RU2229714C2 - Способ неинвазивной диагностики хеликобактерной инфекции - Google Patents

Способ неинвазивной диагностики хеликобактерной инфекции Download PDF

Info

Publication number
RU2229714C2
RU2229714C2 RU2001133784/15A RU2001133784A RU2229714C2 RU 2229714 C2 RU2229714 C2 RU 2229714C2 RU 2001133784/15 A RU2001133784/15 A RU 2001133784/15A RU 2001133784 A RU2001133784 A RU 2001133784A RU 2229714 C2 RU2229714 C2 RU 2229714C2
Authority
RU
Russia
Prior art keywords
urea
test
patient
isotope
taking
Prior art date
Application number
RU2001133784/15A
Other languages
English (en)
Other versions
RU2001133784A (ru
Inventor
кун А.М. З (RU)
А.М. Зякун
Г.В. Цодиков (RU)
Г.В. Цодиков
Л.В. Сакович (RU)
Л.В. Сакович
Original Assignee
Общество с ограниченной ответственностью "ТСД ИЗОТОПЫ " Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ТСД ИЗОТОПЫ " Лтд. filed Critical Общество с ограниченной ответственностью "ТСД ИЗОТОПЫ " Лтд.
Priority to RU2001133784/15A priority Critical patent/RU2229714C2/ru
Publication of RU2001133784A publication Critical patent/RU2001133784A/ru
Application granted granted Critical
Publication of RU2229714C2 publication Critical patent/RU2229714C2/ru

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Способ относится к области медицины - гастроэнтерологии и предназначен для неинвазивной диагностики Helicobacter pylory (Нр) в верхних отделах желудочно-кишечного тракта человека. Способ основан на выявлении Нр уреазной активности с применением тест-препарата в виде водного раствора 13С-мочевины и лимонной кислоты. Способ позволяет выявлять наличие или отсутствие Helicobacter pylory в верхних отделах желудочно-кишечного тракта человека, используя 13С-мочевины в 3-5 раз меньше по сравнению с известными неинвазивными методами. Кроме того, благодаря регистрации кинетических зависимостей для скорости выноса 13С-изотопа с выдыхаемой СО2 после приема тест-препарата, достоверность получаемых данных значительно повышается в сравнении с одиночным измерением через 25-30 мин после приема тест-раствора. Способ обеспечивает упрощение процедуры исследования. 4 ил.

