RU2230381C2 - Способ обращения с жидкими радиоактивными отходами - Google Patents

Способ обращения с жидкими радиоактивными отходами Download PDF

Info

Publication number
RU2230381C2
RU2230381C2 RU2002118423/06A RU2002118423A RU2230381C2 RU 2230381 C2 RU2230381 C2 RU 2230381C2 RU 2002118423/06 A RU2002118423/06 A RU 2002118423/06A RU 2002118423 A RU2002118423 A RU 2002118423A RU 2230381 C2 RU2230381 C2 RU 2230381C2
Authority
RU
Russia
Prior art keywords
solutions
lrw
special
alkaline
averaging
Prior art date
Application number
RU2002118423/06A
Other languages
English (en)
Other versions
RU2002118423A (ru
Inventor
В.И. Заика (RU)
В.И. Заика
Ю.К. Михайлов (RU)
Ю.К. Михайлов
В.М. Тишков (RU)
В.М. Тишков
А.А. Резник (RU)
А.А. Резник
В.И. Черемискин (RU)
В.И. Черемискин
А.В. Черникин (RU)
А.В. Черникин
Original Assignee
Государственное предприятие Ленинградская атомная электростанция им. В.И. Ленина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное предприятие Ленинградская атомная электростанция им. В.И. Ленина filed Critical Государственное предприятие Ленинградская атомная электростанция им. В.И. Ленина
Priority to RU2002118423/06A priority Critical patent/RU2230381C2/ru
Publication of RU2002118423A publication Critical patent/RU2002118423A/ru
Application granted granted Critical
Publication of RU2230381C2 publication Critical patent/RU2230381C2/ru

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Изобретение относится к области переработки жидких радиоактивных отходов. Сущность изобретения: способ обращения с жидкими радиоактивными отходами, включающий сбор отработанных вод спецпрачечных, щелочных растворов от регенерации ОН--анионитового фильтра, кислотных растворов от регенерации Н+-катионитовых фильтров, усреднение и концентрирование отходов в выпарных аппаратах. При этом до усреднения растворов периодически через выпарной аппарат последовательно пропускают смеси отработанных вод спецпрачечной со щелочными и кислотными растворами. Преимущества изобретения заключаются в повышении эффективности обращения с жидкими радиоактивными отходами и уменьшении количества вторичных отходов, образующихся в процессе химической очистки выпарных аппаратов. 2 з.п. ф-лы, 3 табл., 1 ил.

