RU2220211C2 - Способ выплавки стали в электродуговой печи - Google Patents

Способ выплавки стали в электродуговой печи Download PDF

Info

Publication number
RU2220211C2
RU2220211C2 RU2001134546/02A RU2001134546A RU2220211C2 RU 2220211 C2 RU2220211 C2 RU 2220211C2 RU 2001134546/02 A RU2001134546/02 A RU 2001134546/02A RU 2001134546 A RU2001134546 A RU 2001134546A RU 2220211 C2 RU2220211 C2 RU 2220211C2
Authority
RU
Russia
Prior art keywords
oxygen
melting
energy
electric arcs
melt
Prior art date
Application number
RU2001134546/02A
Other languages
English (en)
Other versions
RU2001134546A (ru
Inventor
Геннадий Аркадьевич Лозин
Николай Александрович Богданов
Вадим Владимирович Конюхов
Игорь Витальевич Деревянченко
Рустам Рифатович Бурнашев
Олег Леонидович Кучеренко
Original Assignee
Совместное закрытое акционерное общество "Молдавский металлургический завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Совместное закрытое акционерное общество "Молдавский металлургический завод" filed Critical Совместное закрытое акционерное общество "Молдавский металлургический завод"
Priority to RU2001134546/02A priority Critical patent/RU2220211C2/ru
Publication of RU2001134546A publication Critical patent/RU2001134546A/ru
Application granted granted Critical
Publication of RU2220211C2 publication Critical patent/RU2220211C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано при производстве стали в электродуговой печи. Способ выплавки стали в электродуговой печи включает периоды завалки металлошихты, ее разогрева и плавления с применением энергии электрических дуг и энергии факела газокислородных горелок, расход кислорода в которых по ходу плавки изменяют в сторону увеличения по отношению к теоретически необходимому его расходу для сжигания топлива. В процессе плавления металлошихты осуществляют подвод энергии к электрическим дугам с удельной мощностью от 300 до 450 кВт•ч/т расплава. К газокислородным горелкам осуществляют подвод энергии мощностью в пределах 7-23% от удельной мощности энергии, подаваемой к электрическим дугам. При этом осуществляют циклическое по ходу плавки дополнительное увеличение содержания кислорода в факеле газокислородной горелки по отношению к его исходному количеству. Включение газокислородных горелок производят после подвода энергии к электрическим дугам мощностью 5-15 кВт•ч/т расплава. Увеличение содержания кислорода в факеле производят после подвода энергии к электрическим дугам с удельной мощностью 20-45 кВт•ч/т расплава, сохраняют такой режим на протяжении подвода энергии к электрическим дугам с удельной мощностью 40-70 кВт•ч/т расплава. Последующие циклы увеличения содержания кислорода в факеле реализуют после очередного подвода энергии к электрическим дугам удельной мощностью 20-45 кВт•ч/т расплава. Технический результат - повышение эффективности процесса выплавки стали за счет ускорения темпа плавления шихты, снижение теплопотерь с отходящими газами, увеличение производительности, повышение экономичности использования топлива. 3 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области металлургии и может быть использовано при производстве стали в электродуговой печи.
Известен способ выплавки стали в электродуговой печи (Морозов А.Н. Современное производство стали в дуговых печах. Челябинск, Металлургия, 1987, с. 128-129), предусматривающий использование в период разогрева и плавления металлошихты факела дверных и комплекса стеновых газокислородных горелок. В процессе плавки горелки применяются одновременно с использованием энергии электрических дуг.
Основным назначением топливо-кислородных горелок является интенсивный разогрев и плавление шихты в "холодных" зонах рабочего пространства печи. В условиях современного электросталеплавильного производства их задачей рассматривается обеспечение одновременного (без существенного отставания) темпа расплавления шихты в центральной и периферийной частях ванны.
Известные решения энергообеспечения газокислородного факела предусматривают ряд вариантов использования горелок в устанавливаемом на плавку, стабильном по ее ходу режиме: при теоретически необходимом для полного сгорания топлива расходе кислорода (стехиометрическом соотношении топливо-кислород), в два раза превышающем расход газа; при расходе кислорода ниже теоретически необходимого примерно на 25-45% и при существенном избытке по ходу плавки.
Использование режима энергообеспечения факела горелок с неизменным (заданным, постоянным) соотношением энергоносителей в течение всего цикла их работы характеризуется рядом недостатков. В условиях применения теоретически необходимого (стехиометрического) соотношения газ-кислород процесс горения в замкнутом, заполненном металлошихтой пространстве печи отличается низким коэффициентом использования топлива из-за смешения составляющих факела. Дожигание продуктов частичного сгорания факела происходит за пределами рабочего пространства печи, определяя увеличение тепловых потерь с технологическими газами и являясь причиной перегрева конструкций газоотводящего тракта печи.
При подаче через горелку кислорода меньше теоретически необходимого негативные стороны вышерассмотренных показателей факела усугубляются. Использование факела с постоянно обеспечиваемым значительным избытком окислителя (кислорода) вызывает развитие процесса пылеобразования и угара металла с соответствующим снижением выхода годного металла.
Общим недостатком рассмотренных вариантов стабильного по ходу работы горелок энергообеспечения факела является отсутствие оптимального соотношения в составе количества топлива и окислителя в зависимости от изменения требований температурного режима нагреваемой металлошихты, ее качества и состояния расплавления. При этом темп плавления шихты и плавки в целом не удовлетворяет требованиям современного электросталеплавильного производства.