Description

Изобретение относится к области медицины - гастроэнтерологии и предназначено для неинвазивной диагностики Helicobacter pylori (Hp) в верхних отделах желудочно-кишечного тракта человека.
В настоящее время известно, что наличие Hp в желудочно-кишечном тракте является главной причиной гастритов и одним из этиологических факторов язвообразования. Маастрихским соглашением от 1997 года инфекция Hp признана одним из основных канцерогенов человека [Current European concepts in the management of Helicubacter pylori infection. The Maastricht Consensus Report, Cut, 1997, 41:8-13].
Эпидемиологические исследования показали, что рак желудка у Hp инфицированных в 4-8 раз встречается чаще, чем у неинфицированных. Своевременное обнаружение Hp инфекции и проведение медикаментозной эрадикации могут предотвратить заболеваемость раком желудка у 162 тыс. человек в год (из 327 тыс. человек в развитых странах) и у 301 тыс. человек в год (из 428 тыс. человек в развивающихся странах). [Forman D. Scand. J. Gastroenterol., (1996) 214, р.31-33).
Неинвазивный дыхательный уреазный тест является наиболее перспективным, удобным в проведении, быстро выполняемым по времени и высоко информативным и чувствительным методом обнаружения активной Hp-инфекции. Из известных способов диагностики Hp-инфекции таких как морфологический и микробиологический методы, уреазный дыхательный тест является наименее обременительным для пациента, безопасным для новорожденных и беременных.
Проведенные исследования по выяснению возможностей неинвазивного уреазного дыхательного теста явились основой для составления рекомендаций по его практическому применению [R.P.H. Logan, S. Dill, F.E. Bauer, M.M. Walker, A.M. Hirschl, P.A. Gummelt, D. Good and S. Mossi. The European 13-urea breath test for detection of Helicobacter pylori, Europ. J. of Hastroent. and Hepatolog., 1991, v.3, p. 915-920].
В основу неинвазивного уреазного дыхательного теста положен биохимический принцип, аналогичный быстрому уреазному тесту с биоптатами слизистой оболочки желудка. Присутствие в слизистой оболочке желудка значительного количества уреазы - фермента, продуцируемого Hp, приводит к разложению меченой 13С-мочевины до бикарбоната (НСО3) и аммиака (NН3). Из бикарбоната образуется углекислота (СО2), содержащая 13С-изотоп, которая с кровотоком поступает в легкие человека и выносится с выдыхаемым воздухом. Наличие 13С-изотопа в выдыхаемой СО2 определяется с помощью масс-спектрометра или соответствующего спектрофотометра.
Известный способ диагностики хеликобактерной инфекции [Logan и др., 1991] с помощью неинвазивного уреазного дыхательного теста состоит в следующем.
Пациент производит выдох в пробирку емкостью 20 мл до приема пищи. Затем производят предтестовое питание пациента, состоящее из 76% липидов (в т. ч. 57% олеиновой и 23% пальмитиновой жирных кислот), 19% углеводов и 5% белков, для того, чтобы в максимальной степени задержать содержимое в желудке. Через 10 мин этот же пациент выпивает раствор 100 мг 13С-мочевины в 50 мл воды и в течение 2 мин переворачивается с бока на бок. Через 30 мин производит выдох в пробирку. Содержащаяся в пробирке углекислота используется для определения количества 13С-изотопа по сравнению с исходной пробой до приема питания и 13С-мочевины. Эта разность в относительном содержании 13С-изотопа, составляющая не менее чем 5%о, рассматривается как свидетельство того, что пациент инфицирован Нр.
Прототипом предлагаемого способа диагностики хеликобактерной инфекции в желудочно-кишечном тракте человека является уреазный дыхательный тест с 13С-мочевиной, реализуемый в работе [J. M. Pajares - Garcia. Уреазный дыхательный тест с мочевиной, меченой 13С. Испанский опыт. В к.н.: Helicobacter pylory: революция в гастроэнтерологии./Под ред. В.Т Ивашкина, Ф. Мегро, Т.Л.Лапиной, Триада-Х, Москва, Издательский дом "Успех", 1999, стр. 122- 30].
Способ-прототип состоит в следующем. Отбирают два исходных образца выдыхаемого воздуха у обследуемого пациента в специальный контейнер-пробирку (контроль). Пациент выпивает пробный завтрак (подслащенный раствор лимонной кислоты). Через 10 мин после приема пробного завтрака он проглатывает 100 мг 13С-мочевины, растворенной в 50 мл воды. Через 30 мин после приема раствора 13С-мочевины отбираются два образца выдыхаемого воздуха. Пробирки-контейнеры направляются на анализ содержания 13С-изотопа в выдыхаемой СО2 с использованием масс-спектрометра.
Если содержание 13СО2 в пробирке с выдыхаемым воздухом через 30 мин больше
Figure 00000002
по сравнению с контролем, то результат считается положительным относительно содержания Нр-инфекции у пациента.
