стороны, обращенной к щели, не меньше ширины w.
При этом источники магнитодвижущей силы установлены на расстоянии h от внутренней поверхности съемных пластин так, что выполняется соотношение h≥g.
Для целей формирования требуемого профиля магнитного поля целесообразно, чтобы съемные пластины были выполнены из немагнитного материала.
Кроме того, на поверхности съемных пластин выполнено пленочное покрытие с коэффициентом ионно-электронной эмиссии более высоким, чем у материала съемных пластин.
Авторами были экспериментально установлены геометрические соотношения между размерами съемных пластин и их удаленностью от элементов конструкции устройства. Данные требования к материалу съемных пластин и пленочного покрытия на них позволяют формировать нужный профиль магнитного поля для конкретных целей обработки изделий. Использование съемных пластин возможно только с соблюдением данных соотношений, позволяющих достичь нужной геометрии электрического и магнитного полей при одновременном снижении уровня эрозии магнитных наконечников.
Сущность изобретения поясняется графическим материалом, где на фиг.1 приведен общий вид ионного источника в разрезе на стадии установки съемных пластин. На фиг.2 приведен общий вид источника в разрезе, поясняющий геометрическое соотношение между его конструктивными элементами.
Ионный источник содержит полый корпус 1, анод 2, источники магнитодвижущей силы 3, магнитные наконечники 4 со съемными пластинами 5, эмиссионную щель 6, каналы 7 для напуска рабочего газа. Для пояснения сущности данного устройства введены следующие обозначения:
d - ширина поверхности анода со стороны, обращенной к щели,
g - расстояние от анода до съемной пластины,
h - расстояние от источника магнитодвижущей силы до съемной пластины,
t - толщина съемных пластин,
w - апертура эмиссионной щели..
Источник ионов работает следующим образом. После вакуумной откачки, обеспечивающей рабочее давление газовой среды величиной не более 1 мПа. В корпус 1 через каналы 7 напускают рабочий газ до давления 50 мПа. Между корпусом 1 и анодом 2 прикладывают постоянное напряжение от блока питания (на чертеже непоказан), в результате чего в полости корпуса создается электростатическое поле, скрещенное со стационарным магнитным полем, создаваемым магнитной системой 3. Между анодом 2 и корпусом 1 возникает тлеющий газовый разряд. Скрещенность полей в каждом поперечном сечении корпуса обеспечивает дрейф электронов плазмы вдоль замкнутого контура, а конфигурация магнитного поля с противоположными магнитными полюсами у противоположных краев щели обеспечивает повышенную ионизацию рабочего газа в ускоряющем промежутке между анодом 2 и съемными пластинами 5. Возникающие при ионизации рабочего газа положительные ионы ускоряются в области между анодом и съемными пластинами и, выходя через эмиссионную щель с апертурой w, образуют протяженный ленточный пучок ионов, повторяющий форму щели.
Данное устройство может быть использовано для ионной обработки объектов. Изобретение предусматривает получение ионного источника с повышенным временным ресурсом работы и малыми затратами на его технологическое обслуживание при сохранении высокого качества обработки изделий. Это приводит к ряду коммерческих преимуществ, включая возможность более длительного использования магнитных наконечников путем замены съемных пластин, расположение которых в корпусе источника таково, что не требует разборки всего устройства. Такая конструкция позволяет снизить стоимость его эксплуатации и, в конечном итоге, себестоимость обрабатываемых деталей.

Claims (4)

1. Источник ионов с замкнутым дрейфом электронов, содержащий полый корпус, служащий катодом, в торцевых стенках которого выполнены эмиссионная щель и каналы для напуска рабочего газа, магнитные наконечники и анод, установленный в полости корпуса напротив щели, источники магнитодвижущей силы, отличающийся тем, что магнитные наконечники снабжены съемными электропроводящими пластинами, определяющими апертуру щели размером w, при этом толщина пластины связана с величиной апертуры соотношением t≤8w, расстояние g от поверхности анода до съемной пластины не превышает величины 8w, а ширина d поверхности анода со стороны, обращенной к щели, не меньше ширины w.
2. Устройство по п.1, отличающееся тем, что источники магнитодвижущей силы установлены на расстоянии h от поверхности съемных пластин так, что выполняется соотношение h≥g.
3. Устройство по п.1, отличающееся тем, что съемные пластины выполнены из немагнитного материала.
4. Устройство по п.1, отличающееся тем, что на поверхности съемных пластин выполнено пленочное покрытие с коэффициентом ионно-электронной эмиссии более высоким, чем у материала пластин.
RU2003128909/28A 2003-09-29 2003-09-29 Источник ионов RU2248064C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003128909/28A RU2248064C1 (ru) 2003-09-29 2003-09-29 Источник ионов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003128909/28A RU2248064C1 (ru) 2003-09-29 2003-09-29 Источник ионов

Publications (1)

Publication Number Publication Date
RU2248064C1 true RU2248064C1 (ru) 2005-03-10

Family

ID=35364717

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003128909/28A RU2248064C1 (ru) 2003-09-29 2003-09-29 Источник ионов

Country Status (1)

Country Link
RU (1) RU2248064C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2630426C2 (ru) * 2015-12-30 2017-09-07 Акционерное общество "Лыткаринский завод оптического стекла" Ионный источник

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2630426C2 (ru) * 2015-12-30 2017-09-07 Акционерное общество "Лыткаринский завод оптического стекла" Ионный источник

Similar Documents

Publication Publication Date Title
US7327089B2 (en) Beam plasma source
US7411352B2 (en) Dual plasma beam sources and method
US6806651B1 (en) High-density plasma source
US6853142B2 (en) Methods and apparatus for generating high-density plasma
US20160027608A1 (en) Closed drift magnetic field ion source apparatus containing self-cleaning anode and a process for substrate modification therewith
Gavrilov et al. Development of technological sources of gas ions on the basis of hollow-cathode glow discharges
US20070026161A1 (en) Magnetic mirror plasma source and method using same
US6246059B1 (en) Ion-beam source with virtual anode
US20090032191A1 (en) High Density Plasma Source
US6238526B1 (en) Ion-beam source with channeling sputterable targets and a method for channeled sputtering
US20040217713A1 (en) Magnetron plasma source
Gavrilov et al. High-current pulse sources of broad beams of gas and metal ions for surface treatment
US4542321A (en) Inverted magnetron ion source
RU2373603C1 (ru) Источник быстрых нейтральных атомов
US6870164B1 (en) Pulsed operation of hall-current ion sources
RU2248064C1 (ru) Источник ионов
US20130088150A1 (en) Ion source apparatus and methods of using the same
JP3064214B2 (ja) 高速原子線源
KR20000029621A (ko) 마그네트론
Akhmadeev et al. Plasma sources based on a low-pressure arc discharge
KR20140142464A (ko) 이온 빔 소스
Chiad Mechanisms of Low-Pressure Magnetized Glow Discharge Plasmas
Hammadi PHY04 Primary Processes Dominating Low-Pressure Magnetized Glow Discharge Plasmas
Gavrilov et al. Generation of a homogeneous plasma in a glow discharge with a hollow anode and a wide-aperture hollow cathode
Aflori et al. Estimating electrons and ions energies in an RF capacitively-coupled Argon discharge

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20121127

PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20170124