Наиболее близким по технической сущности к предлагаемому способу является способ выплавки стали с использованием стеновых газокислородных горелок, преимущественный период работы которых обеспечивается в стехиометрическом режиме и с увеличением расхода окислителя О2 по отношению к расходу топлива - CH4 до 3-х раз на завершающей стадии периода плавления второй порции металлошихты, загружаемой в подвалку. Увеличение окислительной способности факела реализуют для снижения температуры отходящих из печи газов в газоотводящем тракте дуговой печи и ликвидации перегрева его конструкций (Зубарев А.Г. Интенсификация плавки. М., Металлургия, 1972, с.36).
К недостаткам прототипа относится недостаточно эффективный процесс выплавки стали в электродуговой печи, т.к. подавляющий цикл работы горелок осуществляется в неизменном (стехиометрическом) режиме без учета изменения состава металлошихты, стадий ее разогрева и расплавления. Управление качеством факела осуществляется только на завершающей стадии плавления шихты.
Задачей, на решение которой направлено настоящее изобретение, является разработка способа, обладающего повышенной эффективностью, процесса выплавки стали в электродуговой печи за счет ускорения темпа плавления металлошихты, высокой производительности дуговой печи в целом при одновременном повышении экономичности использования топлива в рабочем пространстве печи и снижении теплопотерь с отходящими технологическими газами по ходу цикла термообработки шихты газокислородным факелом.
Поставленная задача решается тем, что в известном способе выплавки стали в электродуговой печи, включающем периоды завалки металлошихты, ее разогрева и плавления с применением в периоды разогрева и плавления шихты энергии электрических дуг и энергии факела газокислородных горелок, расход кислорода которых по ходу плавки изменяют в сторону увеличения по отношению к теоретически необходимому его расходу для сжигания топлива, в процессе плавления металлошихты осуществляют подвод энергии к электрическим дугам с удельной мощностью в диапазоне от 300 до 450 кВт•ч на тонну расплава, а к газокислородным горелкам осуществляют подвод энергии мощностью в пределах 7-23% от удельной мощности энергии, подаваемой к электрическим дугам, при этом осуществляют циклическое по ходу плавки дополнительное увеличение содержания кислорода в факеле газокислородной горелки по отношению к его исходному количеству, при этом включение газокислородных горелок производят после подвода энергии к электрическим дугам удельной мощностью 5-15 кВт•ч/т расплава, а увеличение содержания кислорода в факеле производят после подвода энергии к электрическим дугам удельной мощности в диапазоне 20-45 кВт•ч на тонну расплава, сохраняют такой режим на протяжении подвода энергии к электрическим дугам удельной мощности в диапазоне 40-70 кВт•ч на тонну расплава, а последующие циклы увеличения содержания кислорода в факеле реализуют после очередного подвода энергии к электрическим дугам удельной мощности в диапазоне 20-45 кВт•ч на тонну расплава.
Возможны и другие варианты осуществления способа, согласно которым необходимо, чтобы:
- по мере увеличения теплосодержания шихты при обработке ее факелом газокислородной горелки длительность цикла ее работы с повышенным расходом кислорода увеличивали бы на 10-30% по отношению к предыдущему аналогичному периоду;
- по мере увеличения введенной в печь энергии увеличивали бы окислительную способность факела;
- содержание кислорода в факеле изменяли бы по ходу проведения любого (каждого), осуществляемого циклично режима его энергообеспечения.
Изобретение обладает новизной, что следует из сравнения с прототипом, изобретательским уровнем, так как явно не следует из существующего уровня техники и осуществимо в практических условиях высокоинтенсивного сталеплавильного производства при помощи существующих средств производства.
Принципиальная схема термообработки металлошихты газокислородным факелом согласно изобретению в сравнении с известными решениями схематично представлена на чертеже.
Сущность способа выплавки стали в электродуговой печи поясняется следующим.
Требования современного высокоинтенсивного темпа электроплавки (при обеспечении производительности электродуговой печи 0,8-1,0 млн т стали в год или при достижения производства 24-25 плавок/сут) диктуют необходимость использования энергии, подводимой к электрическим дугам удельной мощностью в диапазоне от 300 до 450 кВт•ч на 1 т расплава с одновременным использованием 30-70 кВт•ч на одну тонну расплава альтернативной энергии, например от газокислородных горелок, обеспечивая ее в количестве от 7 до 23% от удельной мощности энергии, подводимой к электрическим дугам.
В практике электросталеплавильного производства включение газокислородных горелок в работу производят после выдержки определенной паузы от начала плавления металлошихты, определяемой периодом подвода энергии к электрическим дугам удельной мощностью в диапазоне 5-15 кВт•ч на тонну расплава от начала включения дуги, при этом рабочее пространство печи с шихтой прогревается, что позволяет обеспечить самопроизвольное воспламенение факела при включении газокислородных горелок.
Начальный этап работы газокислородных горелок осуществляют при постоянном режиме энергоснабжения факела, например при стехиометрическом соотношении природного газа (СН4) к кислороду (O2) или с определенным (на 20-30%) избытком в нем кислорода. Развитие факела в заполненном шихтой рабочем пространстве сдерживается, но в результате его воздействия в период отработки 20-45 кВт•ч/т электрической удельной мощности дуги в относительно холодной шихте образуются локальные высокотемпературные зоны плавления. Вследствие неполного сгорания газа при его неудовлетворительном смешении с О2 и окислении железа содержащимися в продуктах сгорания CO2 и Н2О с образованием СО и H2 окислительная способность атмосферы, заполняющей зону плавления, резко снижается и темп плавления затормаживается.