Как в аналоге [Logan et al; 1991], так и прототипе [Pajares-Garcia, 1999] использование первичного питания с неизвестным изотопным составом углерода является существенным ограничением в получении надежных данных о наличии или отсутствии уреазной активности при использовании уреазного дыхательного теста. В основе такого ограничения лежат вариации изотопного состава углерода растительных и животных продуктов. Так, если эти продукты получены в результате С3- или С4-растителыюго фотосинтеза, то различия в их изотопном составе углерода составляют 5-10‰ [O′Leary M. N. Carbon isotope fractionation in plants, Phytochemistry, 1981, 20, p. 553-567]. Поэтому применение в качестве первичного питания этих продуктов без знания их реального содержания 13С-изотопа может привести к тому, что регистрируемые колебаниями разности в изотопном составе углерода выдыхаемой СО2 будет находится в пределах не менее 5‰ независимо от наличия или отсутствия Нр-инфекции.
Таким образом, при использовании первичного питания необходимо, во-первых, измерить изотопный состав его углерода с тем, чтобы определять начало и степень метаболизма этих продуктов до СО2 в организме обследуемого пациента. Во-вторых, совершенно недопустимо использование сложной смеси продуктов, составляющих первичное питание (липиды, углеводы и белки), поскольку эти компоненты по своей природе имеют разный изотопный состав углерода и разное время включения в окислительный обмен в организме пациента. Неконтролируемый изотопный состав углерода используемых продуктов первичного питания требует сравнительно высоких тестовых нагрузок 13С-мочевины (75-100 мг на однократный прием), что существенно удорожает стоимость определения Нр-инфекции у пациента.
Задача предложенного изобретения состоит: а) в снижении используемого количества 13С-мочевины для диагностики Нр-инфекции без потери достоверности получаемого результата; б) в упрощении процедуры подготовки пациента к анализу Нр-инфекции.
При этом достигаются следующие технические результаты:
- значимый порог разности в содержании 13СО2 в выдыхаемом воздухе до и после приема 13С-мочевины составляет 1‰ вместо 5‰ в прототипе;
- количество 13С-мочевины, используемое для тестирования Нр-инфекции, может составить не менее 20 мг в перечете на 99% обогащения 13С-изотопом вместо 75-100 мг в прототипе;
- исключена процедура приема предварительного питания пациента и переворачивания его с бока на бок в течение нескольких минут.
Указанные технические результаты обеспечиваются в предложенном способе неинвазивной диагностики хеликобактерной инфекции. По этому способу выявляют наличие или отсутствие хеликобактерной инфекции за счет того, что в качестве тест-препарата используют натощак per os водный раствор смеси 13С-мочевины в количестве не менее 20 мг в пересчете на 99% обогащение 13C-изотопом и пищевой лимонной кислоты, содержащей 13C-изотоп в количестве меньшем, чем в углекислоте, продуцируемой организмом пациента в результате потребления обычной пищи. Количественное соотношение 13С-мочевины и лимонной кислоты составляет не менее чем 1:100. Выявление хеликобактерной инфекции проводят по степени превышения количества 13С-изотопа в выдыхаемой углекислоте через 25 мин после приема 13C-мочевины в сравнении с изотопным составом углерода тестовой лимонной кислоты, т.е. в данном способе исключена необходимость предварительного приема пробного завтрака и значительно уменьшено количество используемой 13С-мочевины.
Поскольку изотопный состав углерода используемой тестовой лимонной кислоты содержит меньше 13С-изотопа, чем углекислота, продуцируемая пациентом при потреблении обычной пищи, то обеспечивается однозначная детекция окисления лимонной кислоты до СO2 и ее изотопный состав углерода используется в качестве точки отсчета. В этом случае наличие Нр инфекции у пациента обнаруживается с высокой достоверностью, благодаря включению в метаболизм тестовой мочевины, содержащей повышенное количество 13С-изотопа по сравнению как с лимонной кислотой, так и с углекислотой, выдыхаемой пациентом до приема тест-раствора.
Кроме того, повышение надежности обнаружения Нр-инфекции у пациента может быть достигнуто в соответствии с п.2 формулы изобретения за счет того, что после приема per os водного раствора смеси 13C-мочевины и лимонной кислоты производят отбор выдыхаемого воздуха в течение часа, определяют выход 13С-изотопа с выдыхаемой углекислотой во времени наблюдения и используют полученную зависимость для расчета степени инфицирования бактериями Helicobacter pylori желудочно-кишечного тракта человека (многоточечный тест-анализ).
Сущность изобретения поясняется графическими материалами, представленными на:
Фиг.1. Зависимость выхода 13С-изотопа с выдыхаемой углекислотой у пациента с высоким уровнем Нр-инфекции от времени наблюдения после приема 13С-мочевины.
Фиг.2. Зависимость выхода 13C-изотопа с выдыхаемой углекислотой у пациента с низким уровнем Нр-инфекции от времени наблюдения после приема 13С-мочевины.
