RU2222337C1 - Способ получения иммуностимулятора - Google Patents
Способ получения иммуностимулятора Download PDFInfo
- Publication number
- RU2222337C1 RU2222337C1 RU2002117863/13A RU2002117863A RU2222337C1 RU 2222337 C1 RU2222337 C1 RU 2222337C1 RU 2002117863/13 A RU2002117863/13 A RU 2002117863/13A RU 2002117863 A RU2002117863 A RU 2002117863A RU 2222337 C1 RU2222337 C1 RU 2222337C1
- Authority
- RU
- Russia
- Prior art keywords
- membrane
- immunostimulant
- solution
- molecular weight
- ultrafiltration
- Prior art date
Links
Images
Landscapes
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Изобретение относится к пищевой и медицинской промышленности, в частности к способу получения иммуностимулятора из нервной ткани морских гидробионтов. Сущность изобретения заключается в следующем: замороженное сырье (нервную ткань головоногих моллюсков: кальмаров, каракатиц, осьминогов; мозг морских млекопитающих: белух, кашалотов, китов, моржей, ларги, нерпы, лахтака, акибы; мозг рыб: лососевых, осетровых, сельдевых, тресковых, камбаловых, окуневых) размораживают, измельчают, экстрагируют 3%-ным раствором уксусной кислоты с добавлением хлористого цинка, центрифугируют, отделяют надосадочную жидкость и выделяют целевой продукт путем ультрафильтрации и диафильтрации, которые проводят в две стадии на двух мембранах с различным пределом разделения по молекулярной массе. Иммуностимулятор, полученный по предлагаемому способу, имеет четко ограниченные пределы молекулярной массы 1000 - 10000-15000 Да, обладает более высокой иммунологической активностью по сравнению с иммуностимулятором, полученным по способу-прототипу, и дополнительно обладает антиоксидантной и холинэргической способностью. 1 з.п. ф-лы, 5 табл.
Description
Изобретение относится к области пищевой и медицинской промышленности, в частности к способу получения иммуностимулятора из нервной ткани морских гидробионтов, дополнительно обладающего антиоксидантной и холинэргической способностью. Полученный предлагаемым способом иммуностимулятор может применяться как биологически активная добавка к пище (перорально) и как лечебное инъекционное средство для людей и животных.
Известен способ получения биологически активного вещества, обладающего иммуностимулирующим действием (Патент SU 1487815, А 61 К 35/74, приоритет от 17.08.83. Способ получения биологически активного вещества, обладающего иммуностимулирующим действием. Ив-Мари Паж. Кристин Вандерховен.), путем выращивания бактерий с последующим лизисом полученной биомассы и отделением лизата от нелизированных бактерий, отличающийся тем, что, с целью повышения активности целевого продукта, из бактерий используют штаммы Klebsiella pneumoniae CNCM 58.5 и Escherichia coli серовара 0119: В 14 CNCM 62.23. выращивание каждого штамма осуществляется раздельно, лизис биомасс проводят до остаточной концентрации 1000 бактериальных клеток/мл и менее с помощью гомологичных бактериофагов при множественности заражения 0,02-0,1 и полученные лизаты объединяют.
Известен способ получения иммуностимулятора из тимуса (Патент РФ 1112606 A1, 6 A 61 К 38/22, приоритет от 27.04.82. Способ получения иммуностимулятора из тимуса. Морозов В.Г., Хавинсон В.Х., Сидорова Н.Д., Константинов В. Л. , Чайка О.В., Говорова Н.Ф.), включающий очистку сырья, измельчение с последующим выделением целевого продукта, отличающийся тем, что, с целью увеличения активности и выхода целевого продукта, после очистки сырья его замораживают и измельченное сырье экстрагируют 5-6 объемами 3%-ного раствора уксусной кислоты, содержащего хлористый цинк при соотношении хлористого цинка и уксусной кислоты 1:1000 в течение 48-72 ч, затем отделяют надосадочную жидкость и выделяют целевой продукт осаждением пятью объемами ацетона при t=(-3)-(-5)oС, полученный осадок экстрагируют водой при pH 6-7 и комнатной температуре в течение 1-3 ч.
Известен способ получения биологически активных пептидов из животного сырья (Патент РФ 94042209 A1, 6 A 61 К 38/17, приоритет от 24.11.94. Способ получения биологически активных пептидов из животного сырья. Мельников Н.В., Кулагин В. Ф. , Юсупов В. Г. ), включающий измельчение органов или тканей крупного рогатого скота, экстракцию уксусной кислотой и выделение целевого продукта из экстракта с последующей доочисткой ультрафильтрацией, отличающийся тем, что после экстракции сырье подвергают замораживанию при температуре минус 5-20oС с последующим оттаиванием и осветлением экстракта, а заключительную очистку проводят методом ультрафильтрации на мембранах с порогом пропускания 10 кДа.
Известен способ получения иммуностимулятора (Патент РФ 1522485, 5 А 61 К 35/30, приоритет от 23.13.87. Способ получения иммуностимулятора. Хавинсон В. Х. , Морозов В.Х., Хмельницкая Н.М., Серый С.В.) путем очистки сырья, замораживания, измельчения, экстракции 3%-ным раствором уксусной кислоты с добавлением хлористого цинка, фильтрования, обработки надосадочной жидкости ацетоном, отделения осадка, растворения и лиофилизации целевого продукта, отличающийся тем, что, с целью повышения специфической активности целевого продукта, в качестве сырья используют миндалины человека, а экстракцию проводят в 20-25 объемах уксусной кислоты.
Известен способ получения иммуностимулятора (Патент РФ 2091073 С1, 6 А 61 К 35/60, приоритет от 27.12.94. Способ получения иммуностимулятора. Сафонова Г.М., Петров В.Ф., Колчанова Н.А., Фарцейгер А.Г. и др.), включающий замораживание сырья, измельчение, экстрагирование 3%-ным раствором уксусной кислоты с добавлением хлористого цинка, фильтрование, отделение надосадочной жидкости и выделение целевого продукта, отличающийся тем, что в качестве сырья используют молоки лососевых рыб, экстрагирование проводят в течение 24-48 ч с последующими ультра- и диафильтрацией экстракта в растворе 0,9% хлорида натрия с pH 6,0-6,5 через пористый материал с пределом разделения 5000 Да.
