RU2373603C1 - Источник быстрых нейтральных атомов - Google Patents

Источник быстрых нейтральных атомов Download PDF

Info

Publication number
RU2373603C1
RU2373603C1 RU2008130253/28A RU2008130253A RU2373603C1 RU 2373603 C1 RU2373603 C1 RU 2373603C1 RU 2008130253/28 A RU2008130253/28 A RU 2008130253/28A RU 2008130253 A RU2008130253 A RU 2008130253A RU 2373603 C1 RU2373603 C1 RU 2373603C1
Authority
RU
Russia
Prior art keywords
hollow cathode
grid
emission
source
anode
Prior art date
Application number
RU2008130253/28A
Other languages
English (en)
Inventor
Сергей Николаевич Григорьев (RU)
Сергей Николаевич Григорьев
Александр Сергеевич Метель (RU)
Александр Сергеевич Метель
Юрий Андреевич Мельник (RU)
Юрий Андреевич Мельник
Виталий Вячеславович Панин (RU)
Виталий Вячеславович Панин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Московский государственный технологический университет "СТАНКИН" (ГОУ ВПО МГТУ "СТАНКИН")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Московский государственный технологический университет "СТАНКИН" (ГОУ ВПО МГТУ "СТАНКИН") filed Critical Государственное образовательное учреждение высшего профессионального образования Московский государственный технологический университет "СТАНКИН" (ГОУ ВПО МГТУ "СТАНКИН")
Priority to RU2008130253/28A priority Critical patent/RU2373603C1/ru
Application granted granted Critical
Publication of RU2373603C1 publication Critical patent/RU2373603C1/ru

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

Изобретение относится к вакуумно-плазменной технике. Источник быстрых нейтральных атомов содержит рабочую вакуумную камеру, эмиссионную сетку, ограниченный эмиссионной сеткой и соединенный с ней электрически холодный полый катод, боковая поверхность которого перпендикулярна эмиссионной сетке, анод, источник питания разряда, положительным полюсом соединенный с анодом, а отрицательным полюсом соединенный с полым катодом, и источник напряжения смещения, положительным полюсом соединенный с рабочей вакуумной камерой, а отрицательным полюсом соединенный с полым катодом. Источник дополнительно содержит соленоид, установленный с возможностью обхвата полого катода с возможностью формирования магнитного поля внутри полого катода вблизи его боковой поверхности перпендикулярно эмиссионной сетке, при этом поперечный размер эмиссионной сетки превышает ширину боковой поверхности полого катода более чем в 2 раза. При работе такого источника неоднородность распределения тока пучка не превышает ±10%, а отношение тока пучка к разрядному току повышается до 20-30%. 2 ил.