Description

Изобретение относится к области переработки жидких радиоактивных отходов (ЖРО) и может быть использовано на атомных станциях или на производствах, связанных с переработкой радиоактивных материалов.
В процессе эксплуатации ядерных энергетических установок образуется значительное количество ЖРО, которые образуются из-за протечек реакторного оборудования, проведения дезактивации помещений и оборудования, регенерации ионообменных смол, обработки спецодежды и т.д. Объем образующихся ЖРО на современных атомных станциях составляет до 500000 м3/год. Для уменьшения объема ЖРО их подвергают переработке. Известны способы обращения с ЖРО, включающие сбор, усреднение отдельных потоков ЖРО и последующее концентрирование с использованием осадительных методов очистки, ионного обмена, электродиализа, обратного осмоса [1, 2]. Недостатком данных методов является зависимость методов концентрирования от солевого и радионуклидного состава отходов, удельной активности ЖРО, колебаний примесного состава.
Наиболее близким аналогом является способ обращения с ЖРО, включающий сбор отработанных вод спецпрачечной, щелочных растворов, от регенерации ОН--анионитовых фильтров и кислотных растворов от регенерации H+-катионитовых фильтров, усреднение отдельных потоков ЖРО и концентрирование отходов в выпарных аппаратах [3].
Концентрирование ЖРО путем их выпаривания требует периодического проведения химических очисток выпарных аппаратов. Это обусловлено тем, что в процессе упаривания усредненных ЖРО на поверхности выпарных аппаратов образуется значительное количество радиоактивных отложений, ухудшающих теплопередачу, увеличивающих гидравлическое сопротивление и вызывающих развитие подшламовой коррозии. На основании рентгеноструктурного анализа установлено, что отложения, образующиеся на поверхности выпарных аппаратов АЭС, можно разделить на 4 основные группы:
1. Кальцевые и магниевые накипи, в составе которых преобладают до (90%) СаСО3, CaSO4, Ca(PO4)2, Mg(OH)2.
2. Оксалатные отложения: оксалаты кальция СаС2O4, оксалаты железа FeC2O4. Наличие на поверхности выпарных аппаратов оксалатов связано с использованием на АЭС для дезактивации растворов щавелевой кислоты.
3. Железокислые - FeOOH, Fe2O3, Fе3O4 и железофосфатные - Fе3(РO4)2, NaFePO4 отложения.
4. Силикатные накипи. Наряду с двуокисью кремния в состав силикатных накипей могут входить ферросиликаты и алюмосиликаты.
Недостатком ближайшего аналога является необходимость использования при проведении химических очисток специально приготовленных растворов, что ведет к образованию дополнительного количества ЖРО.
Задачей, решаемой заявленным изобретением, является повышение эффективности обращения с ЖРО, уменьшение количества вторичных жидких радиоактивных отходов, образующихся в процессе химической очистки выпарных аппаратов.
Сущность изобретения состоит в том, что в способе обращения с жидкими радиоактивными отходами, включающем операции сбора, усреднения, концентрирования отходов в выпарных аппаратах, предложено периодически часть щелочных и кислотных отходов, до их смешения, использовать в качестве щелочных и кислотных растворов для химической очистки, последовательно пропуская их через выпарной аппарат, предназначенный для концентрирования усредненных отходов, причем в качестве щелочного раствора используют смесь регенерата ОН- - анионитового фильтра с отработанной водой спецпрачечной при объемном соотношении между ними 1:(0,8-1), а в качестве кислотного раствора используют смесь регенерата Н+-катионитовых фильтров с отработанной водой спецпрачечной при их объемном соотношении 1:(0,1-0,8).
В предложенном способе использованы следующие отличительные признаки:
Признак 1 - изменена последовательность обращения с ЖРО, заключающаяся в том, что часть отходов, минуя стадию усреднения, периодически направляют в выпарной аппарат, используя их в качестве растворов для проведения химической промывки. Признак 2 - в качестве растворов для химической очистки используются ЖРО: для щелочной обработки используют смесь регенерата ОН--анионитового фильтра с отработанной водой спецпрачечной, а для кислотной обработки - смесь регенерата Н+-катионитового фильтра с отработанной водой спецпрачечной. Признак 3 - щелочной и кислотный растворы, используемые для кислотной очистки, содержат регенераты ионообменных фильтров и отработанные воды спецпрачечной в определенных соотношениях, позволяющих наиболее эффективно удалять отложения с поверхности выпарных аппаратов.
