RU2236331C2 - Composition soldering method - Google Patents

Composition soldering method Download PDF

Info

Publication number
RU2236331C2
RU2236331C2 RU2002118541/02A RU2002118541A RU2236331C2 RU 2236331 C2 RU2236331 C2 RU 2236331C2 RU 2002118541/02 A RU2002118541/02 A RU 2002118541/02A RU 2002118541 A RU2002118541 A RU 2002118541A RU 2236331 C2 RU2236331 C2 RU 2236331C2
Authority
RU
Russia
Prior art keywords
soldering
magnetic
matrix
solder
solid
Prior art date
Application number
RU2002118541/02A
Other languages
Russian (ru)
Other versions
RU2002118541A (en
Inventor
А.А. Ахкубеков (RU)
А.А. Ахкубеков
В.З. Канчукоев (RU)
В.З. Канчукоев
М.Х. Понежев (RU)
М.Х. Понежев
В.А. Созаев (RU)
В.А. Созаев
М.Л. Унежев (RU)
М.Л. Унежев
Original Assignee
Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кабардино-Балкарский государственный университет им. Х.М. Бербекова filed Critical Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Priority to RU2002118541/02A priority Critical patent/RU2236331C2/en
Publication of RU2002118541A publication Critical patent/RU2002118541A/en
Application granted granted Critical
Publication of RU2236331C2 publication Critical patent/RU2236331C2/en

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

FIELD: electronics, namely soldering different type materials, mainly metals with silicon, with quartz glass, ceramics.
SUBSTANCE: method comprises steps of using for soldering composition type solder containing solid-phase porous ferromagnetic matrix and easy-to-melt diamagnetic component; placing assembly prepared for soldering in magnetic field according to condition of increased capillary force acting upon easy-to-melt component due to creation of magnetic effort pulling it out of ferromagnetic matrix; performing soldering at temperature lower than that of magnetic conversion of solid-phase matrix.
EFFECT: possibility for receiving strength joints with predetermined thickness, physical and mechanical properties.
2 ex

Description

Изобретение относится к области пайки разнородных изделий, преимущественно металлов с кремнием, кварцевым стеклом и керамикой, с помощью композиционных припоев и может быть использован в электронной технике.The invention relates to the field of soldering dissimilar products, mainly metals with silicon, quartz glass and ceramics, using composite solders and can be used in electronic technology.

Известны способы композиционной пайки неметаллических материалов с металлами [1], при которых между поверхностью неметаллического материала и припоем создается капиллярно-пористая порошковая среда из тугоплавкого металла (например, титана). В процессе пропитки капиллярно-пористой среды припой обогащается атомами титана, что обеспечивает лучшее смачивание поверхности паяемой детали.Known methods for composite brazing of non-metallic materials with metals [1], in which a capillary-porous powder medium of refractory metal (for example, titanium) is created between the surface of the non-metallic material and solder. In the process of impregnation of a capillary-porous medium, the solder is enriched with titanium atoms, which provides better wetting of the surface of the brazed part.

Известен способ композиционной пайки, согласно которому процесс ведут с использованием пористой металлической среды, смачиваемой припоем до или в процессе пайки [2]. При повышении температуры легкоплавкая компонента композиции плавится и по капиллярным каналам пористого металла за счет капиллярного давления подводится к поверхности паяемых деталей. Варьируя пористость металла, можно формировать заранее заданные физико-химические свойства контакта и, в частности, коэффициент теплового расширения. Использование пористых металлических прослоек или композиции на их основе позволяет получать соединения с заданной толщиной.A known method of composite soldering, according to which the process is carried out using a porous metal medium wetted with solder before or during the soldering process [2]. With increasing temperature, the fusible component of the composition melts and is supplied to the surface of the brazed parts through the capillary channels of the porous metal. By varying the porosity of the metal, it is possible to form predetermined physicochemical properties of the contact and, in particular, the coefficient of thermal expansion. The use of porous metal interlayers or compositions based on them allows to obtain compounds with a given thickness.

Из известных способов композиционной пайки наиболее близким является способ соединения разнородных материалов, основанный на пайке припоем с наполнителем из пористой металлической среды, отличающийся тем, что с целью повышения прочности паяных соединений металлическая среда выполнена с размерами пор 0,1-10 мкм [3].Of the known methods of composite soldering, the closest is a method of joining dissimilar materials, based on soldering solder with a filler of a porous metal medium, characterized in that in order to increase the strength of soldered joints, the metal medium is made with pore sizes of 0.1-10 μm [3].