Продолжительность нагрева шихты в указанном режиме менее длительности ввода в печь 20 кВт•ч/т удельной мощности электроэнергии не позволяет образовать в массе шихты высокотемпературную зону плавления. При отработке более 45 кВт•ч/т удельной мощности электроэнергии сдерживаемый уменьшающимся окислительным потенциалом заполняющей зону плавления газовой среды темп плавления не позволяет обеспечить интенсификацию плавки факелом используемого состава. Указанный диапазон 20 - 45 кВт•ч/т получен экспериментальным путем.
Переход на цикл работы газокислородных горелок с увеличенным, по отношению к предыдущему, расходом кислорода позволяет, повышая окислительный потенциал газовой среды в зоне плавления, обеспечить развитие процесса окислительного плавления металлошихты, характеризующегося ускоренным темпом. Часть кислорода при этом расходуется на дожигание продуктов полураспада газа (топлива), а основная часть - на окисление компонентов шихты. Энергетическое обоснование ускоренного темпа окислительного плавления определяется энергией, выделяемой в результате развития окислительных реакций с железом и углеродом. В период, ограниченный длительностью ввода в ванну печи 40-70 кВт•ч/т удельной мощности электроэнергии, повышенный расход кислорода практически не успевает вызвать существенного угара металла и сокращения выхода годного расплава. При достаточном содержании углерода в шихте первоначально окислившееся железо в значительной части восстанавливается.
При отработке менее 40 кВт•ч/т удельной мощности энергии дуги не достигается формирование импульса для обеспечения ускоренного темпа плавления металла. При использовании более 70 кВт•ч/т удельной мощности развивается активизация процесса пылеобразования и угара металла.
Использование той или иной степени избытка кислорода в факеле в рассматриваемых условиях определяется качеством и составом шихты. Увеличенное содержание кислорода целесообразно использовать при загрязнении шихты органическими соединениями, при обработке крупногабаритного лома с повышенной плотностью и при использовании лома с повышенным содержанием углерода. Целесообразность последующей термообработки с возвратом к изначальному, характеризующемуся ограниченным избытком кислорода режиму работы газокислородных горелок определяется последовательным затормаживанием (сдерживанием) темпа плавления металла по мере снижения содержания углерода в зоне контакта факела с шихтой и снижением энергетического потенциала реакции обезуглероживания. Рассматриваемые условия характеризуются понижением температуры технологических газов вследствие затухания активности химических реакций и увеличением интенсивности пылеобразования.
Длительность периода вторичного цикла использования факела газокислородных горелок с ограниченным окислительным потенциалом, а также периодичность последующих циклов повышения содержания в нем кислорода определяется уже изложенными выше условиями.
По мере увеличения теплосодержания шихты при обработке ее факелом длительность окислительного периода увеличивается на 10-30% по отношению к предыдущему аналогичному периоду. Это вызвано снижением доли теплового потока, передаваемого от факела, работающего в режиме энергообеспечения, близком к стехиометрическому, вследствие прогрева шихты и уменьшения перепада температур между факелом и нагреваемым металлом, и значительного увеличения доли тепла, вносимого от химических реакций окисления. Увеличение последующего окислительного периода на 10% рекомендуется применять при использовании в металлургическом переделе "тяжелого" лома, 30%-ное увеличение при использовании легковесного габаритного лома.
Увеличение окислительного потенциала факела в последующем окислительном цикле обосновывается расширением площади контакта факела и нагреваемой шихты, приводящего к увеличению объемов выделения продуктов окисления (СО и H2). Увеличение окислительного потенциала факела в количественном выражении регламентируется вышеперечисленным составом шихты.
В зависимости от требований конкретного сталеплавильного производства (качества металлошихты, ее состава, энергообеспечения плавки и т.д.) содержание кислорода в факеле (его окислительную способность) может организованно изменяться в ту или иную сторону по ходу обеспечения каждого из вышеперечисленных режимов использования факела.
Использование управляемого режима окислительного потенциала газокислородного факела в процессе периода нагрева и плавления шихты позволяет интенсифицировать темп расплавления металлошихты (сократить ее длительность), расположенной (распределяемой) в периферийных "холодных" зонах рабочего пространства печи и плавки в целом, обеспечить современные требования энергоснабжения высокоскоростного темпа электродугового плавления. При этом достигается совершенствование технико-экономических показателей технологического процесса за счет увеличения производительности печи.
Длительность использования факела в новых, управляемых условиях его энергоснабжения не изменяется.
Реализация предлагаемого режима энергоснабжения плавки легко осуществимо в практических условиях за счет совершенствования системы управления работы комплекса газокислородных горелок любой конструкции.
Контроль эффективности использования изменяемого окислительного потенциала факела обеспечивается с помощью определений температуры и запыленности технологических газов.