Наиболее близким техническим решением является способ получения иммуностимулятора (Патент РФ 2091072 С1, 6 А 61 К 35/60, приоритет от 10.03.93. Сафонова Г. М., Петров В.Ф., Колчанова Н.А., Фарцейгер А.Г. и др.). Способ, использующий в качестве сырья ганглии кальмара, замораживание сырья, его измельчение, экстрагирование 3%-ным раствором уксусной кислоты с добавлением хлористого цинка, фильтрование, отделение надосадочной жидкости и выделение целевого продукта, отличающийся тем, что надосадочную жидкость подвергают последовательной стерилизующей фильтрации через мембранные фильтры с размерами пор 0,8; 0,45: 0,22 мкм в стерильных условиях. Очищенный стерильный фильтрат концентрируют в 5,5 раз на ультрафильтрацонной установке через пористый материал с пределом разделения 1000-5000 Да с последующей очисткой в подщелоченной до рН 9-10 воде, повторным концентрированием на том же пористом материале и стерилизацией.
К недостаткам способа-прототипа относится то, что не определено верхнее значение молекулярной массы препарата (хотя и указывается 10000 Да), оно ограничивается стерилизующей фильтрацией на фильтрах с наименьшим размером пор в 0,22 мкм, что соответствует 2200000 Да (2200 кДа) (Свенсон К., Уэбстер П. Клетка. М.: Мир, 1980, - с.303), и предназначен не для ограничения препарата по молекулярной массе, а для отделения клеток, осколков клеток и микроорганизмов. Недостатком способа-прототипа является отсутствие технологической операции по отделению веществ с молекулярной массой более 10000-15000 Да, что приводит к присутствию в препарате высокомолекулярных примесей, снижающих активность препарата, и проявлению аллергического эффекта. Этот недостаток не дает возможности пройти все фармакологические испытания препарата и получить разрешение Минздрава на его применение в качестве лекарственного средства.
Вторым недостатком способа-прототипа является то, что устанавливается нижний предел молекулярной массы 1000-5000 Да. То есть, если применяется ультрафильтрация с пределом разделения 5000 Да, то удаляются вещества с молекулярной массой от 1000 до 5000 Да. Происходит потеря высокоактивных пептидов с молекулярной массой от 2000 до 5000 Да. По данным авторов многих патентов, разработчиков пептидных биологически активных препаратов, полученных методом кислотной экстракции, наиболее активными являются вещества пептидной природы (цитомедины) с молекулярной массой от 2000 до 10000 Да (Морозов В.Г., Хавинсон В. Х. Новый класс биологических регуляторов многоклеточных систем - цитомединов. //Успехи современной биологии. Т. 96, вып.3, 1983, - с.339-352; Анисимов В.Н., Хавинсон В.Х., Морозов В.Г. Роль пепетидов в регуляции гомеостаза: 20-летний опыт исследования. /Успехи современной биологии. Т. 113, вып. 6, 1993, - с.752-762; Морозов В.Г., Хавинсон В.Х. Роль клеточных медиаторов (цитомединов) в регуляции генетической активности // Известия академии наук СССР, серия биолог., М., 4, 1985, - с.581-587).
Ограничение высокомолекулярных веществ в препарате необходимо не только для получения продукта с наибольшей активностью, но и для обеспечения антиаллергенного эффекта, поскольку известно, что при инъекционном применении вещества белковой природы с молекулярной массой более 15 кДа, могут вызывать аллергический шок. К недостаткам способа-прототипа можно также отнести сложный и трудоемкий процесс предварительной последовательной стерилизующей фильтрации через фильтры с размерами пор 0,8; 0,45 и 0,22 мкм на начальном этапе технологического процесса, а затем снова переход к нестерильным условиям.
Задача, решаемая изобретением, - расширение сырьевой базы, упрощение способа получения иммуностимулятора, повышение активности и расширение сферы применения препарата.
Сущность изобретения заключаются в следующем:
замороженное сырье (нервную ткань головоногих моллюсков: кальмаров, каракатиц, осьминогов; мозг морских млекопитающих: белух, кашалотов, китов, моржей, ларги, нерпы, лахтака, акибы; мозг рыб: лососевых, осетровых, тресковых, сельдевых, камбаловых, окуневых) размораживают, измельчают, экстрагируют 3%-ным раствором уксусной кислоты с добавлением хлористого цинка, центрифугируют, отделяют надосадочную жидкость и выделяют целевой продукт путем ультрафильтрации и диафильтрации, которые проводят в две стадии на двух мембранах с различным пределом разделения по молекулярной массе; на первой стадии надосадочную жидкость, содержащую целевое вещество, подвергают ультрафильтрации на мембране с пределом разделения 10000-15000 Да; на второй стадии фильтрат, прошедший через поры мембраны с пределом разделения 10000-15000 Да, подвергают ультрафильтрации на мембране с пределом разделения 1000 Да. Раствор с целевым веществом от 1000 до 10000-15000 Да задерживается мембраной и концентрируется.
замороженное сырье (нервную ткань головоногих моллюсков: кальмаров, каракатиц, осьминогов; мозг морских млекопитающих: белух, кашалотов, китов, моржей, ларги, нерпы, лахтака, акибы; мозг рыб: лососевых, осетровых, тресковых, сельдевых, камбаловых, окуневых) размораживают, измельчают, экстрагируют 3%-ным раствором уксусной кислоты с добавлением хлористого цинка, центрифугируют, отделяют надосадочную жидкость и выделяют целевой продукт путем ультрафильтрации и диафильтрации, которые проводят в две стадии на двух мембранах с различным пределом разделения по молекулярной массе; на первой стадии надосадочную жидкость, содержащую целевое вещество, подвергают ультрафильтрации на мембране с пределом разделения 10000-15000 Да; на второй стадии фильтрат, прошедший через поры мембраны с пределом разделения 10000-15000 Да, подвергают ультрафильтрации на мембране с пределом разделения 1000 Да. Раствор с целевым веществом от 1000 до 10000-15000 Да задерживается мембраной и концентрируется.
На заключительной стадии проводят стерилизующую фильтрацию концентрированного раствора с целевым веществом через мембрану с величиной пор 0,05-0,22 мкм, готовый продукт высушивают.