Description

Изобретение относится к вакуумно-плазменной технике, а именно к источникам быстрых нейтральных атомов, преимущественно к источникам пучков быстрых нейтральных атомов, для очистки и нагрева подложек в рабочей вакуумной камере перед осаждением на них покрытий с целью повышения адгезии, а также для сопровождения осаждения покрытий бомбардировкой их поверхности быстрыми атомами с целью улучшения качества покрытий.
Известны источники типа Кауфмана, в которых плазменный эмиттер ионов получают с помощью разряда с накаленным катодом в магнитном поле. Самый большой источник этого типа формирует пучок круглого сечения диаметром 50 см [Hayes A.V., Kanarov V., Vidinsky В. Fifty centimeter ion beam source. - Rev. Sci. Instrum. 1996. V.67. No4. P.1638-1641]. В нем плазменный эмиттер ионов аргона площадью около 0,2 м получают с помощью разряда в магнитном поле между цилиндрическим анодом и четырьмя блоками накаленных катодов из толстой вольфрамовой проволоки при давлении аргона 0,02-0,04 Па. Ионно-оптическая система (ИОС) этого источника состоит из двух сеток. При ускоряющем напряжении между ними 300 В ток пучка составляет 0,5÷1 А, при 500 В его величину можно изменять от 1 А до 2,2 А, а при энергии ионов 800÷900 эВ ток достигает 5 А, что соответствует максимальной плотности тока 25 А/м2. С уменьшением энергии ниже 250 эВ плотность тока не превышает 1 А/м2. Поэтому использовать источники Кауфмана для сопровождения осаждения покрытий ионами с энергией 50÷200 эВ при плотности ионного тока свыше 10 А/м2 не представляется возможным, и это является их основным недостатком. Существенными недостатками являются также использование накаленных катодов, что не позволяет получать пучки ионов химически активных газов, например кислорода, и сложность изготовления формоустойчивой при высоких температурах многоапертурной ИОС.
Известны источники пучков быстрых нейтральных молекул с поперечным сечением до 0,5÷1 м2, в которых плазменный эмиттер ионов получают при давлении газа около 0,1 Па с помощью тлеющего разряда с электростатическим удержанием электронов в ловушке, включающей холодный полый катод и отрицательную по отношению к нему эмиссионную сетку [US Patent No 6285025, Int. Cl. H01S 1/00; H01S 3/00. Source of fast neutral molecules /A.S.Metel, S.N.Grigoriev/ PCT Filed Mar. 18, 1997 // Dated Sep.4, 2001]. Ионы ускоряются в промежутке между разделенными эмиссионной сеткой плазменным эмиттером, потенциал которого равен потенциалу расположенного внутри ловушки анода тлеющего разряда, и вторичной плазмой снаружи ловушки, потенциал которой практически равен потенциалу рабочей вакуумной камеры. Зависящая от геометрической прозрачности сетки доля ускоренных ионов (20÷25%) поглощается сеткой, а остальные поступают через отверстия сетки в рабочую камеру и на расстоянии около 0,1 м от сетки перезаряжаются, превращаясь при столкновениях с молекулами газа в быстрые нейтральные молекулы. Число быстрых нейтральных молекул, бомбардирующих поверхность подложки, расположенной на расстоянии 0,2 м от эмиссионной сетки, на порядок превышает число еще не перезарядившихся ионов. Отсутствие накаленных катодов позволяет получать пучки быстрых молекул химически активных газов, а ускорение ионов с использованием одной единственной сетки упрощает изготовление ИОС, снижает требования к формоустойчивости сетки при высоких температурах, уменьшает себестоимость источника и позволяет изготавливать источники с эмиссионной поверхностью любой площади и любой геометрической формы: цилиндрической, сферической, вогнутой, выпуклой и др. При уменьшении ускоряющего напряжения между анодом и рабочей камерой до величины, при которой потенциал полого катода становится ниже потенциала эмиссионной сетки, последняя поглощает эмитированные катодом электроны, и разряд погасает. Невозможность получать пучок с энергией, существенно меньшей величины, соответствующей катодному падению потенциала 400-600 В, а также неоднородность распределения плотности тока пучка по его сечению являются основными недостатками этих источников.
