RU2229464C1 - Стабилизатор химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив и способ их обработки - Google Patents

Стабилизатор химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив и способ их обработки Download PDF

Info

Publication number
RU2229464C1
RU2229464C1 RU2003125792/02A RU2003125792A RU2229464C1 RU 2229464 C1 RU2229464 C1 RU 2229464C1 RU 2003125792/02 A RU2003125792/02 A RU 2003125792/02A RU 2003125792 A RU2003125792 A RU 2003125792A RU 2229464 C1 RU2229464 C1 RU 2229464C1
Authority
RU
Russia
Prior art keywords
nitrocellulose
trimethyl
dihydroquinoline
solid rocket
propellants
Prior art date
Application number
RU2003125792/02A
Other languages
English (en)
Inventor
Ю.А. Иванов (RU)
Ю.А. Иванов
А.Ю. Фролов (RU)
А.Ю. Фролов
В.В. Осинин (RU)
В.В. Осинин
В.М. Перевезенцев (RU)
В.М. Перевезенцев
пин Н.М. Л (RU)
Н.М. Ляпин
Р.Ф. Гатина (RU)
Р.Ф. Гатина
А.С. Филиппов (RU)
А.С. Филиппов
А.А. Староверов (RU)
А.А. Староверов
Т.А. Енейкина (RU)
Т.А. Енейкина
Original Assignee
Инновационный фонд "Развития и взаимосвязи культур, наук, образований, религий, обществ, стран"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Инновационный фонд "Развития и взаимосвязи культур, наук, образований, религий, обществ, стран" filed Critical Инновационный фонд "Развития и взаимосвязи культур, наук, образований, религий, обществ, стран"
Priority to RU2003125792/02A priority Critical patent/RU2229464C1/ru
Priority to AU2003302483A priority patent/AU2003302483A1/en
Priority to PCT/RU2003/000573 priority patent/WO2005019178A1/ru
Application granted granted Critical
Publication of RU2229464C1 publication Critical patent/RU2229464C1/ru

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к области нитроцеллюлозных порохов и твердых ракетных топлив, находящих применение в ствольных и ракетных системах. Предложен стабилизатор химической стойкости нитроцеллюлозного пороха и твердого ракетного топлива, представляющий собой соединение 2,2,4-триметилзамещенного 1,2-дигидрохинолина, являющееся 2,2,4-триметил-1,2-дигидрохинолином, 6-гидрокси-2,2,4-триметил-1,2-дигидрохинолином, 6-этокси-2,2,4-триметил-1,2-дигидрохинолином, 8-гидрокси-2,2,4-триметил-1,2-дигидрохинолином или 8-метокси-2,2,4-триметил-1,2-дигидрохинолином. А также предложен способ обработки нитроцеллюлозных порохов и твердых ракетных топлив с использованием указанного стабилизатора химической стойкости. Введение одного из указанных соединений в состав нитроцеллюлозных порохов или твердого ракетного топлива в количестве 0,1-10% от их массы обеспечивает требуемую химическую стойкость нитроцеллюлозных порохов и твердых ракетных топлив без превращения применяемых указанных соединений в токсичные продукты. При этом достигается повышение показателя пламягашения и баллистических характеристик. Кроме того, использование соединения 2,2,4-триметилзамещенного 1,2-дигидрохинолина при обработке нитроцеллюлозных порохов и твердых ракетных топлив обеспечивает повышенную свето- и термостойкость обрабатываемых материалов и способствует ингибированию процессов радикального окисления при улучшении экологии. 2 с.п. ф-лы.