Новым в заявляемом техническом решении является то, что:
I) надосадочную жидкость (раствор с целевым веществом) подвергают фильтрации и диафильтрации в две стадии на двух мембранах с различным пределом разделения, обеспечивающих точное ограничение нижнего и верхнего предела молекулярной массы иммуностимулятора.
I) надосадочную жидкость (раствор с целевым веществом) подвергают фильтрации и диафильтрации в две стадии на двух мембранах с различным пределом разделения, обеспечивающих точное ограничение нижнего и верхнего предела молекулярной массы иммуностимулятора.
1 стадия - выделение целевого продукта проводят на мембране с пределом разделения 10000-15000 Да. Вещества с молекулярной массой менее 10000-15000 Да проходят через мембрану, а вещества с молекулярной массой более 10000-15000 Да задерживается мембраной, раствор при этом концентрируется в 15-20 раз. Далее, с целью наиболее полного перехода низкомолекулярной фракции (целевого вещества) в фильтрат, концентрат разбавляют водой в 3-4 раза и снова пропускают через ту же мембрану (диафильтрация). Раствор с веществами более 10000-15000 Да, не прошедший через мембрану при диафильтрации (концентрат) - удаляют.
2 стадия - раствор с целевым веществом (фильтрат) подвергают ультрафильтрации через мембрану с пределом разделения 1000 Да. На этом этапе низкомолекулярные примеси с молекулярной массой менее 1000 Да удаляются из целевого раствора, а вещества с молекулярной массой выше 1000 Да при этом задерживаются мембраной и концентрируются в 10-12 раз. С целью наибольшей очистки препарата от низкомолекулярных примесей раствор с целевым веществом (концентрат) разбавляют водой в 3-4 раза и проводят диафильтрацию. Таким образом, очищенный концентрат содержит низкомолекулярные пептиды с молекулярной массой от 1000 до 10000-15000 Да. При применении данного способа получения препарата в одну стадию отделяются все балластные вещества с молекулярной массой более 10000-15000 Да, во вторую - все примеси менее 1000.
II) Новым в способе является также то, что стерилизующая фильтрация применяется только на заключительном этапе, и осуществляется одним приемом через мембрану с размером пор 0,05-0,22 мкм.
Таким образом, преимуществом заявляемого способа получения иммуностимулятора по сравнению с прототипом являются:
1. Получаемый иммуностимулятор содержит в своем составе низкомолекулярные пептиды с молекулярной массой от 1000 до 10000-15000 Да;
2. Не требуется предварительная многоступенчатая стерилизующая фильтрация через фильтры с диаметром пор 0,8; 0-45 и 0,22 мкм;
3. Не требуется доочистка препарата в подщелоченной воде и повторная стерилизация.
1. Получаемый иммуностимулятор содержит в своем составе низкомолекулярные пептиды с молекулярной массой от 1000 до 10000-15000 Да;
2. Не требуется предварительная многоступенчатая стерилизующая фильтрация через фильтры с диаметром пор 0,8; 0-45 и 0,22 мкм;
3. Не требуется доочистка препарата в подщелоченной воде и повторная стерилизация.
В заявляемом способе применение ультрафильтрации на мембране 10000-15000 Да позволяет полностью избавиться от высокопептидных и белковых примесей, снижающих активность препарата и вызывающих аллергию, и получить препарат, обладающий высокой иммуностимулирующей активностью и дополнительно проявляющий антиоксидантную и холинэргическую способность.
Сущность способа поясняется примерами.
Пример 1.
10 кг замороженных ганглий кальмара размораживают до температуры минус 4oС в центре брикета и измельчают на электромясорубке. Экстракцию измельченных ганглий проводят в 50 л 3%-ного раствора уксусной кислоты с добавлением 50 г хлористого цинка. Время экстракции составляет 42 ч при периодическом перемешивании в течение 15 мин через каждые 1,5 ч. Экстракционную массу центрифугируют на центрифуге при 5000 об/мин в течение 20 мин. Надосадочную жидкость, которая является раствором с целевым веществом, отделяют и подвергают ультрафильтрации на мембране с пределом разделения 15000 Да. Раствор с целевым веществом (вещества с молекулярной массой менее 15000 Да) проходит через поры мембраны, вещества с молекулярной массой более 15000 Да задерживаются мембраной, при этом раствор концентрируется в 20 раз. Затем концентрат разбавляют водой в 3 раза и на той же мембране проводят диафильтрацию. Полученный концентрат удаляют в отходы, а раствор с целевым веществом, прошедший через поры мембраны (фильтрат) с веществами менее 15000 Да пропускают через ультрафильтрационную мембрану с пределом разделения 1000 Да для отделения неактивных низкомолекулярных примесей с молекулярной массой менее 1000 Да. Вещества с молекулярной массой менее 1000 Да проходят через поры мембраны и удаляются из раствора, а раствор с целевым веществом при этом концентрируется в 10 раз. Затем его разбавляют водой в три раза и проводят диафильтрацию. Фильтрат - раствор с веществами менее 1000 Да удаляют в отходы. Раствор с целевым веществом от 1000 до 15000 Да (концентрат) стерильно фильтруют на мембране с размером пор 0,05 мкм, разливают в стерильных условиях в ампулы с последующей лиофильной сушкой. Выход иммуностимулятора составил 105 г.
Пример 2
5 кг замороженного мозга осьминога размораживают до температуры минус 4oС в центре брикета и измельчают на мясорубке. Экстракцию измельченных ганглий проводят в 25 л 3%-ного раствора уксусной кислоты с добавлением 25 г хлористого цинка. Время экстракции - 46 ч при периодическом перемешивании в течение 10 мин через каждый час. Экстракционную массу центрифугируют на центрифуге при 4500 об/мин в течение 20 мин. Надосадочную жидкость, которая является раствором с целевым веществом, отделяют и подвергают ультрафильтрации на мембране с пределом разделения 10000 Да. Раствор с целевым веществом (веществами молекулярной массой менее 10000 Да) проходят через поры мембраны, а вещества более 10000 Да задерживается мембраной, при этом происходит концентрация раствора в 15 раз. Затем концентрат разбавляют водой в 3 раза и проводят диафильтрацию на той же мембране. Концентрат удаляют в отходы. Фильтрат (раствор с веществами менее 10000 Да) подвергают ультрафильтрации на мембране с пределом разделения 1000 Да. Вещества с молекулярной массой менее 1000 Да проходят через поры мембраны и удаляются из раствора, а раствор с целевым веществом (веществами 1000-10000 Да) при этом концентрируется в 12 раз. Концентрат в 4 раза разводят водой и проводят диафильтрацию на той же мембране. Фильтрат - раствор с веществами менее 1000 Да удаляют в отходы, а концентрированный раствор с целевым веществом молекулярной массой 1000-10000 Да стерильно фильтруют на мембранах с размером пор 0,22 мкм, разливают в стерильных условиях во флаконы с последующей лиофильной сушкой. Выход препарата составил 51 г.