Claims (4)

1. Способ выплавки стали в электродуговой печи, включающий периоды завалки металлошихты, ее разогрева и плавления с применением в периоды разогрева и плавления шихты энергии электрических дуг и энергии факела газокислородных горелок, расход кислорода в которых по ходу плавки изменяют в сторону увеличения по отношению к теоретически необходимому его расходу для сжигания топлива, отличающийся тем, что в процессе плавления металлошихты осуществляют подвод энергии к электрическим дугам с удельной мощностью в диапазоне от 300 до 450 кВт·ч на 1 т расплава, а к газокислородным горелкам осуществляют подвод энергии мощностью в пределах 7-23% от удельной мощности энергии, подаваемой к электрическим дугам, при этом осуществляют циклическое по ходу плавки дополнительное увеличение содержания кислорода в факеле газокислородной горелки по отношению к его исходному количеству, при этом включение газокислородных горелок производят после подвода энергии к электрическим дугам удельной мощностью 5-15 кВт·ч/т расплава, а увеличение содержания кислорода в факеле производят после подвода энергии к электрическим дугам удельной мощности в диапазоне 20-45 кВт·ч на 1 т расплава, сохраняют такой режим на протяжении подвода энергии к электрическим дугам удельной мощности в диапазоне 40-70 кВт·ч на 1 т расплава, а последующие циклы увеличения содержания кислорода в факеле реализуют после очередного подвода энергии к электрическим дугам удельной мощности в диапазоне 20-45 кВт·ч на 1 т расплава.
2. Способ по п.1, отличающийся тем, что по мере увеличения теплосодержания шихты при обработке ее факелом газокислородной горелки длительность цикла ее работы с повышенным расходом кислорода увеличивают на 10-30% по отношению к предыдущему аналогичному периоду.
3. Способ по 1, отличающийся тем, что по мере увеличения введенной в печь энергии окислительную способность факела увеличивают.
4. Способ по п.1, отличающийся тем, что содержание кислорода в факеле изменяют по ходу проведения каждого осуществляемого циклично режима его энергообеспечения.
RU2001134546/02A 2001-12-21 2001-12-21 Способ выплавки стали в электродуговой печи RU2220211C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001134546/02A RU2220211C2 (ru) 2001-12-21 2001-12-21 Способ выплавки стали в электродуговой печи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001134546/02A RU2220211C2 (ru) 2001-12-21 2001-12-21 Способ выплавки стали в электродуговой печи