Недостатком этого способа является зависимость капиллярного давления (а следовательно, необходимой для качественной пайки скорости пропитки) от размеров капилляров данной пористой среды. Это ограничивает возможности формирования заданных физико-химических свойств контакта металл-полупроводник (или диэлектрик), так как увеличение капилляров пористого металла уменьшает капиллярное давление, следовательно, уменьшает скорость переноса к паяемой поверхности адгезионно-активного металла (из которого обычно изготавливают пористые прокладки или композиции на их основе) внутри пор, а уменьшение размеров пор с целью увеличения капиллярного давления приводит часто к закупорке капилляров интерметаллидами или же к захлопыванию пор вследствие жидкофазного спекания. Кроме этого, подобным способом трудно проводить пайку шероховатых поверхностей, имеющих микровыступы и углубления. Поверхность с заданным рельефом часто формируется на керамиках с целью усиления адгезионной прочности паяного соединения.The disadvantage of this method is the dependence of capillary pressure (and therefore, necessary for high-quality soldering of the impregnation rate) on the size of the capillaries of this porous medium. This limits the possibility of forming the desired physicochemical properties of the metal-semiconductor (or dielectric) contact, since an increase in the capillaries of a porous metal reduces capillary pressure, therefore, it reduces the rate of transfer of adhesive-active metal to the soldered surface (of which porous gaskets or compositions are usually made their basis) inside the pores, and a decrease in pore size in order to increase capillary pressure often leads to blockage of capillaries by intermetallic compounds or to collapse then, as a result of liquid phase sintering. In addition, in a similar way it is difficult to solder rough surfaces having microprotrusions and indentations. A surface with a given relief is often formed on ceramics in order to enhance the adhesion strength of the solder joint.

Технический результат изобретения состоит в получении при пайке металлов с полупроводниками и керамиками паяных соединений с заданными толщиной и физико-химическими свойствами.The technical result of the invention is to obtain, when soldering metals with semiconductors and ceramics, soldered joints with a given thickness and physico-chemical properties.

Технический результат достигается тем, что при пайке металлов с полупроводниками, кварцевым стеклом и керамиками используется композиционный припой на основе пористых ферромагнитных металлов, пропитанных легкоплавкой компонентой диамагнитных металлов (например, пористый никель, пропитанный индием, свинцом или припоем ПОС-1), а пайку производят при температуре, ниже магнитного превращения твердофазной матрицы, при этом готовое к пайке соединение помещают в магнитное поле так, чтобы за счет магнитных сил, выталкивающих диамагнитную компоненту из ферромагнитной матрицы, увеличить капиллярные силы, действующие на легкоплавкую компоненту композиционного припоя.The technical result is achieved by the fact that when soldering metals with semiconductors, quartz glass and ceramics, a composite solder is used based on porous ferromagnetic metals impregnated with a low-melting component of diamagnetic metals (for example, porous nickel impregnated with indium, lead or POS-1 solder), and the soldering is performed at a temperature below the magnetic transformation of the solid-phase matrix, while the compound ready for soldering is placed in a magnetic field so that due to magnetic forces pushing the diamagnetic com onentu ferromagnetic matrix, increase the capillary forces acting on the low-melting component of the composite solder.

Преимущество указанного способа пайки перед известными состоит в обеспечении нужной толщины паяного шва, заданных физико-химических свойств соединения. Последнее обеспечивается тем, что скорость процесса пайки может регулироваться величиной магнитного поля. Увеличение капиллярного давления за счет магнитных сил позволяет использовать композиционные припои с более широким по размерам капилляров спектром пористых металлов, что обеспечивает формирование заранее заданных физико-химических свойств контакта металл-полупроводник, кварцевое стекло или керамика.The advantage of this method of soldering over the known is to provide the desired thickness of the soldered seam, the specified physico-chemical properties of the compound. The latter is ensured by the fact that the speed of the soldering process can be controlled by the magnitude of the magnetic field. An increase in capillary pressure due to magnetic forces allows the use of composite solders with a wider range of porous metal capillaries, which ensures the formation of predetermined physicochemical properties of the metal-semiconductor, silica glass or ceramic contact.

Способ осуществляется следующим образом: на припаиваемый металл накладывается полоска композиционного припоя (пористый ферромагнитный металл, пропитанный легкоплавким диамагнитным припоем) и затем керамика, кварцевое стекло или полупроводник. Все соединение, готовое к пайке, помещается в специальной (из немагнитного материала) кассете в магнитное поле. Кассета с паяемыми образцами располагается таким образом, чтобы выталкивающая магнитная сила, действующая на диамагнитную легкоплавкую компоненту композиции, была направлена к поверхности детали и усиливала капиллярные силы, действующую на легкоплавкую компоненту композиционного припоя. Затем готовое к пайке соединение нагревают до температуры пайки легкоплавкой компоненты композиции, но не выше температуры Кюри ферромагнитного пористого металла.The method is as follows: a strip of composite solder (a porous ferromagnetic metal impregnated with fusible diamagnetic solder) is applied to the soldered metal and then ceramic, quartz glass or a semiconductor. All the connection, ready for soldering, is placed in a special (from non-magnetic material) cassette in a magnetic field. The soldered cassette is positioned so that the buoyant magnetic force acting on the diamagnetic low-melting component of the composition is directed to the surface of the part and enhances the capillary forces acting on the low-melting component of the composite solder. Then, the compound ready for soldering is heated to the soldering temperature of the low-melting component of the composition, but not higher than the Curie temperature of the ferromagnetic porous metal.