Фиг.3. Зависимость выхода 13C-изотопа с выдыхаемой углекислотой у пациента в случае отсутствия Нр-инфекции от времени наблюдения после приема 13С-мочевины.
Фиг.4. Положение максимума выноса 13С-изотопа в виде СO2 на временной шкале после приема водного раствора смеси 13С-мочевины и лимонной кислоты у разных пациентов, инфицированных Helicobacter pylori.
Предложенный способ неинвазивной диагностики хеликобактерной инфекции осуществляется следующим образом.
Обследование Нр-инфекции у пациента производят натощак. В листке учета проб выдыхаемого воздуха указываются данные пациента Ф.И.О., возраст, рост (см), вес (кг). Тест-раствор готовят: в 100 мл кипяченой воды при комнатной температуре (20°С) растворяют 20 мг 13С-мочевины в пересчете на 99% обогащения 13С-изотопом и 2 г пищевой лимонной кислоты с изотопным составом углерода не более чем δ13С = -26‰. Пациент производит однократный выдох в емкость до приема тест-раствора через трубку, вставленную до дна емкости. После выдоха воздуха емкость герметично закрывается. В течение 10-15 с пациент выпивает тестовый раствор. Началом отсчета времени для последующего отбора проб выдыхаемого воздуха является момент завершения приема тест-раствора пациентом. После приема per os раствора через 25 мин производится повторный выдох (одноточечный тест-анализ). Определяют изотопный состав углерода СО2 в пробах выдыхаемого воздуха, полученных до и после приема тест-раствора пациентом. Анализ изотопного состава углерода проводят с помощью прибора (масс-спектрометр или спектрофотометр) с ошибкой измерения содержания 13С-изотопа в СO2 не выше 0,2‰. Изотопный состав углерода СО2 представляют в относительных единицах, согласно выражению (1), где за точку отсчета принимают изотопный состав углерода выдыхаемой СО2 до приема пациентом тест-раствора:
Figure 00000003
где Rисх, Rt - отношения количеств 13С- и 13С-изотопов в СO2 до приема и после приема тест-раствора, соответственно.
Заключение: пациент Нр инфицирован, если величина δ13Ct=25 > 1,0‰.
Для повышения достоверности анализа (п.2 формулы), в особенности при оценке эффективности медикаментозного лечения, когда активность Нр-инфекции у пациента может быть существенно снижена, после приема per os раствора проводят многократные измерения изотопного состава углерода выдыхаемой СО2 (многоточечный анализ). Примерная схема анализа в этом случае предусматривает следующие операции. После приема per os раствора пациентом через 10, 15, 20, 25, 30, 40, 60 мин пробы выдыхаемого воздуха собирают в емкости. Измеряют содержание изотопов 12С и 13С в СО2 этих проб и с помощью выражения (1) рассчитывают величины
Figure 00000004
Полученные величины представляются в виде зависимостей (Фиг.1-3).
Количественной характеристикой Нр инфицирования пациента в этом случае является коэффициент К, отражающий превращение 13C-мочевины в СО2 (в % от количества 13С-мочевины, внесенного в организм пациента). Величину коэффициента К рассчитывают с помощью выражения (2):
Figure 00000005
где t - время тестирования (в предлагаемом способе t=60 мин), S - поверхность тела пациента, δ13С - средневзвешенный изотопный состав выдыхаемой СО2 после приема тест-раствора, q - количество 13С-мочевины (в предлагаемом способе q=20 мг), n - степень обогащения мочевины 13С-изотопом (в предлагаемом способе при 99% обогащении 13С-изотопом n=0,99).
Поверхность тела (м2) рассчитывают с помощью выражения (3):
Figure 00000006
где W - вес тела (кг), Н - рост пациента (см).
Средневзвешенный изотопный состав СО2 рассчитывают с помощью (4):
Figure 00000007
Величину Σδ13С t определяют путем суммирования значений δ13С в 7 точках наблюдения, как это можно видеть из зависимостей на Фиг.1-4.
Заключение: пациент Нр инфицирован, если величина К>0,5%. Следует отметить, что величина К>0,5 получена, исходя из общепринятой разности δ13С=5% при нагрузке 13C-мочевины, равной 100 мг, как в аналоге, так и прототипе. Расчет проведен с использованием формулы (2).
Количество лимонной кислоты в тест-препарате выбирают, исходя из условия, что измеряемая минимальная разница между изотопным составом углерода углекислоты до и после приема тест-раствора, содержащего лимонную кислоту, должна иметь 3-кратное превышение приборной ошибки измерения, т.е. 0,2‰×3=0,6‰. Поскольку для жителей средней полосы изотопный состав углерода выдыхаемой СО2 составляет в среднем δ13С=-20‰ то изотопный состав выдыхаемой СО2 у пациента после приема лимонной кислоты должен иметь значимую величину, т.е. δ13С=-20,6‰. В состоянии покоя пациент выдыхает 5 мМоль в мин из расчета на 1 м2 поверхности тела [Shreeve V.W., Cerasi E., Luft R. (1970), Acta Endocrinologica, v.65, p. 155-169]. Следовательно, пациент с поверхностью тела 2 м2 за 1 час выдохнет 0,6 моль CO2. Изотопный состав углерода пищевой лимонной кислоты для отдельных промышленных ее партий составляет δ13С=-20,6‰. При окислении лимонной кислоты до CO2 в цикле трикарбоновых кислот происходит фракционирование изотопов углерода с кинетическим изотопным эффектом α=1,01 [Зякун А.