В порядке обоснования соответствия заявленной совокупности признаков изобретения критериям новизна, изобретательский уровень приводим следующее:
По первому признаку: в способе ближайшего аналога все потоки ЖРО, до проведения процесса выпарки, усредняют путем их смешения, а для удаления отложений из выпарных аппаратов периодически проводят химическую очистку специально приготовленными растворами, что приводит к образованию дополнительного количества ЖРО. В предлагаемом способе химическая очистка проводится ЖРО, образующимися в процессе эксплуатации атомной станции. Для этого изменена последовательность обращения с ЖРО (см. чертеж): часть отходов, до операции усреднения, периодически направляют в выпарные аппараты для проведения химической очистки. Таким образом, в отличие от способа - ближайшего аналога - при реализации предлагаемого способа не образуется дополнительного количества ЖРО. По второму признаку: в предлагаемом способе для химической очистки выпарных аппаратов, выполненных из нержавеющей хромоникелевой стали, впервые используются смеси отдельных потоков ЖРО: для щелочной обработки применяется смесь регенерата ОН--анионитового фильтра с отработанной водой спецпрачечной, а для кислотной обработки - смесь регенерата Н+-катионитового фильтра с отработанной водой спецпрачечной. На современных АЭС для регенерации ОН--анионитового фильтра используют 4-5% раствор NaOH, регенерации Н+-катионитового фильтра 4-5% раствор НNО3. После проведения регенерации в щелочном регенерате наряду с NaOH присутствуют карбонат-, хлорид-, фторид-, сульфат-, нитрат- ионы. В кислотном регенерате - HNO3 и катионы металлов. Отработанные воды спецпрачечной содержат поверхностно-активные вещества (ПАВ), комплексообразователи: трилон Б, гексаметафосфат натрия и т.д. Каждый из компонентов щелочного и кислотного растворов выполняют определенную функцию в процессе удаления отложений. Присутствие ПАВ способствует отделению частиц отложений от поверхности металла, образовывая эмульсии или суспензии, что не дает возможности отделенным частицам повторно осаждаться на обрабатываемой поверхности. Наличие NaOH в щелочном промывочном растворе способствует растворению и эмульгированию масляных включений, которые всегда присутствуют в отложениях выпарных аппаратов и затрудняют растворение основной массы отложений. Кроме этого, обработка щелочным раствором ведет к частичному растворению отложений.
Так, для соединений кремния, которые существуют в отложениях в виде nSiO2· mH2O, FeO· SiO2, Fе2О3· SiO2, Аl2О3· SiO2 при действии щелочи происходит образование растворимых силикатов:
SiO2+2NaOH=Na2SiO32O;
FeOSiO2+2NaOH=Na2SiO3+Fe(OH)2.
Соединения алюминия взаимодействуют со щелочью с образованием растворимого гидроалюмината, например:
Аl(ОН)3+NaOH=NaAl(OH)4.
Для соединений цинка воздействие щелочи приводит к образованию цинкатов - Na2ZnO2.
Комплексообразователи, вводимые в раствор с отработанными водами спецпрачечной, взаимодействуют с нерастворимыми оксалатами кальция, магния, железа, что приводит к их частичному растворению.
Наличие в кислотном промывочном растворе азотной кислоты позволяет эффективно растворять железоокисные и карбонатные отложения. Необходимо отметить, что при совместном присутствии в щелочном растворе регенерата ОН- - анионообменных фильтров и отработанных вод спецпрачечной, а в кислотном растворе регенерата Н-катионитовых фильтров и отработанных вод спецпрачечной процесс удаления (растворения) отложений резко интенсифицируется.
По третьему признаку: повышение эффективности удаления отложений с поверхности выпарных аппаратов при совместном присутствии в щелочном растворе регенерата ОН--анионообменных фильтров и отработанных вод спецпрачечной, а в кислотном растворе регенерата Н-катионитовых фильтров и отработанных вод спецпрачечной наблюдается только при их определенном соотношении. Предлагаемые значения соотношений компонентов промывочных растворов получены экспериментальным путем.
Способ поясняется технологической схемой последовательности операций по обращению с ЖРО (см. чертеж) и примерами его осуществления.