Наиболее близким решением по технической сущности к изобретению является источник быстрых нейтральных молекул, в котором круглая эмиссионная сетка диаметром 12 см с 1224 отверстиями диаметром по 2 мм, равномерно распределенными внутри круга диаметром 0,1 м, и цилиндрический полый катод диаметром 0,12 м, длиной 0,08 м соединены между собой, анод расположен снаружи полого катода и выполнен в виде полого цилиндра, из которого рабочий газ поступает в полый катод через малое отверстие в стенке полого катода [Метель А.С., Мельник Ю.А. Особенности генерации плазмы в источнике быстрых молекул с полым анодом снаружи его электростатической ловушки. - Инженерная физика. 2005. Вып.2. С.26-29. Рис.1]. Перепад давления от 1 Па в полом аноде до 0,1 Па в полом катоде обеспечивает самостоятельность разряда с двойным электростатическим слоем между плазменным эмиттером внутри полого катода и проникающей в него из полого анода анодной плазмой. При равенстве потенциалов перекрытого сеткой полого катода и рабочей камеры во вторичную плазму внутри камеры из плазменного эмиттера внутри полого катода через отверстия сетки поступают ускоренные ионы, энергия которых соответствует катодному падению потенциала 400-600 В. На расстоянии от сетки 0,2 м и более они практически полностью перезаряжаются, превращаясь при столкновениях с молекулами газа в быстрые нейтральные молекулы. Кинетическая энергия бомбардирующих подложку нейтральных молекул равна энергии ускоренных ионов, однако теперь она уже не зависит от потенциала поверхности подложки. При подаче на полый катод напряжения смещения отрицательной полярности от включенного между ним и камерой источника постоянного напряжения между вторичной плазмой в камере и сеткой появляется слой положительного объемного заряда с падением потенциала на нем, равным напряжению смещения. Прошедшие через сетку ионы замедляются в этом слое, и их энергия уменьшается на соответствующую напряжению смещения величину. Когда напряжение смещения становится равным катодному падению потенциала разряда, энергия ионов снижается до нуля. При токе в цепи анода 2 А ток пучка составляет 0,15 А, что соответствует средней плотности тока ускоренных частиц, примерно равной 20 А/м2. Энергию ускоренных частиц можно изменять при постоянной плотности тока непрерывно от нуля до 400÷600 эВ. При максимальной энергии нейтральных молекул 400÷600 эВ можно очищать и активировать поверхность подложки из любого материала, в том числе из диэлектрика, перед осаждением на нее покрытия, а при энергии 50÷200 эВ можно сопровождать осаждение покрытия. Недостатками источника являются сравнительно низкое (менее 10%) отношение тока пучка к разрядному току в цепи анода, определяемое соотношением суммарной площади эмиссионных отверстий сетки и общей площади поверхности ловушки, включающей внутренние поверхности полого катода и сетки, а также неоднородность распределения плотности тока по сечению пучка. Плотность тока максимальна на оси пучка и снижается в 2 раза на расстоянии от оси, примерно равном 0,035 м, что в 1,5 раза меньше радиуса эмиссионной поверхности сетки. Указанная неоднородность обусловлена тем, что быстрые электроны, многократно отражаясь от стенок полого катода и сетки, проходят внутри ловушки путь, длина которого превышает размеры полого катода на 2 порядка. При этом они чаще всего пролетают через центр катодной полости, поэтому частота ионизации газа максимальна именно в ее центре. Образованные здесь ионы в первую очередь достигают центральной области эмиссионной сетки, поэтому плотность тока ионной эмиссии имеет в центре сетки максимум. Отношение тока пучка к разрядному току увеличивается с ростом отношения диаметра эмиссионной сетки к длине полого катода. Однако при этом одновременно возрастает неоднородность распределения плотности тока пучка. Неоднородность плотности тока пучка еще более выражена в источниках пучков прямоугольного сечения. В них плотность тока ионной эмиссии минимальна вблизи углов прямоугольной эмиссионной сетки, и из-за этого отпечаток пучка на бомбардируемой им поверхности фактически имеет форму эллипса.
Технической задачей предложенного решения является создание источника быстрых нейтральных атомов с энергией, регулируемой от нуля до сотен электронвольт, в котором при повышении отношения тока пучка к разрядному току обеспечивалось бы более однородное распределение тока пучка по его сечению.
Поставленная задача решается тем, что источник быстрых нейтральных атомов, содержащий рабочую вакуумную камеру, эмиссионную сетку, ограниченный эмиссионной сеткой и соединенный с ней электрически холодный полый катод, боковая поверхность которого перпендикулярна эмиссионной сетке, анод, источник питания разряда, положительным полюсом соединенный с анодом, а отрицательным полюсом соединенный с полым катодом, и источник напряжения смещения, положительным полюсом соединенный с рабочей вакуумной камерой, а отрицательным полюсом соединенный с полым катодом, дополнительно содержит соленоид, установленный с возможностью обхвата полого катода с возможностью формирования магнитного поля внутри полого катода вблизи его боковой поверхности перпендикулярно эмиссионной сетке, при этом поперечный размер эмиссионной сетки превышает ширину боковой поверхности полого катода более чем в 2 раза.