М. Разделение стабильных изотопов углерода гетеротрофными микроорганизмами. Прикл. биохим. и микробиол. 1996, т. 32, №1, с. 165-172]. Следовательно, изотопный состав метаболической СО2, продуцируемой при окислении лимонной кислоты, будет составлять δ13С=-36‰. Исходя из заданной разности в изотопном составе СО2 до и после приема лимонной кислоты, которая в среднем за время наблюдения должна быть не меньше 0,3‰. с помощью материально-изотопного баланса, согласно уравнению (5) находим, что количество используемой лимонной кислоты в качестве тест-препарата должно составить не менее 0,022 моль или 2 г.
Figure 00000008
где х - количество лимонной кислоты (в моль).
Количество 13С-мочевины выбирают, также исходя из заданной значимой разности в изотопном составе углерода СО2 до и после приема тест-раствора, которая составляет не менее 1‰. В случае Нр-инфекции при коэффициенте превращения части 13С-мочевины в СО2, равном К=0,5%, и при δ13С=0,5‰, как среднем значении изотопного состава выдыхаемой углекислоты за время наблюдения, с помощью выражения (2) вычисляем, что количество тестовой 13С-мочевины должно составить не менее 20 мг с обогащением 13С-изотопом, равным 99% (n=0,99). При этом очевидно, что рекомендуемое соотношение количеств 13С-мочевины и лимонной кислоты составляет 1:100.
В случае многоточечного анализа Нр-инфекции у пациента продолжительность наблюдения определена следующим образом. В результате обследования многих пациентов, имеющих Нр инфекцию, время максимума выноса 13С-изотопа с выдыхаемой СО2 после приема 13С-мочевины варьировало от 15 до 45 мин (см. Фиг.4). Поэтому для получения надежной информации о наличии или отсутствии Нр-инфекции у обследуемого пациента при многоточечном анализе предложен период отбора выдыхаемого воздуха не менее 1 часа после приема тест-раствора.
Пример 1. Пациент со следующими физическими параметрами: рост 170 см, вес 90 кг и поверхность тела 2,01 м2 натощак выдыхает в стеклянную пробирку емкостью 20 мл и герметично закрывает ее. В первый день обследования выпивает 100 мл водного раствора, содержащего 10 мг 13С-мочевины и 2 г лимонной кислоты, на второй день выпивает 100 мл водного раствора, содержащего 20 мг 13С-мочевины и 2 г лимонной кислоты. В обоих случаях после приема раствора включается таймер. Через 10, 15, 20, 25, 30, 40 и 60 мин пациент производит выдохи в стеклянные ампулы, которые затем герметично закрывают. С помощью масс-спектрометра анализируют содержание 13С-изотопа в пробирках с выдыхаемой CO2. Результаты измерения изотопного состава СО2 первого и второго обследований представлены на Фиг.1. Максимальное значение δ13С выдыхаемой СО2 после приема 20 мг 13С-мочевины (первый день. Фиг.1, Тест 1) равно δ13Сmax=31,2‰, а средний изотопный состав углерода СО2 в этом случае (первый день) равен δ13С=23,6‰. Для второго дня обследования максимальное значение δ13С выдыхаемой СО2 после приема 10 мг 13С-мочевины (Фиг.1, Тест 2) равно δ13Сmах=16,0‰, а средний изотопный состав углерода СО2 в этом случае (второй день) равен δ13С=12,0‰. В обоих случаях обследования пациента получены значимые величины δ13С, отражающие содержание 13С изотопа в выдыхаемой СО2 и наличие Нр-инфекции. С помощью формулы (3) находят, что коэффициент использования тестовой 13С-мочевины в организме пациента на образование СО2, которая уходит из организма в выдыхаемом воздухе за время наблюдения, составляет для первого дня обследования K=24,24% и для второго – К=24,5%.
Таким образом, при высокой степени Нр-инфекции как 10 мг, так и 20 мг 13С-мочевины, поступившей в водном растворе в желудочно-кишечный тракт человека, за 60 мин с выдыхаемым воздухом выделилось в виде СО2 около 24% введенного 13С-изотопа.
Пример 2. Пациент со следующими физическими параметрами: рост 165см, вес 65 кг и поверхность тела 1,675 м2 натощак выдыхает в стеклянную пробирку емкостью 20 мл и герметично закрывает ее. В первый день обследования он выпивает 100 мл водного раствора, содержащего 20 мг 13С-мочевины и 2 г лимонной кислоты, на второй день выпивает 100 мл водного раствора, содержащего 10 мг 13С-мочевины и 2 г лимонной кислоты. В обоих случаях после приема раствора включается таймер. Через 10, 15, 20, 25, 30, 40 и 60 мин пациент производит выдохи в стеклянные ампулы, которые затем герметично закрывают. С помощью масс-спектрометра анализируют содержание 13С-изотопа в пробирках с выдыхаемой СО2. Результаты измерения изотопною состава СО2 первого и второго обследований представлены на Фиг.2. Максимальное значение δ13С выдыхаемой СО2 после приема 20 мг 13С-мочевины (первый день. Фиг.2, Тест 