Пример 1Example 1

На шайбу из стали внешним диаметром 35 мм внутренним диаметром 14 мм помещали шайбу композиционного припоя толщиной 100 мкм, с внешним диаметром 25 мм и внутренним диаметром 14 мм. Композиционный припой представляет собой пористый никель пористостью 30% и с размером пор 1-2 мкм, пропитанный индием. Затем сверху шайбы композиционного припоя помещался кварцевый диск с внешним диаметром 25 мм. Готовое к пайке соединение зажималось в медную кассету, помещалось в магнитное поле величиной 2000 Э. Нагревание образцов производилось с помощью плоского нагревателя с бифиллярной обмоткой в вакууме 10-2 Па до температуры 170°-180°С и выдерживалось в течение 3-5 минут, в результате достигалось прочное паяное соединение.A composite solder washer 100 μm thick, with an external diameter of 25 mm and an internal diameter of 14 mm was placed on a steel washer with an external diameter of 35 mm and an internal diameter of 14 mm. Composite solder is porous nickel with a porosity of 30% and a pore size of 1-2 microns, impregnated with indium. Then, a quartz disk with an external diameter of 25 mm was placed on top of the composite solder washer. The compound ready for soldering was clamped into a copper cassette, placed in a magnetic field of 2000 Oe. The samples were heated using a flat heater with a bifillary winding in a vacuum of 10 -2 Pa to a temperature of 170 ° -180 ° C and held for 3-5 minutes, As a result, a strong solder joint was achieved.

Пример 2.Example 2

На подложку из меди 35×35 мм помещали шайбу композиционного припоя толщиной 100 мкм с внешним диаметром 25 мм и внутренним диаметром 14 мм. Композиционный припой представляет собой пористый никель пористостью 30% и с размером пор 1-2 мкм, пропитанный индием. Затем сверху шайбы композиционного припоя помещался кварцевый диск с внешним диаметром 25 мм, толщиной 1 мм. Готовое к пайке соединение зажималось в медную кассету, помещалось в магнитное поле величиной 2000 Э. Нагревание образцов производилось с помощью плоского нагревателя в вакууме 10-2 Па до температуры 125-130°С. Данный режим позволял получать прочное паяное соединение.A composite solder washer 100 μm thick with an outer diameter of 25 mm and an inner diameter of 14 mm was placed on a 35 × 35 mm copper substrate. Composite solder is porous nickel with a porosity of 30% and a pore size of 1-2 microns, impregnated with indium. Then, a quartz disk with an external diameter of 25 mm and a thickness of 1 mm was placed on top of the composite solder washer. The compound ready for soldering was clamped into a copper cassette, placed in a magnetic field of 2000 Oe. The samples were heated using a flat heater in a vacuum of 10 -2 Pa to a temperature of 125-130 ° C. This mode made it possible to obtain a durable solder joint.

ЛИТЕРАТУРАLITERATURE

1. А.С. 219770 (СССР) Найдич Ю.В. Способ спаивания деталей из оптического кварцевого стекла с деталями из меди. - Опубл. в Б.И. №19, 1968.1. A.S. 219770 (USSR) Naidich Yu.V. A method for soldering optical quartz glass parts with copper parts. - Publ. in B.I. No. 19, 1968.

2. Лоцманов С.Н. и др. Справочник по пайке. М.: Машиностроение, 1975, С.59-60.2. Lotsmanov S.N. and others. Soldering reference. M .: Mechanical Engineering, 1975, S. 59-60.

3. А.С. 971602 (СССР) Чижик С.П., Скляров И.К., Чепкунов В.В., Касьянов В.В., Терехов С.Б., Григорьева Л.К., Лаповок В.Н., Боравская Г.Б. Способ соединения разнородных материалов. Опубл. в Б.И. №41, 1982.3. A.S. 971602 (USSR) Chizhik S.P., Sklyarov I.K., Chepkunov V.V., Kasyanov V.V., Terekhov S.B., Grigoryeva L.K., Lapovok V.N., Boravskaya G.B. . The method of joining dissimilar materials. Publ. in B.I. No. 41, 1982.