Изобретение поясняется чертежами, где:
на Фиг.1 изображена схема источника быстрых нейтральных атомов.
на Фиг.2 изображено сечение А-А по Фиг.1.
Источник быстрых нейтральных атомов содержит эмиссионную сетку 1, выполненную, например, прямоугольной формы. Перекрытый эмиссионной сеткой 1 холодный полый катод 2, выполненный, например, в форме прямоугольного параллелепипеда, боковая поверхность 3 которого расположена перпендикулярно эмиссионной сетке 1. Анод 4 выполнен, например, в форме полого цилиндра и расположен с внешней стороны полого катода 2 с возможностью поступления газовой среды, подаваемой в него, во внутренний объем полого катода 2 через отверстие 5, выполненное в стенке последнего. Источник 6 питания разряда положительным полюсом соединен с анодом 4, а отрицательным полюсом соединен с полым катодом 2. Источник 7 напряжения смещения положительным полюсом соединен с рабочей вакуумной камерой 8, а отрицательным полюсом соединен с полым катодом 2. Источник быстрых нейтральных атомов также содержит соленоид 9, расположенный с возможностью охвата полого катода 2 и обеспечивающий формирование магнитного поля внутри полого катода 2 вблизи его боковой поверхности 3 перпендикулярно эмиссионной сетке 1. Для решения поставленной задачи необходимо, чтобы поперечные размеры эмиссионной сетки 1 не менее чем в 2 раза превышали ширину боковой поверхности 3 полого катода 2 и соленоида 9.
Кроме того, на фиг.2 условно показана штриховой линией 10 граница эмиссионной поверхности сетки 1, а стрелкой 11 на фиг.1 условно показана подача рабочего газа в полость анода 4, из которой газ через отверстие 5 малого диаметра поступает в полый катод 2, а далее через отверстия эмиссионной сетки 2 поступает в рабочую вакуумную камеру и затем в систему вакуумной откачки.
Устройство работает следующим образом.
Рабочую вакуумную камеру 8 с обрабатываемыми подложками внутри нее (не показаны) откачивают до давления 1 мПа, затем подают в камеру 8, например, через полый анод 4, отверстие 5 и полый катод 2, рабочий газ, например, аргон, и увеличивают его давление в камере 8 до 0,1 Па. Включением источника 6 прикладывают между анодом 4 и полым катодом 2 напряжение Up в несколько сотен вольт. С помощью поджигающего устройства (не показано) зажигают газовый разряд. В результате полый катод 2 заполняется плазменным эмиттером 12, отделенным от поверхностей полого катода 2 и эмиссионной сетки 1 слоем положительного объемного заряда 13 ионов 14, полый анод 4 заполняется анодной плазмой 15, проникающей через отверстие 5 внутрь полого катода 2, а камера 8 в результате нейтрализации вторичными электронами со стенок камеры 8 положительного объемного заряда поступающих в нее через отверстия сетки 1 ионов 14, ускоренных в слое 13, заполняется вторичной плазмой 16. Потенциал вторичной плазмы 2 превышает потенциал камеры 8 примерно на 1÷5 В, а потенциал анодной плазмы 15 примерно равен потенциалу анода 4. Между проникающей в полый катод 2 анодной плазмой 15 и плазменным эмиттером 12 образуется стационарный двойной электростатический слой 17 с падением потенциала на нем 10÷20 В. При катодном падении потенциала 400÷600 В падением на двойном слое 17 и потенциалом вторичной плазмы 16 можно пренебречь, приближенно полагая, что во вторичной плазме 16 энергия ускоренных в слое 13 ионов 14 соответствует напряжению Up источника 6 между анодом 4 и полым катодом 2, т.е. равна qUp, где q - заряд иона.
Включением источника 7 на полый катод 2 подают напряжение смещения Uc отрицательной относительно камеры 8 полярности. В результате между эмиссионной сеткой 1 и вторичной плазмой 16 образуется слой положительного объемного заряда 18 с падением потенциала, примерно равным напряжению Uc источника 7. Ускоренный в слое 13 ион 14 проходит через сетку 1 и тут же замедляется в слое 18. Поэтому энергия ионов во вторичной плазме соответствует разности потенциалов (Up-Uc) между плазменным эмиттером 12 и вторичной плазмой 16. При постоянном токе пучка ее можно регулировать от нуля до qUp изменением напряжения Uc. Во вторичной плазме 16 на расстоянии 0,2 м от сетки 1 практически все ионы аргона 14 превращаются в быстрые нейтральные атомы аргона, кинетическая энергия и направление движения которых не зависят от электрических и магнитных полей.