Description

Изобретение относится к области нитроцеллюлозных порохов и твердых ракетных топлив, находящих применение в ствольных и ракетных системах.
Известно, что в настоящее время для обработки нитроцеллюлозных порохов и твердых ракетных топлив используют стабилизаторы N-нитрозодифениламин, алкилированные производные дифенилмочевины (центролиты), дифениламин в концентрациях 0,2-4 мас.% (RU 2093500 C1, 1997; RU 2026276 С1, 1995; RU 2198870 С2, 2003; US 391776, 1975).
В качестве наиболее близкого аналога настоящей группы изобретений могут быть приняты стабилизатор химической стойкости нитроцеллюлозных порохов - дифениламин и способ стабилизации химической стойкости нитроцеллюлозных порохов дифениламином [Краткий энциклопедический словарь. Энергетические конденсированные системы, М.: Янус-К, 2000, стр.407-408].
Недостатком известных стабилизаторов нитроцеллюлозных порохов и твердых ракетных топлив является то, что используемые в настоящее время в качестве стабилизатора N-нитрозодифениламин, центролиты и дифениламин в процессе получения, хранения, использования, переработки и утилизации нитроцеллюлозных материалов, порохов образуют токсичные вещества, причем сами эти стабилизаторы относятся к веществам различных классов опасности (Вредные вещества в промышленности. Под редакцией Н.В.Лазарева, Л.: Химия, 1969 г.).
Кроме того, недостатком известных стабилизаторов нитроцеллюлозных материалов, порохов является ограниченность их ассортимента, что не позволяет получать разнообразные композиционные материалы, пороха, твердые топлива с заданными свойствами без ввода дополнительных компонентов.
Задачей настоящего изобретения является улучшение качества нитроцеллюлозных материалов, а также их свойств и экологии в процессе получения, хранения, использования, переработки и утилизации за счет универсальности свойств вводимых веществ, позволяющих упростить их композиционный состав, а также получения рецептур композиций, порохов и твердых ракетных топлив с заданными свойствами при одновременном увеличении ассортимента, применяемых веществ для стабилизации нитроцеллюлозных порохов и твердых ракетных топлив.
Решение поставленной задачи достигается использованием в качестве стабилизатора химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив соединения 2,2,4-триметилзамещенного 1,2-дигидрохинолина общей формулы:
Figure 00000001
где при R=Н оно является 2,2,4-триметил-1,2-дигидрохинолином (ацетонанил);
при R=OH в положении 6 является 6-гидрокси-2,2,4-триметил-1,2-дигидрохинолином;
при R=ОС2Н5 в положении 6 является 6-этокси-2,2,4-триметил-1,2-дигидрохинолин (сантохин);
R=ОН в положении 8 является 8-гидрокси-2,2,4-триметил-1,2-дигидрохинолином;
R=ОСН3 в положении 8 является 8-метокси-2,2,4-триметил-1,2-дигидрохинолином.
Поставленная задача решается также способом обработки нитроцеллюлозных порохов и твердых ракетных топлив с использованием в качестве стабилизатора химической стойкости соединения 2,2,4-триметилзамещенного 1,2-дигидрохинолина вышеуказанной формулы в количестве 0,1-10,0% от массы обрабатываемого материала.
Известно использование соединений ряда 2,2,4-триметилзамещенных 1,2-дигидрохинолинов, в частности сантохина, в качестве стабилизатора для кормовых продуктов (RU 2035877 С1, 1995); использование 8-окси-2,2,4-триметил-1,2-дигидрохинолина в качестве ловушки для радикалов, для улучшения свойств нефтепродуктов, пластмасс, красок (RU 2209206 С1, 27.07.2003); 6-этокси-2,2,4-триметил-1,2-дигидрохинолина в качестве антиозоната, стабилизатора резин (RU 2202566 С2, 20.04.2003; RU 2193579 C1, 2002).
Использование указанных соединений в качестве стабилизатора химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив, в том числе пироксилиновых порохов, является новым, не известным из уровня техники.
Новым и неочевидным является установление того, что введение указанных соединений в состав нитроцеллюлозных порохов и твердых ракетных топлив в количестве 0,1-10% от массы обрабатываемого материала обеспечивает требуемую химическую стойкость, при этом токсичных продуктов превращения применяемых указанных соединений обнаружено не было.