Publications (2)

Publication Number Publication Date
RU2001134546A RU2001134546A (ru) 2003-09-27
RU2220211C2 true RU2220211C2 (ru) 2003-12-27

Family

ID=32065761

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001134546/02A RU2220211C2 (ru) 2001-12-21 2001-12-21 Способ выплавки стали в электродуговой печи

Country Status (1)

Country Link
RU (1) RU2220211C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503725C2 (ru) * 2009-07-31 2014-01-10 Сименс Акциенгезелльшафт Способ динамического регулирования по меньшей мере одного блока, содержащего по меньшей мере одну горелку, а также устройство для выполнения способа

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЗУБАРЕВ А.Г. Интенсификация электроплавки. - М.: Металлургия, 1972, с.36. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503725C2 (ru) * 2009-07-31 2014-01-10 Сименс Акциенгезелльшафт Способ динамического регулирования по меньшей мере одного блока, содержащего по меньшей мере одну горелку, а также устройство для выполнения способа

Similar Documents

Publication Publication Date Title
RU2034040C1 (ru) Способ производства стали
CA2198901C (en) Method and apparatus for electric steelmaking
KR0140022B1 (ko) 교대 에너지원을 갖는 전기아아크로 및 이의 작동방법
RU2261922C2 (ru) Способ получения металлов и металлических сплавов
CN1120653A (zh) 电弧炉后燃方法
RU2001115052A (ru) Способ получения металлического железа и устройство для его осуществления
CA2449774A1 (en) Method for melting and decarburization of iron carbon melts
JPS6232246B2 (ru)
US4504308A (en) Method of operating a metallurgical plant
JPH0726318A (ja) 製鋼用電気炉の操業方法
RU2220211C2 (ru) Способ выплавки стали в электродуговой печи
JPH08504937A (ja) コークス燃焼キュポラで鉄系金属材料を溶解する方法及び装置
RU2210601C2 (ru) Способ восстановления и плавления металла
WO2010094337A1 (en) Aluminium melting process and device
BRPI0406863A (pt) Processo de fusão para a produção de ferro
US5336296A (en) Method of obtaining steel in a liquid bath and the device to carry it out
US4110108A (en) Method of producing cast iron
SU1142514A1 (ru) Способ рафинировани расплавленного металла
SU1312104A1 (ru) Способ выплавки стали в дуговой сталеплавильной печи
RU2001134546A (ru) Способ выплавки стали в электродуговой печи
RU2437941C1 (ru) Способ выплавки стали в дуговой сталеплавильной печи с повышенным расходом жидкого чугуна
SU996459A1 (ru) Способ интенсификации плавлени шихты в дуговой сталеплавильной печи
RU2206623C2 (ru) Способ выплавки стали в конвертере
RU2382824C1 (ru) Способ выплавки стали
SU1456471A1 (ru) Способ отоплени подовых печей

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101222