Включением источника питания соленоида 9 (не показан) создают магнитное поле, вектор индукции которого вблизи боковой поверхности 3 полого катода 2 перпендикулярен эмиссионной сетке 1. Электроны 19, эмитированные в результате бомбардировки боковой поверхности 3 ионами 20 из плазменного эмиттера 12, ускоряются в слое 13 до энергии eUp, где е - заряд электрона, а разрядное напряжение Up равно разности потенциалов между плазменным эмиттером 12 и поверхностью 3. В плазменном эмиттере 12 ускоренный электрон 19 движется вблизи боковой поверхности 3 полого катода 2 в плоскости, перпендикулярной вектору магнитной индукции В, а следовательно, в плоскости, параллельной эмиссионной сетке 1, по окружности, радиус которой RL (м)=3,4×[Up(B)]1/2/B (Тл). Например, при Up=400 В и В=4 мТл радиус траектории электрона RL (м)=0,017 м. Описав половину окружности 21, электрон 19 отражается электрическим полем слоя 13, снова проходит через плазменный эмиттер 12 по окружности радиуса RL, снова отражается в слое 13 и т.д. Таким образом, эмитированные боковой поверхностью 3 полого катода 2 быстрые электроны 19, осциллируя между боковой поверхностью 3 и отстоящей от нее на расстояние RL огибающей траекторий 21 электронов 19, много раз обходят эту поверхность 3 по часовой стрелке или против часовой стрелки (в зависимости от направления магнитного поля от эмиссионной сетки 1 или к ней). Поэтому эти электроны 19 образуют ионы только вблизи боковой поверхности 3 полого катода 2, причем интенсивность ионизации сохраняет постоянное значение вблизи всей боковой поверхности 3 полого катода 2, в том числе и в углах прямоугольного полого катода. Так как магнитное поле с индукцией до 10 мТл практически не влияет на движение ионов, они свободно покидают указанную область пространства вблизи боковой поверхности 3 полого катода 2 в направлении к его центру и попадают, в том числе, на границу слоя 13 между плазменным эмиттером 12 и эмиссионной сеткой 1. На движение электронов, эмитированных сеткой 1 и противоположной ей стенкой полого катода 2, перпендикулярное им магнитное поле не оказывает заметного влияния. При удалении от боковой поверхности 3 на расстояние, превышающее ее ширину и ширину соленоида 9, магнитное поле становится резко неоднородным, его индукция снижается на порядок и ближе к центру полого катода 2 оно вообще не влияет на движение электронов.
Установка соленоида 9 с возможностью обхвата полого катода 2 с возможностью формирования магнитного поля внутри полого катода 2 вблизи его боковой поверхности 3 перпендикулярно эмиссионной сетке 1 позволяет значительно увеличить интенсивность ионизации газа вблизи боковой поверхности 3 полого катода 2 и обеспечить однородность ее распределения на всей боковой поверхности 3 полого катода 2.
При поперечных размерах эмиссионной сетки 1, превышающих ширину боковой поверхности 3 полого катода 2 не менее чем в 2 раза, отношение тока пучка к разрядному току составляет 20÷30%, а в центре полого катода 2 имеется область пространства, в котором магнитное поле соленоида 9 не влияет на движение быстрых электронов. В этой области эмитированные сеткой 1 и противоположной ей стенкой полого катода 2 электроны двигаются примерно так же, как и в отсутствие соленоида 9, образуя максимальное число ионов в центре катода 2. Плотность тока эмиссии образованных ими ионов максимальна в центре сетки 1 и минимальна на границе ее эмиссионной поверхности 10. Плотность тока эмиссии ионов, образованных вблизи боковой поверхности 3 полого катода 2 эмитированными этой поверхностью электронами 19, растет с увеличением индукции магнитного поля. Она минимальна в центре эмиссионной сетки 1 и максимальна на границе ее эмиссионной поверхности 10. Суперпозиция ионных потоков из центра полого катода 2 и из области вблизи его боковой поверхности 3 дает более однородное распределение тока ионной эмиссии по поверхности сетки 1, а следовательно, и более однородное распределение тока пучка по его сечению. Степень однородности можно регулировать, изменяя ток в обмотке соленоида 9 и, соответственно, индукцию магнитного поля.
По сравнению с прототипом предлагаемый источник быстрых нейтральных атомов отличается более высокой однородностью распределения тока пучка по его сечению (±10%) при более высоком отношении тока пучка к разрядному току (до 20÷30%).