Нижеследующие примеры поясняют, но не ограничивают настоящее изобретение. Во всех примерах образцы готовились по известной классической технологии.
Пример 1.
В 50 мл этилацетата (ЭА) растворяют навеску стабилизатора химической стойкости 2,2,4-триметил-1,2-дигидрохинолина в количестве 0,1% от массы пироксилина, взятую с точностью 0,0001 г, затем засыпают 5 г пироксилина с содержанием азота не менее 212,0 мл NO/г (с учетом влажности = 57,3 мас.%). Полученную смесь периодически перемешивают в течение 24-28 часов до образования однородной массы. Массу разливают по поверхности формы до пленки и сушат. Полученную нитроцеллюлозную пленку разрезают на полоски и определяют их химическую стойкость по ОСТ В 84-2085-92 при температуре 110°С.
Пример 2.
В 50 мл этилацетата (ЭА) растворяют навеску стабилизатора химической стойкости 8-гидрокси-2,2,4-триметил-1,2-дигидрохинолина в количестве 0,6% от массы баллистита, взятую с точностью 0,0001 г, затем засыпают 5 г баллистита. Полученную смесь периодически перемешивают в течение 24-28 часов до образования однородной массы. Массу разливают по поверхности формы до пленки и сушат. Полученную нитроцеллюлозную пленку разрезают на полоски и определяют их химическую стойкость по ОСТ В 84-2085-92.
Пример 3.
В 50 мл этилацетата (ЭА) растворяют навеску стабилизатора химической стойкости 6-гидрокси-2,2,4-триметил-1,2-дигидрохинолина в количестве 0,5% от массы кордита, взятую с точностью 0,0001 г, затем засыпают 5 г кордита. Полученную смесь периодически перемешивают в течение 24-28 часов до образования однородной массы. Массу разливают по поверхности формы до пленки и сушат. Полученную нитроцеллюлозную пленку разрезают на полоски и определяют их химическую стойкость по ОСТ В 84-2085-92.
Пример 4.
В 50 мл этилацетата (ЭА) растворяют навеску стабилизатора химической стойкости 8-гидрокси-2,2,4-триметил-1,2-дигидрохинолина в количестве 1,5% от массы пироксилина, взятую с точностью 0,0001 г, затем засыпают 5 г пироксилина с содержанием азота не менее 212,0 мл NO/г (с учетом влажности = 57,3 мас.%). Полученную смесь периодически перемешивают в течение 24-28 часов до образования однородной массы. Массу разливают по поверхности формы до пленки и сушат. Полученную нитроцеллюлозную пленку разрезают на полоски и определяют их химическую стойкость по ОСТ В 84-2085-92.
В условиях примера 4 использовали также 6-этокси-2,2,4-триметил -1,2-дигидрохинолин в количестве 4,5% от массы пироксилина.
Пример 5.
В 50 мл этилацетата (ЭА) растворяют навеску стабилизатора химической стойкости 8-метокси-2,2,4-триметил-1,2-дигидрохинолина в количестве 0,1% от массы пироксилина, взятую с точностью 0,0001 г, затем засыпают 5 г пироксилина с содержанием азота не менее 212,0 мл NO/г (с учетом влажности = 57,3 мас.%). Полученную смесь периодически перемешивают в течение 24-28 часов до образования однородной массы. Массу разливают по поверхности формы до пленки и сушат. Полученную нитроцеллюлозную пленку разрезают на полоски и определяют их химическую стойкость по ОСТ В 84-2085-92.
Химическая стойкость полученных образцов определялась по ОСТ В 84-2085-92 (Монометрический метод определения стойкости всех видов порохов). В результате проведенных тестов была показана эффективность стабилизаторов химической стойкости при введении их в образцы в количестве 0,1-10% от массы, при этом достигалась требуемая стабильность композиции.
В результате проведенных тестов была показана эффективность стабилизаторов при введении их в образцы в количестве 0,1-10% от массы, при этом достигалась требуемая стабильность композиций при повышении показателя пламягашения и баллистических характеристик.
Кроме того, использование указанных соединений класса 2,2,4-замещенного триметил-замещенного-1,2-дигидрохинолина при обработке нитроцеллюлозных порохов и твердых ракетных топлив обеспечивает их повышенную свето- и термостойкость, а также способствует ингибированию радикальных процессов при улучшении экологии.