5 кг замороженного мозга осьминога размораживают до температуры минус 4oС в центре брикета и измельчают на мясорубке. Экстракцию измельченных ганглий проводят в 25 л 3%-ного раствора уксусной кислоты с добавлением 25 г хлористого цинка. Время экстракции - 46 ч при периодическом перемешивании в течение 10 мин через каждый час. Экстракционную массу центрифугируют на центрифуге при 4500 об/мин в течение 20 мин. Надосадочную жидкость, которая является раствором с целевым веществом, отделяют и подвергают ультрафильтрации на мембране с пределом разделения 10000 Да. Раствор с целевым веществом (веществами молекулярной массой менее 10000 Да) проходят через поры мембраны, а вещества более 10000 Да задерживается мембраной, при этом происходит концентрация раствора в 15 раз. Затем концентрат разбавляют водой в 3 раза и проводят диафильтрацию на той же мембране. Концентрат удаляют в отходы. Фильтрат (раствор с веществами менее 10000 Да) подвергают ультрафильтрации на мембране с пределом разделения 1000 Да. Вещества с молекулярной массой менее 1000 Да проходят через поры мембраны и удаляются из раствора, а раствор с целевым веществом (веществами 1000-10000 Да) при этом концентрируется в 12 раз. Концентрат в 4 раза разводят водой и проводят диафильтрацию на той же мембране. Фильтрат - раствор с веществами менее 1000 Да удаляют в отходы, а концентрированный раствор с целевым веществом молекулярной массой 1000-10000 Да стерильно фильтруют на мембранах с размером пор 0,22 мкм, разливают в стерильных условиях во флаконы с последующей лиофильной сушкой. Выход препарата составил 51 г.
Пример 3
9 кг замороженного мозга кеты размораживают на воздухе до температуры минус 4oС в центре брикета и измельчают. Экстракцию измельченного мозга проводят в 45 литрах 3%-ного раствора уксусной кислоты с добавлением 45 г хлористого цинка. Время экстракции составляет 36 ч при периодическом перемешивании в течение 15 мин через каждые 1,5 ч. Экстракционную массу центрифугируют на центрифуге при 5000 об/мин в течение 20 мин. Надосадочную жидкость, являющуюся раствором с целевым веществом, отделяют и подвергают ультрафильтрации через мембрану с пределом разделения 10000 Да. Раствор с целевым веществом (веществами молекулярной массой менее 10000 Да) проходит через поры мембраны, а раствор, не прошедший через мембрану (с веществами более 10000 Да), при этом концентрируется в 18 раз. Затем этот концентрат разбавляют водой в 4 раза и проводят диафильтрацию на той же мембране. Концентрат удаляют в отходы. Фильтрат - раствор с целевым веществом молекулярной массы менее 10000 Да, (прошедший через поры мембраны), подвергают ультрафильтрации через мембрану с пределом разделения 1000 Да. Вещества с молекулярной массой менее 1000 Да проходят через поры фильтра и удаляются из раствора, а вещества с молекулярной массой от 1000 до 10000 Да (целевой продукт) задерживаются мембраной, раствор при этом концентрируется в 10 раз. Затем концентрат с целевым веществом разводят водой в 3 раза и на той же мембране подвергают диафильтрации. Раствор с веществами менее 1000 Да (фильтрат) удаляют в отходы. Раствор с целевым веществом молекулярной массой 1000-10000 Да (концентрат) подвергают стерилизующей фильтрации через мембрану с размером пор 0,05 мкм, разливают в ампулы в стерильных условиях с последующей лиофильной сушкой. Выход препарата составил 92 г.
9 кг замороженного мозга кеты размораживают на воздухе до температуры минус 4oС в центре брикета и измельчают. Экстракцию измельченного мозга проводят в 45 литрах 3%-ного раствора уксусной кислоты с добавлением 45 г хлористого цинка. Время экстракции составляет 36 ч при периодическом перемешивании в течение 15 мин через каждые 1,5 ч. Экстракционную массу центрифугируют на центрифуге при 5000 об/мин в течение 20 мин. Надосадочную жидкость, являющуюся раствором с целевым веществом, отделяют и подвергают ультрафильтрации через мембрану с пределом разделения 10000 Да. Раствор с целевым веществом (веществами молекулярной массой менее 10000 Да) проходит через поры мембраны, а раствор, не прошедший через мембрану (с веществами более 10000 Да), при этом концентрируется в 18 раз. Затем этот концентрат разбавляют водой в 4 раза и проводят диафильтрацию на той же мембране. Концентрат удаляют в отходы. Фильтрат - раствор с целевым веществом молекулярной массы менее 10000 Да, (прошедший через поры мембраны), подвергают ультрафильтрации через мембрану с пределом разделения 1000 Да. Вещества с молекулярной массой менее 1000 Да проходят через поры фильтра и удаляются из раствора, а вещества с молекулярной массой от 1000 до 10000 Да (целевой продукт) задерживаются мембраной, раствор при этом концентрируется в 10 раз. Затем концентрат с целевым веществом разводят водой в 3 раза и на той же мембране подвергают диафильтрации. Раствор с веществами менее 1000 Да (фильтрат) удаляют в отходы. Раствор с целевым веществом молекулярной массой 1000-10000 Да (концентрат) подвергают стерилизующей фильтрации через мембрану с размером пор 0,05 мкм, разливают в ампулы в стерильных условиях с последующей лиофильной сушкой. Выход препарата составил 92 г.