Claims (1)

  1. Источник быстрых нейтральных атомов, содержащий рабочую вакуумную камеру, эмиссионную сетку, ограниченный эмиссионной сеткой и соединенный с ней электрически холодный полый катод, боковая поверхность которого перпендикулярна эмиссионной сетке, анод, источник питания разряда, положительным полюсом соединенный с анодом, а отрицательным полюсом соединенный с полым катодом, и источник напряжения смещения, положительным полюсом соединенный с рабочей вакуумной камерой, а отрицательным полюсом соединенный с полым катодом, отличающийся тем, что он дополнительно содержит соленоид, установленный с возможностью обхвата полого катода с возможностью формирования магнитного поля внутри полого катода вблизи его боковой поверхности перпендикулярно эмиссионной сетке, при этом поперечный размер эмиссионной сетки превышает ширину боковой поверхности полого катода более чем в 2 раза.
RU2008130253/28A 2008-07-23 2008-07-23 Источник быстрых нейтральных атомов RU2373603C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008130253/28A RU2373603C1 (ru) 2008-07-23 2008-07-23 Источник быстрых нейтральных атомов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008130253/28A RU2373603C1 (ru) 2008-07-23 2008-07-23 Источник быстрых нейтральных атомов

Publications (1)

Publication Number Publication Date
RU2373603C1 true RU2373603C1 (ru) 2009-11-20

Family

ID=41478008

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008130253/28A RU2373603C1 (ru) 2008-07-23 2008-07-23 Источник быстрых нейтральных атомов

Country Status (1)

Country Link
RU (1) RU2373603C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452056C1 (ru) * 2010-12-13 2012-05-27 Учреждение Российской академии наук Институт физики полупроводников им. А.В. Ржанова Сибирского отделения РАН (ИФП СО РАН) Способ получения пучка атомов или молекул в тлеющем разряде и устройство для его осуществления
RU2702623C1 (ru) * 2018-12-24 2019-10-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Источник быстрых нейтральных молекул
RU2716133C1 (ru) * 2018-12-24 2020-03-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Источник быстрых нейтральных молекул
RU2726187C1 (ru) * 2019-11-28 2020-07-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "СТАНКИН") Устройство для обработки изделий быстрыми атомами
RU2752877C1 (ru) * 2020-12-11 2021-08-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Устройство для обработки диэлектрических изделий быстрыми атомами
RU2817406C1 (ru) * 2023-10-17 2024-04-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Источник быстрых атомов для равномерного травления плоских диэлектрических подложек

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Метель А.С., Мельник Ю.А. Особенности генерации плазмы в источнике быстрых молекул с полым анодом снаружи его электростатической ловушки. -Инженерная физика. 2005, вып.2, с.26-29. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452056C1 (ru) * 2010-12-13 2012-05-27 Учреждение Российской академии наук Институт физики полупроводников им. А.В. Ржанова Сибирского отделения РАН (ИФП СО РАН) Способ получения пучка атомов или молекул в тлеющем разряде и устройство для его осуществления
RU2702623C1 (ru) * 2018-12-24 2019-10-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Источник быстрых нейтральных молекул
RU2716133C1 (ru) * 2018-12-24 2020-03-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Источник быстрых нейтральных молекул
RU2726187C1 (ru) * 2019-11-28 2020-07-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "СТАНКИН") Устройство для обработки изделий быстрыми атомами
RU2752877C1 (ru) * 2020-12-11 2021-08-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Устройство для обработки диэлектрических изделий быстрыми атомами
RU2817406C1 (ru) * 2023-10-17 2024-04-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Источник быстрых атомов для равномерного травления плоских диэлектрических подложек

Similar Documents

Publication Publication Date Title
US7327089B2 (en) Beam plasma source
US7411352B2 (en) Dual plasma beam sources and method
JP3328498B2 (ja) 高速原子線源
US6214183B1 (en) Combined ion-source and target-sputtering magnetron and a method for sputtering conductive and nonconductive materials
US4541890A (en) Hall ion generator for working surfaces with a low energy high intensity ion beam
TWI553132B (zh) Arc蒸鍍裝置及真空處理裝置
RU2373603C1 (ru) Источник быстрых нейтральных атомов
US10923306B2 (en) Ion source with biased extraction plate
US7622721B2 (en) Focused anode layer ion source with converging and charge compensated beam (falcon)
US6242749B1 (en) Ion-beam source with uniform distribution of ion-current density on the surface of an object being treated
US20130088150A1 (en) Ion source apparatus and methods of using the same
RU2716133C1 (ru) Источник быстрых нейтральных молекул
RU2726187C1 (ru) Устройство для обработки изделий быстрыми атомами
Phukan et al. Mechanical variations of diffused plasma parameters in a double plasma device
RU2702623C1 (ru) Источник быстрых нейтральных молекул
RU2752877C1 (ru) Устройство для обработки диэлектрических изделий быстрыми атомами
JPH0488165A (ja) スパッタ型イオン源
RU2821305C2 (ru) Узел подачи рабочего тела источника плазмы
RU2035790C1 (ru) Полый катод плазменного эмиттера ионов
RU2817564C1 (ru) Источник быстрых атомов для травления диэлектриков
RU2817406C1 (ru) Источник быстрых атомов для равномерного травления плоских диэлектрических подложек
KR102641222B1 (ko) 마이크로파 플라즈마 소스
RU2030015C1 (ru) Полый катод плазменного эмиттера ионов
Klimov et al. Forevacuum plasma source of ribbon electron beam with a multi-aperture extraction system
JPS594045Y2 (ja) 薄膜生成用イオン化装置

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20120502