На чертеже поз.1-4 - отдельные потоки ЖРО (1 - трапные воды, отработанные дезактивирующие растворы; 2 - регенерат ОН-фильтров; 3 - регенерат Н-фильтров; 4 - отработанные воды спецпрачечной); 5 - усреднение и корректировка рН отдельных потоков ЖРО; 6 - выпарка усредненных ЖРО; 7 - кубовый остаток, образующийся после выпарки ЖРО; 8 - конденсат вторичного пара, образующийся после выпарки ЖРО. По предлагаемому способу потоки ЖРО (1-4) после операции усреднения и корректировки рН (5) поступают на выпарку (6). Образующийся после выпарки кубовый остаток (7) направляют на битумирование, а конденсат вторичного пара используют для технологических нужд станции. Периодически часть потоков ЖРО (1-3) направляют, до их усреднения, на выпарные аппараты для проведения химической очистки.
Пример 1 иллюстрирует влияние соотношения объемов регенерата ОН-фильтров и отработанных вод спецпрачечной в щелочном промывочном растворе на эффективность удаления отложений с поверхности выпарных аппаратов. Пример 2 поясняет влияние объемов регенерата Н-катионитовых фильтров и отработанных вод спецпрачечной в кислотном растворе на эффективность удаления отложений с поверхности выпарных аппаратов. Пример 3 характеризует заявленное изобретение, и для сравнения приведены данные по эффективности удаления отложений традиционными методами химической очистки.
Для определения оптимальных соотношений компонентов промывочных растворов и сравнительных испытаний использовали вырезки трубок греющих камер выпарных аппаратов Ленинградской атомной станции; в качестве компонентов промывочных растворов - реальные ЖРО Ленинградской атомной станции: регенераты ионообменных фильтров и отработанные воды спецпрачечной. Эффективность удаления отложений оценивали по величине Y:
Y=Ан/Ак,
где Ан, Ак - количество отложений до и после химической очистки.
Пример 1. Для определения оптимальных соотношений компонентов в щелочном промывочном растворе использовали следующий режим обработки: образцы трубок греющей камеры, площадью 20 см2 помещали в емкость из нержавеющей стали, заливали 400 мл раствора, содержащим различные объемы регенерата ОН-анионитового фильтра и отработанных вод спецпрачечной и выдерживали при температуре 80° С в течение 20 часов. Затем щелочной раствор дренировали и образцы заливали кислотным раствором, содержащим регенерат Н-катионитового фильтра и отработанные воды спецпрачечной в соотношении 1:0,5. Отмывку в кислотном растворе проводили при температуре 90-95° С в течение 10 часов. Результаты испытаний по примеру 1 приведены в табл.1.
Из данных, приведенных в табл. 1, следует, что для щелочной обработки наиболее эффективно использование растворов, одновременно содержащих регенерат ОН-фильтров и отработанные воды спецпрачечной. Оптимальное соотношение объемов регенерата ОН-фильтров и отработанных вод спецпрачечной составляет 1:(0,2-1).
Пример 2. Образцы трубок греющих камер, площадью 20 см2, обрабатывали щелочным и кислотным растворами, объемом 400 мл. Щелочная обработка проводилась раствором, содержащим регенерат ОН-фильтра и отработанные воды спецпрачечной в соотношении 1:0,5, при температуре 80° С в течение 20 часов. Обработка в кислотном растворе осуществляли при температуре 90-95° С в течение 10 часов при различных соотношениях регенерата Н-катионитового фильтра и отработанных вод спецпрачечной. Результаты исследований приведены в табл.2.
Приведенные в табл.2 данные показывают, что добавка к регенерату Н-фильтров отработанных вод спецпрачечной интенсифицирует процесс удаления отложений. Оптимальное соотношение объемов регенерата Н-катионитовых фильтров и отработанных вод спецпрачечной составляет 1:(0,1-0,8).
Пример 3. Результаты сравнительных испытаний заявленного способа, предусматривающего проведение химической отмывки с использованием растворов на основе ЖРО и традиционных способов химической отмывки, приведены в табл.3. Из приведенных в табл.3 данных видно, что использование ЖРО для проведения химической очистки позволяет эффективно удалять отложения с поверхностей выпарных аппаратов, причем по предлагаемому способу не образуется дополнительного количества ЖРО.
Использование ЖРО (отработанных вод спецпрачечной и регенератов) для проведения химических очисток выпарных аппаратов позволяет избежать образования дополнительного количества жидких радиоактивных отходов.
Источники информации
1. Кузнецов Ю.В., Щебетковский В.И., Трусов А.Г. Основы очистки воды от радиоактивных загрязнений. / Под ред. чл.-кор. АН СССР В.М.Вдовенко. М., Атомиздат, 1974, 360с.
2. Хоникевич А.А. Дезактивация сбросных вод. М., Атомиздат, 1966, 232с.
3. Химическая технология теплоносителей ядерных энергетических установок: Учеб. пособие для вузов. В.М.Седов, А.Ф.Нечаев, В.А.Доильницын, П.Г.Крутиков. - М.: Энергоатомиздат, 1985, 312 с., с.