Пример 4
10 кг замороженного мозга ларги размораживают на воздухе до температуры минус 4oС в центре брикета и измельчают на электромясорубке. Экстракцию измельченного мозга ларги проводят в 50 литрах 3%-ного раствора уксусной кислоты с добавлением 50 г хлористого цинка. Время экстракции 48 ч при периодическом перемешивании в течение 15 мин через каждый час. Экстракционную массу центрифугируют на центрифуге при 5000 об/мин в течение 25 мин. Надосадочную жидкость, являющуюся раствором с целевым веществом, отделяют и подвергают ультрафильтрации на мембране с пределом разделения 15000 Да. Раствор с веществами менее 15000 Да проходит через поры мембраны (фильтрат), а вещества с молекулярной массой более 15000 Да задерживаются мембраной, при этом раствор концентрируется в 20 раз. Концентрат (раствор с веществами более 15000 Да) разбавляют водой в 4 раза и повторно пропускают через мембрану 15000 Да (диафильтрация). Концентрат удаляют в отходы. Фильтрат (раствор с веществами менее 15000 Да) подают на ультрафильтрационную колонку с мембраной 1000 Да. Вода с веществами менее 1000 Да проходит через поры мембраны и удаляется в отходы. Раствор с целевым веществом молекулярной массой от 1000 до 15000 Да при этом концентрируется в 10 раз. Концентрат подвергают стерилизующей фильтрации через мембрану с размером пор 0,22 мкм, разливают во флаконы в стерильных условиях с последующей лиофильной сушкой. Выход препарата составил 100 г.
10 кг замороженного мозга ларги размораживают на воздухе до температуры минус 4oС в центре брикета и измельчают на электромясорубке. Экстракцию измельченного мозга ларги проводят в 50 литрах 3%-ного раствора уксусной кислоты с добавлением 50 г хлористого цинка. Время экстракции 48 ч при периодическом перемешивании в течение 15 мин через каждый час. Экстракционную массу центрифугируют на центрифуге при 5000 об/мин в течение 25 мин. Надосадочную жидкость, являющуюся раствором с целевым веществом, отделяют и подвергают ультрафильтрации на мембране с пределом разделения 15000 Да. Раствор с веществами менее 15000 Да проходит через поры мембраны (фильтрат), а вещества с молекулярной массой более 15000 Да задерживаются мембраной, при этом раствор концентрируется в 20 раз. Концентрат (раствор с веществами более 15000 Да) разбавляют водой в 4 раза и повторно пропускают через мембрану 15000 Да (диафильтрация). Концентрат удаляют в отходы. Фильтрат (раствор с веществами менее 15000 Да) подают на ультрафильтрационную колонку с мембраной 1000 Да. Вода с веществами менее 1000 Да проходит через поры мембраны и удаляется в отходы. Раствор с целевым веществом молекулярной массой от 1000 до 15000 Да при этом концентрируется в 10 раз. Концентрат подвергают стерилизующей фильтрации через мембрану с размером пор 0,22 мкм, разливают во флаконы в стерильных условиях с последующей лиофильной сушкой. Выход препарата составил 100 г.
Пример 5
7 кг замороженного мозга белухи размораживают на воздухе до температуры минус 4oС в центре брикета и измельчают. Экстракцию измельченного мозга проводят в 35 литрах 3%-ного раствора уксусной кислоты с добавлением 35 г хлористого цинка в течение 40 ч при периодическом перемешивании в течение 15 мин через каждые 2 ч. Экстракционную массу центрифугируют при 4000 об/мин в течение 25 мин. Надосадочную жидкость, являющуюся раствором с целевым веществом, отделяют и подают на ультрафильтрационную установку для разделения на мембране с пределом разделения 10000 Да. Раствор с целевым веществом (веществами менее 10000 Да) проходит через поры мембраны, а раствор с веществами более 10000 Да (не прошедший через поры), при этом концентрируется в 18 раз. Затем концентрат разбавляют водой в 3 раза и на той же мембране подвергают диафильтрации. Концентрат удаляют в отходы. Фильтрат (раствор с целевым веществом молекулярной массой менее 10000 Да) подвергают ультрафильтрации на мембране с пределом разделения 1000 Да. Вещества с молекулярной массой менее 1000 Да проходят через поры мембраны и удаляются в отходы, при этом раствор с целевым продуктом (веществами с молекулярной массой от 1000 до 10000 Да) концентрируется в 10 раз. Затем концентрат на той же мембране подвергают диафильтрации, предварительно разбавив его в 3 раза водой. Фильтрат - раствор с примесями менее 1000 Да удаляют в отходы. Концентрат (раствор с веществами молекулярной массы от 1000 до 10000 Да) подвергают стерилизующей фильтрации на мембранах с размером пор 0,05 мкм, разливают в стерильных условиях в ампулы с последующей лиофильной сушкой. Выход препарата составил 70 г.
7 кг замороженного мозга белухи размораживают на воздухе до температуры минус 4oС в центре брикета и измельчают. Экстракцию измельченного мозга проводят в 35 литрах 3%-ного раствора уксусной кислоты с добавлением 35 г хлористого цинка в течение 40 ч при периодическом перемешивании в течение 15 мин через каждые 2 ч. Экстракционную массу центрифугируют при 4000 об/мин в течение 25 мин. Надосадочную жидкость, являющуюся раствором с целевым веществом, отделяют и подают на ультрафильтрационную установку для разделения на мембране с пределом разделения 10000 Да. Раствор с целевым веществом (веществами менее 10000 Да) проходит через поры мембраны, а раствор с веществами более 10000 Да (не прошедший через поры), при этом концентрируется в 18 раз. Затем концентрат разбавляют водой в 3 раза и на той же мембране подвергают диафильтрации. Концентрат удаляют в отходы. Фильтрат (раствор с целевым веществом молекулярной массой менее 10000 Да) подвергают ультрафильтрации на мембране с пределом разделения 1000 Да. Вещества с молекулярной массой менее 1000 Да проходят через поры мембраны и удаляются в отходы, при этом раствор с целевым продуктом (веществами с молекулярной массой от 1000 до 10000 Да) концентрируется в 10 раз. Затем концентрат на той же мембране подвергают диафильтрации, предварительно разбавив его в 3 раза водой. Фильтрат - раствор с примесями менее 1000 Да удаляют в отходы. Концентрат (раствор с веществами молекулярной массы от 1000 до 10000 Да) подвергают стерилизующей фильтрации на мембранах с размером пор 0,05 мкм, разливают в стерильных условиях в ампулы с последующей лиофильной сушкой. Выход препарата составил 70 г.