1) равно δ13Сmax=1,2‰, а средний изотопный состав углерода СО2 для первого дня обследования равен δ13С=0,87‰. Для второго дня обследования максимальное значение δ13С выдыхаемой СО2 после приема 10 мг 13С-мочевины равно δ13Сmax=0,5‰, а средний изотопный состав углерода СО2 для второго дня обследования равен δ13С=0,34‰. Во втором случае обследования пациента получены величины δ13С ниже заданного порога значимости и лишь в первом случае, когда в 100 мл водного раствора содержались 20 мг 13С-мочевины и 2 г лимонной кислоты, получены значимые величины δ13С и свидетельствующие о наличии Нр-инфекции. С помощью формулы (3) находят, что при тестовом количестве 13С-мочевины в 20 мг коэффициент ее использования на образование СО2 в организме пациента за время наблюдения составляет
К=(0,1686·60·1,675·0,87)/(20·0,99)=0,75%.
Таким образом, при низкой степени Нр-инфекции надежные суждения о наличии Нр-инфекции получены лишь при использовании 20 мг 13С-мочевины, поступившей в водном растворе в верхний отдел желудочно-кишечного тракта человека. В этом случае за 60 мин наблюдения с выдыхаемым воздухом выделилось 13С-изотопа в виде СО2 около 0,75% от всей внесенной тестовой 13С-мочевины в организм пациента.
Пример 3. Пациент со следующими физическими параметрами: рост 180 см, вес 80 кг и поверхность тела 2,0 м2 натощак выдыхает в стеклянную пробирку емкостью 20 мл и герметично закрывает ее. Выпивает 100 мл воды, содержащей 20 мг 13С-мочевины и 2 г лимонной кислоты. Включается таймер. Через 10, 15, 20, 25, 30, 40 и 60 мин пациент производит выдох в стеклянные ампулы, которые затем герметично закрывают. С помощью масс-спектрометра анализируют содержание 13С изотопа в пробирках с выдыхаемой СО2. Результаты измерения изотопного состава CO2 представлены на Фиг.3. Изотопный состав углерода СО2 после приема 13С-мочевины меньше, чем исходное его значение и достигает δ13С=-1,1‰. Это означает, что Нр-инфекция в верхнем oтделe желудочно-кишечного тракта пациента отсутствует.
Пример 4. Два пациента А и Б со следующими физическими параметрами: А) рост 180 см, вес 85 кг и поверхность тела 2,05 м2; Б) рост 157 см, вес 90 кг и поверхность тела 1,9 м2 натощак выдыхают в 2 стеклянные пробирки емкостью 20 мл и герметично закрывают их. Затем каждый выпивает по 100 мл водного раствора, содержащего 20 мг 13С-мочевины и 2 г лимонной кислоты. После приема раствора включается таймер. Через 10, 15, 20, 25, 30, 40 и 60 мин пациенты производят выдохи в стеклянные ампулы, которые герметично закрывают. С помощью масс-спектрометра анализируют содержание 13С-изотопа в пробирках с выдыхаемой СО2. Результаты измерения изотопного состава СО2 для каждого пациента представлены на Фиг.4. Максимальное значение δ13С выдыхаемой СО2 у пациента А отмечено через 15 мин после приема тест-раствора с 20 мг 13С-мочевины и равно δ13Сt=15=1,7‰, а через 30 мин - δ13Сt=30=0,9‰ (Фиг.4. тест 1). Средний изотопный состав углерода СО2 в этом случае равен δ13С=1,09‰. Для второго пациента максимальное значение δ13С выдыхаемой СО2 отмечено через 40 мин после приема тест-раствора с 20 мг 13С-мочевины (пациент Б) и равно δ13Сt=40=2,1‰, а через 30 мин -δ13Сt=30=1,9‰ (Фиг.4, тест 2). Средний изотопный состав углерода СО2 в этом случае равен δ13С=1,72‰. С помощью формулы (3) находят, что коэффициент использования тестовой 13С-мочевины в организме пациента А за время наблюдения составляет K=1,12% и для второго - K=1,67%. В обоих случаях обследования пациентов А и Б получены значимые как максимальные величины δ13С, отражающие содержание 13С-изотопа в выдыхаемой СО2, так и коэффициенты использования тестовой 13С-мочевины. Однако в первом случае (пациент А) при одноточечном анализе через 30 мин получен ошибочный результат, свидетельствующий об отсутствии Нр-инфекции (т.е., δ13Сt=30 < 1,0‰. Из примера 4 следует, что для получения надежной информации о наличии или отсутствии Нр при низкой уреазной активности необходимо проводить анализ этой инфекции в желулочно-кишечном тракте человека по максимальным значениям δ13С или по коэффициентам использования тестовой 13С-мочевины. В обоих случаях следует проводить отбор проб выдыхаемого воздуха в течение не менее 60 мин после приема тест-раствора.
Таким образом, предложенный способ неинвазивной диагностики хеликобактерной инфекции позволяет выявлять наличие или отсутствие Helicobacter pylori в желулочно-кишечном тракте человека, используя количество 13С-мочевины в 3-5 раз меньше по сравнению с известными неинвазивными методами анализа. Кроме того, благодаря использованию кинетических зависимостей для скорости выноса 13С-изотопа с выдыхаемой СО2 после приема тест-препарата, достоверность получаемых данных при малом уровне Нр-инфекции значительно повышается в сравнении одиночным измерением через 25-30 мин после приема тест-раствора.