Claims (3)

1. Способ обращения с жидкими радиоактивными отходами, включающий сбор отработанных вод спецпрачечных, щелочных растворов от регенерации ОН--анионитового фильтра, кислотных растворов от регенерации H+-катионитовых фильтров, усреднение и концентрирование отходов в выпарных аппаратах, отличающийся тем, что до усреднения растворов периодически через выпарной аппарат последовательно пропускают смеси отработанных вод спецпрачечной со щелочными и кислотными растворами.
2. Способ по п.1, отличающийся тем, что щелочной раствор пропускают через выпарной аппарат совместно с отработанной водой спецпрачечной при объемном соотношении 1:(0,8-1).
3. Способ по п.2, отличающийся тем, что кислотный раствор пропускают через выпарной аппарат совместно с отработанной водой спецпрачечной при объемном соотношении 1:(0,1-0,8).
RU2002118423/06A 2002-07-08 2002-07-08 Способ обращения с жидкими радиоактивными отходами RU2230381C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002118423/06A RU2230381C2 (ru) 2002-07-08 2002-07-08 Способ обращения с жидкими радиоактивными отходами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002118423/06A RU2230381C2 (ru) 2002-07-08 2002-07-08 Способ обращения с жидкими радиоактивными отходами

Publications (2)

Publication Number Publication Date
RU2002118423A RU2002118423A (ru) 2004-02-10
RU2230381C2 true RU2230381C2 (ru) 2004-06-10

Family

ID=32845822

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002118423/06A RU2230381C2 (ru) 2002-07-08 2002-07-08 Способ обращения с жидкими радиоактивными отходами

Country Status (1)

Country Link
RU (1) RU2230381C2 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СЕДОВ В.М. и др. Химическая технология теплоносителей ядерных энергетических установок. Учебное пособие для вузов. - М.: Энергоатомиздат, 1985, с.286, 287 и 293. *

Also Published As

Publication number Publication date
RU2002118423A (ru) 2004-02-10

Similar Documents

Publication Publication Date Title
US4713119A (en) Process for removing alkali metal aluminum silicate scale deposits from surfaces of chemical process equipment
CN103214115A (zh) 一种强酸阳离子交换树脂贫再生的水处理方法
US3223620A (en) Corrosion inhibition
RU2230381C2 (ru) Способ обращения с жидкими радиоактивными отходами
JP2004045371A (ja) 放射性核種を含有する液体処理方法と装置
RU2537313C2 (ru) Способ сорбционной очистки проточных промышленных сточных и питьевых вод на концентрате глауконита от катионов свинца (ii)
Myers et al. Removing barium and radium through calcium cation exchange
Epimakhov et al. Reverse-osmosis filtration based water treatment and special water purification for nuclear power systems
RU2598432C1 (ru) Способ получения опресненной и обессоленной воды для ядерных энергетических установок из засоленных вод
RU2183871C1 (ru) Способ дезактивации отработанного катионита установок обработки радиоактивных сред атомной электростанции
JP6137972B2 (ja) 原子炉構造物の腐食抑制方法及び腐食抑制装置
RU2078387C1 (ru) Способ дезактивации поверхностно-загрязненных металлов
SU1746203A1 (ru) Способ очистки теплообменной поверхности от карбонатных отложений
JPS60225689A (ja) ほう酸排液の処理方法
TWI805426B (zh) 廢液硼資源回收系統
RU2036160C1 (ru) Способ обессоливания воды
RU2169403C1 (ru) Способ переработки аммиаксодержащих жидких радиоактивных отходов
RU2303226C1 (ru) Способ отмывки парогенератора
RU2305335C1 (ru) Способ очистки сточных вод от радиоактивных компонентов и масла
RU2391727C1 (ru) Способ обезвреживания маломинерализованных низкоактивных отходов в полевых условиях
SU812726A1 (ru) Способ глубокого химобессоливани ВОды
SU1666450A1 (ru) Способ обработки воды
RU2058817C1 (ru) Способ регенерации катионита
Ntuli Feasibility study of in-house treatment of wastewater from a nitrous oxide production plant
SU916417A1 (ru) Способ бессточного умягчения воды1

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160709