Были проведены физико-химические и иммунологические исследования иммуностимулятора, полученного по способу-прототипу, произведенному на предприятии-патентообладателе, и иммуностимуляторов, полученных по заявляемому способу.
1. Исследования физико-химических свойств иммуностимуляторов: молекулярную массу определяли методом электрофореза в полиакриламидном геле и гель-фильтрационной хроматографией; максимум поглощения оптической плотности растворов иммуностимуляторов концентрацией 1 мг/см3 определяли на спектрофотометре UV-260 фирмы Shimadzu в области длин волн от 250 до 300 нм; рН растворов определяли на рН-метре-миливольтметре-673; определение растворимости устанавливали по фармакопейной статье (Государственная фармакопея СССР, 1970).
Физико-химические свойства препаратов представлены в таблице 1 и 2.
Как следует из материалов таблицы 1, препарат, полученный по способу-прототипу, имеет самую низкую растворимость. По-видимому это связано с наличием в препарате высокомолекулярных веществ, обладающих меньшей способностью к растворению чем низкомолекулярные вещества. При добавлении 10%-ного раствора трихлоруксусной кислоты к 1%-ному раствору препарата, полученному по способу-прототипу, появляется осадок, что говорит о наличии в последнем белковых включений.
Гель-хроматографическими исследованиями и электрофорезом в полиакриламидном геле установлено, что иммуностимулятор, полученный по способу-прототипу, представляет собой вещества с молекулярной массой от 1000-5000 до 300000 Да и выше.
Иммуностимуляторы, полученные заявляемым способом, представляют собой вещества с молекулярной массой от 1000 до 10000 Да или от 1000 до 15000 Да. Отсутствие в этих препаратах высокомолекулярных белковых компонентов подтверждается тем, что при добавлении к 1%-ному раствору препарата 10%-ного раствора трихлоруксусной кислоты раствор препарата остается прозрачным.
Аминокислотный состав иммуностимуляторов, полученных из нервной ткани гидробионтов заявляемым способом, определяли на аминокислотном хроматографе "Hitachi-AAA-835".
Результаты исследований приведены в таблице 2.
Характерной особенностью аминокислотного состава иммуностимуляторов, полученных по заявляемому способу, является то, что в них преобладают аспарагиновая и глутаминовая кислоты. В сумме они составляют от 35,0 до 37,7% от суммы всех аминокислот. По мнению некоторых авторов, именно эти аминокислоты играют важную роль в работе иммунной системы и в проведении нервных импульсов (Кудряшов Ю.Б., Гончаренко Е.Н. Современные проблемы противолучевой химической защиты организма //Радиационная биология. Радиоэкология. - 1999. - Т. 39, 2-3. - С.197-211) (Пархоменко И.М., Граевская Е.Э., Гонсалес Г.М. Влияние мидийного гидролизата МИГИ-К на адаптивный ответ у стволовых клеток костного мозга мышей. // Радиационная биология. Радиоэкология. 1999. - Т.39, 2-3. - С.310-312).
2. Исследование иммунологических свойств иммуностимуляторов.
Иммунологическую активность препаратов изучали в соответствии с "Правилами доклинической оценки безопасности фармакологических свойств" в Московском НИИ питания РАМН, Пермской государственной фармацевтической академии и НИИ эпидемиологии и микробиологии СО РАМН г.Владивостока. Опыты выполнены на 260 мышах линии СВА, 90 крысах-самцах линии Вистар и 90 морских свинках. Было исследовано влияние иммуностимуляторов, полученных из нервной ткани гидробионтов на гуморальный и клеточный иммунный ответ по изменению: числа антителообразующих клеток (АОК) в селезенке, количества розеткообразующих клеток (РОК) в селезенке, титра гемагглютининов, гиперчувствительности замедленного типа.
Иммуностимуляторы вводили животным однократно внутрибрюшинно из расчета 0,005 мг на 1 кг массы тела (терапевтическая доза) и в количестве 0,05 мг/кг (десятикратная доза), или скармливали животным вместе с кормом в тех же дозах. При инъекционном применении препарат растворяли в 0,9%-ном растворе хлористого натрия и вводили по 0,1 мл. Контрольной группе вводили внутрибрюшинно по 0,1 мл 0-9%-ного раствора хлористого натрия. Результаты эксперимента приведены в таблице 3.
Из материалов таблицы следует, что самые высокие иммунологические показатели проявляют препараты, полученные из нервной ткани головоногих моллюсков, полученные по заявляемому способу. Особенно высокие показатели установлены у препарата из ганглий кальмара, его показатели на 83-140% превышают показатели контрольных животных. Иммуностимуляторы, полученные из мозга белухи, кеты и ларги, а также иммуностимулятор, полученный из ганглий кальмара по способу-прототипу, имеют одинаковые иммунологические показатели - от 44 до 100% выше, чем показатели контрольных животных.
В таблице 4 приведены данные по влиянию иммуностимулирующих препаратов, полученных по предлагаемому способу, на фагоцитарную активность макрофагов животных. Об активности препаратов судили по изменению фагоцитарного показателя (ФП - число фагоцитирующих клеток) и фагоцитарного числа (ФЧ - среднее число микробов, поглощенных одним макрофагом) по сравнению с контролем. Время наблюдения 1, 6, 12 и 24 часа. В качестве объекта фагоцитоза был взят Y. Pseudotuberculosis
Как следует из данных таблицы 4, при применении иммуностимулирующих препаратов, полученных предлагаемым способом, резко увеличивается фагоцитарная активность макрофагов опытных животных, причем резкого различия в активности препаратов не наблюдается. Самым активным является препарат из ганглий кальмара- его активность на 10-15% выше других препаратов. Увеличение дозы в 10 раз не оказывает значимого влияния на изменение активности препаратов.
Как следует из данных таблицы 4, при применении иммуностимулирующих препаратов, полученных предлагаемым способом, резко увеличивается фагоцитарная активность макрофагов опытных животных, причем резкого различия в активности препаратов не наблюдается. Самым активным является препарат из ганглий кальмара- его активность на 10-15% выше других препаратов. Увеличение дозы в 10 раз не оказывает значимого влияния на изменение активности препаратов.