Claims (1)

Способ композиционной пайки металлов с полупроводниками, или кварцевым стеклом, или керамиками, при котором используют композиционный припой, содержащий твердофазную пористую ферромагнитную матрицу и легкоплавкую диамагнитную компоненту, отличающийся тем, что готовое к пайке соединение размещают в магнитном поле из условия увеличения капиллярной силы, действующей на легкоплавкую компоненту, за счет получения магнитной силы, выталкивающей ее из ферромагнитной матрицы, при этом пайку производят при температуре ниже магнитного превращения твердофазной матрицы.Method of composite soldering of metals with semiconductors, or quartz glass, or ceramics, in which a composite solder is used containing a solid-phase porous ferromagnetic matrix and a low-melting diamagnetic component, characterized in that the compound ready for soldering is placed in a magnetic field under conditions of an increase in the capillary force acting on low-melting component, due to the receipt of a magnetic force pushing it out of the ferromagnetic matrix, while soldering is carried out at a temperature below the magnetic eniya solid-phase matrix.
RU2002118541/02A 2002-07-09 2002-07-09 Composition soldering method RU2236331C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002118541/02A RU2236331C2 (en) 2002-07-09 2002-07-09 Composition soldering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002118541/02A RU2236331C2 (en) 2002-07-09 2002-07-09 Composition soldering method

Publications (2)

Publication Number Publication Date
RU2002118541A RU2002118541A (en) 2004-02-20
RU2236331C2 true RU2236331C2 (en) 2004-09-20

Family

ID=33432875

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002118541/02A RU2236331C2 (en) 2002-07-09 2002-07-09 Composition soldering method

Country Status (1)

Country Link
RU (1) RU2236331C2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283077B1 (en) 1999-07-31 2012-10-09 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US8287673B2 (en) 2004-11-30 2012-10-16 The Regents Of The University Of California Joining of dissimilar materials
US8343686B2 (en) 2006-07-28 2013-01-01 The Regents Of The University Of California Joined concentric tubes
US8445159B2 (en) 2004-11-30 2013-05-21 The Regents Of The University Of California Sealed joint structure for electrochemical device
US8486580B2 (en) 2008-04-18 2013-07-16 The Regents Of The University Of California Integrated seal for high-temperature electrochemical device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283077B1 (en) 1999-07-31 2012-10-09 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US8287673B2 (en) 2004-11-30 2012-10-16 The Regents Of The University Of California Joining of dissimilar materials
US8445159B2 (en) 2004-11-30 2013-05-21 The Regents Of The University Of California Sealed joint structure for electrochemical device
US8343686B2 (en) 2006-07-28 2013-01-01 The Regents Of The University Of California Joined concentric tubes
US8486580B2 (en) 2008-04-18 2013-07-16 The Regents Of The University Of California Integrated seal for high-temperature electrochemical device

Also Published As

Publication number Publication date
RU2002118541A (en) 2004-02-20

Similar Documents

Publication Publication Date Title
US5670063A (en) Method for making an interface connection through an insulating part
US5050034A (en) Pressure sensor and method of manufacturing same
US5975407A (en) Method using a thick joint for joining parts in SiC-based materials by refractory brazing and refractory thick joint thus obtained
US20080000949A1 (en) Method of Joining Using Reactive Multilayer Foils With Enhanced Control of Molten Joining Materials
JPH04321572A (en) Active ternary braze based on zirconium/nickel alloy and apparatus for manufacturing belt made of said active alloy and having uniform thickness and two smoothest possible surfaces
US4409079A (en) Method of metallizing sintered ceramics
US4471026A (en) Ternary alloys in brazing ceramics
JPS606910B2 (en) metal-ceramics joint
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
KR102202323B1 (en) Method for producing a metal-ceramic soldered connection
RU2236331C2 (en) Composition soldering method
US4871107A (en) Method for bonding ceramics to each other or a ceramic to a metal
EP1648652A2 (en) Method of joining using reactive multilayer foils with enhanced control of molten joining materials
JP3215501B2 (en) Porous body connecting member, filter device using the same, and method of manufacturing porous body connecting member
JPS61132580A (en) Metallization of nitride ceramic body
RU2342231C2 (en) Method for connection of two solid-state samples
JPS59138812A (en) Ceramic glow plug
JPS6340639B2 (en)
JP2001314979A (en) Method for producing ceramics and copper clad material
JPS58190880A (en) Method of bonding aluminum material and ceramic material
JPS61210186A (en) Method for forming porous metallic layer on surface of metallic body
SU703871A2 (en) Method of joining different materials
JPS60191068A (en) Metal-silicon nitride ceramic bonded body
JPH07172948A (en) Adhesion of metallic material to ceramic material
JPS61153489A (en) Forming of wall surface of heat transfer tube

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050710