Claims (2)

1. Стабилизатор химической стойкости нитроцеллюлозного пороха и твердого ракетного топлива, представляющий собой соединение 2,2,4-триметилзамещенного 1,2-дигидрохинолина общей формулы
Figure 00000002
где при R=H оно является 2,2,4-триметил-1,2-дигидрохинолином, при R=OH в положении 6 оно является 6-гидрокси-2,2,4-триметил-1,2-дигидрохинолином, при R=ОС2Н5 в положении 6 оно является 6-этокси-2,2,4-триметил-1,2-дигидрохинолином, при R=OH в положении 8 оно является 8-гидрокси-2,2,4-триметил-1,2-дигидрохинолином, при R=ОС2Н5 в положении 8 оно является 8-метокси-2,2,4-триметил-1,2-дигидрохинолином.
2. Способ обработки нитроцеллюлозного пороха и твердого ракетного топлива с использованием стабилизатора химической стойкости, отличающийся тем, что в качестве стабилизатора химической стойкости используют стабилизатор химической стойкости по п.1 в количестве 0,1-10,0% от массы обрабатываемого нитроцеллюлозного пороха и твердого ракетного топлива.
RU2003125792/02A 2003-08-25 2003-08-25 Стабилизатор химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив и способ их обработки RU2229464C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2003125792/02A RU2229464C1 (ru) 2003-08-25 2003-08-25 Стабилизатор химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив и способ их обработки
AU2003302483A AU2003302483A1 (en) 2003-08-25 2003-12-23 Reagent resistance stabiliser for nitro-cellulose propellants and solid rocket propellant and method for treatment thereof
PCT/RU2003/000573 WO2005019178A1 (fr) 2003-08-25 2003-12-23 Stabilisateur de la stabilite chimique de poudres nitrocellulosiques et de propergols solides et procede de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003125792/02A RU2229464C1 (ru) 2003-08-25 2003-08-25 Стабилизатор химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив и способ их обработки

Publications (1)

Publication Number Publication Date
RU2229464C1 true RU2229464C1 (ru) 2004-05-27

Family

ID=32679734

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003125792/02A RU2229464C1 (ru) 2003-08-25 2003-08-25 Стабилизатор химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив и способ их обработки

Country Status (1)

Country Link
RU (1) RU2229464C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Краткий энциклопедический словарь Энергетические конденсированные системы./ Под ред. Жукова Б.П. - М.: Янус-К 2000, с.407-408. *

Similar Documents

Publication Publication Date Title
AU2017382081A1 (en) Emulsion explosive composition and preparation method therefor
RU2199512C2 (ru) Малочувствительные взрывчатые составы на основе гексанитрогексаазаизовюрцитана и взрывчатые составы на их основе
RU2229464C1 (ru) Стабилизатор химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив и способ их обработки
KR20170134332A (ko) 니트로셀룰로오스계 추진제를 위한 아이오논 안정화제
RU2229467C1 (ru) Стабилизатор химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив и способ их обработки
WO2010120852A1 (en) Cyclic energetic nitramines desensitized with linear nitramines
RU2229466C1 (ru) Способ стабилизации химической стойкости нитроцеллюлозных порохов для ствольных и ракетных систем
DE3744680C2 (de) Energiereiche Materialien sowie deren Verwendung
CA2301392C (en) Desensitisation of energetic materials
RU2244703C1 (ru) Стабилизатор химической стойкости пороха, твердого ракетного топлива и газогенерирующего состава на основе нитроцеллюлозы и способ их обработки
RU2214848C1 (ru) Аэрозольгенерирующий энергетический полимерный композит для систем объемного пожаротушения
RU2229465C1 (ru) Стабилизатор химической стойкости нитроцеллюлозных порохов и твердых ракетных топлив и способ их обработки
US3466205A (en) Explosive containing hexogene or octogene and a nitrated n-methylaniline
JP6998625B2 (ja) 銃弾用シングルベース推進粉末のための組成物、およびそのような組成物で提供される銃弾
AU756219B2 (en) High energy gun propellants
US4214929A (en) Liquid monopropellants containing dissolved combustion modifiers
FR2692571A1 (fr) Composition de poudre à base de nitrocellulose.
RU2782580C1 (ru) Сферический порох для строительно-монтажных патронов
RU2253644C1 (ru) Стабилизатор химической стойкости нитроцеллюлозного вещества - пороха, твердого ракетного топлива, газогенерирующего состава и способ обработки нитроцеллюлозного вещества
Orbovic et al. Production of exploding materials for electro explosive devices
RU2009110C1 (ru) Взрывчатое вещество
JP2006151791A (ja) ニトラミン発射薬
RU2105747C1 (ru) Способ получения баллиститного пороха
RU2255079C2 (ru) Способ гранулирования взрывчатого состава
US4128583A (en) Difluoramino compounds

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080826