При применении иммуностимуляторов в фагоцитарный процесс вовлекается уже в первые часы наблюдения большее, чем в контроле, количество макрофагов и значительно увеличивается число микроорганизмов, поглощенных одним макрофагом. Кроме того, под действием всех препаратов, полученных из нервной ткани гидробионтов, отмечается более полное и раннее завершение фагоцитарного процесса в макрофагах по сравнению с контролем.
На модели генерализованной инфекции, развивающейся в результате заражения большой дозой E.coli (млн. микробных клеток), была изучена способность иммуностимулирующих препаратов, полученных по заявляемому способу, защищать инфицированных животных. Инфицированные животные контрольной группы погибали в течение 3-х дней. Гибель последних составила 100%. Выживание опытных животных, которым скармливали иммуностимуляторы, составило: от 69,7 до 87,1%.
3. Исследование антиоксидантной и холинэргической активности. Об антиоксидантной активности препарата судили по изменению перекисного окисления липидов (ПОЛ) сыворотки крови людей, определение проводили по накоплению малонового альдегида (МДА) флюорометрическим методом (Семенов В.Я., Ярош А.М. //Укр. биохим. журн. - 1985. - Т.57. - С.50-52). Холинэстеразную (ХЭ) активность определяли в сыворотке крови людей колориметрическим методом Эллмана (Allaman G. H. L., Countney R.D., Anders V.D., Feather K.M. //Biochem Pharmacol. - 1961. - Vol.7. - P.88-95) с использованием в качестве субстрата ацетилтиохолина йодида (ICN, США). Известно, что в осуществлении трофической функции нервной системы велика роль холинергических систем, что проявляется в регуляции биохимических процессов клеток, функции их генетического аппарата, биомембран, системы циклических нуклеотидов, биосинтетических процессов (Голиков Н. С., Долго-Сабуров В.Б., Елаев Н.Р., Кулешов А.И.. Холинэргическая регуляция биохимических систем клетки. - М.: Медицина, 1985).
Оценку активности ХЭ и ПОЛ проводили у 20 практически здоровых людей в возрасте от 26 до 45 лет до приема препарата (контроль), в течение 10-дневного курса и через 1 месяц после прекращения приема препарата. Препарат применяли как добавку к пище из расчета 1,5 мг на человека три раза в день в течение 10 дней (Романенко В.А., Ковалев Н.Н., Еникеева Н.А. Эпштейн Л.М. Влияние биологически активной пищевой добавки из морских гидробионтов на холинэргическую активность и перекисное окисление липидов сыворотки крови человека. // Вопросы питания, 2000, 5, - с.17-19).
Результаты исследований приведены в таблице 5.
В результате исследования установлено, что исходно ПОЛ у обследованных оказался повышенным до 30,4 мкм/мл (норма 21-22 мкм/мл), что, по-видимому, связано с сезонными колебаниями этого показателя и с работой обследуемых, связанной с психоэмоциональными нагрузками. Под влиянием препарата, полученного по заявляемому способу, в течение всего срока наблюдения отмечается снижение ПОЛ сыворотки крови до значений, близких к норме. Также установлено четко выраженное повышение активности ХЭ сыворотки крови; ее "пик" (увеличение на 62,8%) сохранялся в течение всего периода наблюдения, постепенно понижаясь.
Полученные данные свидетельствуют о четко выраженной холинэргической и антиоксидантной активности заявляемого иммуностимулятора, в то время как препарат, полученный по способу-прототипу, такой активностью не обладает.
Таким образом, иммуностимулятор, полученный по заявляемому способу, имеет четко ограниченные пределы молекулярной массы, обладает более высокой иммунологической активностью по сравнению с иммуностимулятором, полученным по способу-прототипу, и дополнительно обладает антиоксидантной и холинэргической способностью.
Источники информации
1. Патент SU 1487815, А 61 К 35/74, приоритет от 17.08.83. Способ получения биологически активного вещества, обладающего иммуностимулирующим действием. Ив-Мари Паж, Кристин Вандерховен.
1. Патент SU 1487815, А 61 К 35/74, приоритет от 17.08.83. Способ получения биологически активного вещества, обладающего иммуностимулирующим действием. Ив-Мари Паж, Кристин Вандерховен.
2. Патент РФ 1112606 A1, 6 A 61 К 38/22, приоритет от 27.04.82. Способ получения иммуностимулятора из тимуса. Морозов В.Г., Хавинсон В.Х., Сидорова Н.Д., Константинов В.Л., Чайка О.В., Говорова Н.Ф.
3. Патент РФ 94042209 A1, 6 A 61 К 38/17, приоритет от 24.11.94. Способ получения биологически активных пептидов из животного сырья. Мельников Н.В., Кулагин В.Ф., Юсупов В.Г.
4. Патент РФ 1522485, 5 A 61 K 35/30, приоритет от 23.11.87. Способ получения иммуностимулятора. Хавинсон В.Х., Морозов В.Х., Хмельницкая Н.М., Серый С.В.
5. Патент РФ 2091073 С1, 6 А 61 К 35/60, приоритет от 27.12.94. Способ получения иммуностимулятора. Сафонова Г. М., Петров В.Ф., Колчанова Н.А., Фарцейгер А.Г. и др.
6. Патент РФ 2091072 С1, 6 А 61 К 35/60, приоритет от 10.03.93. Способ получения иммуностимулятора. Сафонова Г. М., Петров В.Ф., Колчанова Н.А., Фарцейгер А.Г. и др.
Claims (2)
1. Способ получения иммуностимулятора из нервной ткани гидробионтов, включающий измельчение сырья, экстрагирование его 3%-ным раствором уксусной кислоты с добавлением хлористого цинка, центрифугирование, отделение надосадочной жидкости, ультрафильтрацию и диафильтрацию надосадочной жидкости, стерилизующую фильтрацию и высушивание целевого продукта, отличающийся тем, что, с целью получения иммуностимулятора, дополнительно обладающего антиоксидантной и холинэргической активностью, ультрафильтрацию и диафильтрацию проводят в две стадии на двух мембранах с различным пределом разделения по молекулярной массе: на первой стадии надосадочную жидкость подвергают ультрафильтрации на мембране с пределом разделения 10000-15000 Да; на второй стадии фильтрат, прошедший через мембрану с пределом разделения 10000-15000 Да, подвергают ультрафильтрации на мембране с пределом разделения 1000 Да, а полученный концентрат подвергают стерилизующей фильтрации через мембрану с размером пор 0,05-0,22 мкм.