Claims (1)

  1. Способ неинвазивной диагностики хеликобактерной инфекции путем определения количества 13С-изотопа в углекислоте выдыхаемого воздуха до и после приема тест-препарата, содержащего 13С-мочевину, отличающийся тем, что в качестве тест-препарата используют принимаемый натощак через рот водный раствор смеси 13С-мочевины в количестве не менее 10 мг в пересчете на 99% обогащение 13С-изотопом и пищевой лимонной кислоты, содержащей 13С-изотопа меньше, чем в углекислоте, продуцируемой организмом человека в процессе потребления обычной пищи, при количественном соотношении 13С-мочевины и лимонной кислоты 1:100, отбор проб выдыхаемого воздуха проводится до приема тест-препарата и через 10-60 мин после приема, и если определяемое количество 13С-изотопа в углекислоте выдыхаемого воздуха после приема тест-препарата больше, чем в углекислоте выдыхаемого воздуха до приема тест-препарата диагностируют наличие хеликобактерной инфекции в верхнем отделе желудочно-кишечного тракта, а если меньше - отсутствие ее.
RU2001133784/15A 2001-12-18 2001-12-18 Способ неинвазивной диагностики хеликобактерной инфекции RU2229714C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001133784/15A RU2229714C2 (ru) 2001-12-18 2001-12-18 Способ неинвазивной диагностики хеликобактерной инфекции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001133784/15A RU2229714C2 (ru) 2001-12-18 2001-12-18 Способ неинвазивной диагностики хеликобактерной инфекции