2. Способ по п.1, отличающийся тем, что в качестве сырья используют нервную ткань головоногих моллюсков: кальмаров, каракатиц, осьминогов; мозг морских млекопитающих: белух, кашалотов, китов, моржей, ларги, нерпы, лахтака, акибы; мозг рыб: лососевых, осетровых, тресковых, сельдевых, камбаловых, окуневых.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002117863/13A RU2222337C1 (ru) | 2002-07-03 | 2002-07-03 | Способ получения иммуностимулятора |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002117863/13A RU2222337C1 (ru) | 2002-07-03 | 2002-07-03 | Способ получения иммуностимулятора |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2002117863A RU2002117863A (ru) | 2003-12-27 |
RU2222337C1 true RU2222337C1 (ru) | 2004-01-27 |
Family
ID=32091305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2002117863/13A RU2222337C1 (ru) | 2002-07-03 | 2002-07-03 | Способ получения иммуностимулятора |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2222337C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009136805A1 (ru) * | 2008-05-04 | 2009-11-12 | Общество С Ограниченной Ответственностью "Makeha Рус" | Средство, обладающее иммуностимулирующим действием и способ его получения |
WO2011146036A1 (ru) * | 2010-05-18 | 2011-11-24 | Gogitidze Zurab Davidovych | Лекарственное средство полиорганного протекторного действия для лечения состояний, обусловленных клеточной дисфункцией |
RU2563816C1 (ru) * | 2014-07-28 | 2015-09-20 | Общество с ограниченной ответственностью "Биотехнологии" ООО "Биотехнологии" | Способ получения иммуностимулятора |
RU2635625C1 (ru) * | 2016-07-25 | 2017-11-14 | Федеральное государственное бюджетное научное учреждение "Тихоокеанский научно-исследовательский рыбохозяйственный центр" (ФГБНУ "ТИНРО-Центр") | Способ получения иммуностимулятора пептидной природы (Варианты) и БАД на его основе |
-
2002
- 2002-07-03 RU RU2002117863/13A patent/RU2222337C1/ru not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009136805A1 (ru) * | 2008-05-04 | 2009-11-12 | Общество С Ограниченной Ответственностью "Makeha Рус" | Средство, обладающее иммуностимулирующим действием и способ его получения |
WO2011146036A1 (ru) * | 2010-05-18 | 2011-11-24 | Gogitidze Zurab Davidovych | Лекарственное средство полиорганного протекторного действия для лечения состояний, обусловленных клеточной дисфункцией |
RU2563816C1 (ru) * | 2014-07-28 | 2015-09-20 | Общество с ограниченной ответственностью "Биотехнологии" ООО "Биотехнологии" | Способ получения иммуностимулятора |
RU2635625C1 (ru) * | 2016-07-25 | 2017-11-14 | Федеральное государственное бюджетное научное учреждение "Тихоокеанский научно-исследовательский рыбохозяйственный центр" (ФГБНУ "ТИНРО-Центр") | Способ получения иммуностимулятора пептидной природы (Варианты) и БАД на его основе |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5154964B2 (ja) | ローヤルゼリー分解酵素含有物 | |
CN104163847B (zh) | 蝇蛆活性蛋白肽的制备方法与所制备的蝇蛆活性蛋白肽及其用途 | |
RU2222337C1 (ru) | Способ получения иммуностимулятора | |
CN102167726A (zh) | 一种利用动物血液和脾脏分离提取活性多肽和免疫核糖核酸的方法 | |
CN115644455B (zh) | 牛脾肽粉在改善肠道功能中的用途 | |
FR2594847A1 (fr) | Procede de preparation de polypeptides biologiquement actifs, polypeptides obtenus et compositions les contenant | |
JPH03503530A (ja) | ヒト腫瘍治療薬およびその製造方法 | |
RU2171066C1 (ru) | Продукт, обогащенный свободными аминокислотами, и способ его получения | |
WO2015105905A1 (en) | Treating gingivostomatitis and demodectic mange | |
US20070212367A1 (en) | Novel immunologically active peptide fragments of a proline-rich polypeptide isolated from colostral mammalian fluids for treatment of viral and non-viral diseases or diseased conditions | |
RU2563816C1 (ru) | Способ получения иммуностимулятора | |
RU2132688C1 (ru) | Способ изготовления биологически активных препаратов из эмбриональных тканей | |
RU2635625C1 (ru) | Способ получения иммуностимулятора пептидной природы (Варианты) и БАД на его основе | |
RU2204262C2 (ru) | Способ получения биологически активного белкового концентрата, обогащенного панкреатической рибонуклеазой а, ангиогенином и лизоцимом, из молочного ультрафильтрата | |
RU2279888C1 (ru) | Аллергоид из яда пчел для аллерген-специфической иммунотерапии больных с аллергическими реакциями на ужаление пчелами и способ его получения | |
RU2225223C1 (ru) | Лиофилизированная антигерпетическая вакцина | |
RU2802057C1 (ru) | Способ выделения пептидов из гидролизата отходов от фармацевтической переработки пантов оленей | |
SU623556A1 (ru) | Способ получени гиалуронидазы | |
RU2059411C1 (ru) | Способ получения биологически активных веществ из пантов | |
JPH0967265A (ja) | 魚類病原ウイルスに対する抗ウイルス剤 | |
WO2013019145A2 (ru) | Биологически активный продукт для применения в ветеринарии и животноводстве, способ его получения и способы повышения выживаемости, стимуляции роста, иммуностимуляции и повышения общей неспецифической резистентности организма сельскохозяйственных животных | |
RU2128513C1 (ru) | Способ получения лечебного средства, регулирующего дифференциацию клетки | |
RU2041715C1 (ru) | Биологически активное средство, способ его получения, препарат, содержащий указанное средство, и способ использования препарата | |
WO2010044095A2 (en) | Novel immunologically active peptide fragments of a proline- rich polypeptide isolated from mammalian colostrums for treatment of viral and non-viral diseases or diseased conditions | |
EP0673652B1 (en) | Biologically active agent having immunomodulating properties, method for its obtaining and pharmaceutical preparation based on it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC43 | Official registration of the transfer of the exclusive right without contract for inventions |
Effective date: 20150820 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200704 |