Publications (2)

Publication Number Publication Date
RU2001133784A RU2001133784A (ru) 2003-08-20
RU2229714C2 true RU2229714C2 (ru) 2004-05-27

Family

ID=32678297

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001133784/15A RU2229714C2 (ru) 2001-12-18 2001-12-18 Способ неинвазивной диагностики хеликобактерной инфекции

Country Status (1)

Country Link
RU (1) RU2229714C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2521340C1 (ru) * 2013-02-05 2014-06-27 государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации Способ диагностики инфекции желудка, вызванной helicobacter pylori
RU2790397C1 (ru) * 2022-05-05 2023-02-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Северо-Западный государственный медицинский университет имени И.И. Мечникова" Министерства здравоохранения Российской Федерации Способ неинвазивной диагностики инфекции Helicobacter pylori с помощью 13С-уреазного дыхательного теста

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.M PAJARES-GARCIA. Уреазный дыхательный тест с мочевиной, меченой 13 С. Испанский опыт. В кн.: Helicobacter pylory: революция в гастроэнтерологии./Под ред. В.Т.Ивашкина, Ф. Мегро, Т.Л.Лапиной. Триада-X. - М.: Издательский дом "Успех", 1999, с.122-130. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2521340C1 (ru) * 2013-02-05 2014-06-27 государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации Способ диагностики инфекции желудка, вызванной helicobacter pylori
RU2790397C1 (ru) * 2022-05-05 2023-02-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Северо-Западный государственный медицинский университет имени И.И. Мечникова" Министерства здравоохранения Российской Федерации Способ неинвазивной диагностики инфекции Helicobacter pylori с помощью 13С-уреазного дыхательного теста

Similar Documents

Publication Publication Date Title
Španěl et al. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS
EP1480557B1 (en) Breath collection system
US6171811B1 (en) Method and kit for detecting Helicobacter pylori
CA1307447C (en) Method and device for ketone measurement
Mills et al. Screening for anaemia: evaluation of a haemoglobinometer.
Begg et al. Breathalyzer and Kitagawa-Wright methods of measuring breath alcohol
US20080090268A1 (en) Method for the diagnosis of Helicobacter pylori infection, and a diagnostic kit for performing the method
KR20100014324A (ko) 호흡 검사를 기초로 한 병원체 미생물 검출 방법
Gonlachanvit et al. Effect of meal size and test duration on gastric emptying and gastric myoelectrical activity as determined with simultaneous [13C] octanoate breath test and electrogastrography in normal subjects using a muffin meal
Barr et al. Breath tests in pediatric gastrointestinal disorders: new diagnostic opportunities
RU2229714C2 (ru) Способ неинвазивной диагностики хеликобактерной инфекции
EP0253927A1 (en) A breath test for measuring urease activity in the stomach using carbon isotope urea
Berg et al. Hydrogen concentration in expired air analyzed with a new hydrogen sensor, plasma glucose rise, and symptoms of lactose intolerance after oral administration of 100 gram lactose
Vreman et al. Interference of fetal hemoglobin with the spectrophotometric measurement of carboxyhemoglobin.
Anania et al. Breath tests in pediatrics
Španel et al. Recent SIFT-MS studies of volatile compounds in physiology, medicine and cell biology
Gardiner et al. Collection of breath for hydrogen estimation.
Johnson et al. A simplified urine and serum screening test for salicylate intoxication
RU2790397C1 (ru) Способ неинвазивной диагностики инфекции Helicobacter pylori с помощью 13С-уреазного дыхательного теста
SU1575116A1 (ru) Способ дифференциальной диагностики саркоидоза и туберкулеза органов дыхани
RU2263468C2 (ru) Способ неинвазивной диагностики инфекции helicobacter pylori ин виво и устройство для его реализации
Chen Generation mechanisms of hydrogen cyanide and ammonia in human exhaled breath
Schlesinger et al. Use of breath hydrogen measurement to evaluate orocecal transit time in cats before and after treatment for hyperthyroidism.
RU2100010C1 (ru) Способ неинвазивной диагностики хеликобактериоза ин виво
Saeed et al. THE SEVERITY SCALE OF RECURRENT APHTHOUS STOMATITIS AND ITS CORRELATION WITH HELICOBACTER PYLORI INFECTION AND AGES OF THE PATIENTS

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081219