RU2218290C2 - Система для преобразования самолета самоподдерживаемого горизонтального полета и горизонтального взлета в гибридный комбинированный самолет самоподдерживаемого горизонтального полета с вертикальным взлетом и посадкой - Google Patents

Система для преобразования самолета самоподдерживаемого горизонтального полета и горизонтального взлета в гибридный комбинированный самолет самоподдерживаемого горизонтального полета с вертикальным взлетом и посадкой Download PDF

Info

Publication number
RU2218290C2
RU2218290C2 RU2000114837/11A RU2000114837A RU2218290C2 RU 2218290 C2 RU2218290 C2 RU 2218290C2 RU 2000114837/11 A RU2000114837/11 A RU 2000114837/11A RU 2000114837 A RU2000114837 A RU 2000114837A RU 2218290 C2 RU2218290 C2 RU 2218290C2
Authority
RU
Russia
Prior art keywords
aircraft
landing
horizontal
flight
horizontal flight
Prior art date
Application number
RU2000114837/11A
Other languages
English (en)
Other versions
RU2000114837A (ru
Inventor
Франко КАПАННА
Original Assignee
Франко КАПАННА
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Франко КАПАННА filed Critical Франко КАПАННА
Publication of RU2000114837A publication Critical patent/RU2000114837A/ru
Application granted granted Critical
Publication of RU2218290C2 publication Critical patent/RU2218290C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/023Aircraft characterised by the type or position of power plant of rocket type, e.g. for assisting taking-off or braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0083Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by several motors of different type

Abstract

Изобретение относится к авиации. Система содержит средства (8) перемещения вперед самолета и гидравлическую силовую установку, соединенную с основными двигателями самолета и предназначенную для привода в действие лопастного несущего винта (1) для вертикального взлета и посадки. Система снабжена дополнительным двигателем (2), предназначенным для установки в хвостовой и/или нижней части самолета с возможностью постепенного наклона и поворота между двумя крайними, вертикальным и горизонтальным положениями. Средства 8 перемещения вперед самолета отключены во время вертикального взлета и посадки и на переходной стадии и включены во время самоподдерживаемого горизонтального полета. Лопастной несущий винт, дополнительный двигатель включены во время вертикального взлета и посадки и на переходной стадии и отключены во время самоподдерживаемого горизонтального полета. Изобретение направлено на повышение экономичности. 4 з.п. ф-лы, 19 ил.

Description

Изобретение относится к системе для преобразования самолета самоподдерживаемого горизонтального полета и горизонтального взлета в гибридный комбинированный самолет самоподдерживаемого горизонтального полета с вертикальными взлетом и посадкой.
Более подробно, изобретение касается системы, позволяющей преобразовать имеющиеся обычные самолеты в самолеты горизонтального полета с вертикальным взлетом и посадкой при помощи весьма несложных и не очень дорогостоящих работ по переоборудованию.
Хорошо известно, что с практической точки зрения в качестве основного преимущества летательных аппаратов с вертикальным взлетом и посадкой, известных также как ВВП (Вертикальный Взлет и Посадка), можно указать на их способность вытащить кого угодно, что угодно и откуда угодно при использовании их в транспортных целях, в службах защиты окружающей среды и в государственных спасательных службах, если пока оставить в стороне вопрос о повышенных расходах, связанных с их использованием.
Этим преимуществам противостоит высокая эксплуатационная стоимость существующей ВВП-техники (особенно это относится к вертолетам) по сравнению с другими транспортными средствами.
Повышенная стоимость связана с очень большим количеством энергии, требуемой для поддержания в воздухе вертолета во время его горизонтального полета ввиду отсутствия аэродинамической поддерживающей силы неподвижных крыльев, применяемых в традиционных летательных аппаратах.
С другой стороны, этот недостаток частично компенсируется отсутствием затрат времени и финансовых средств на доставку из города в аэропорт, так как становится возможным приземляться непосредственно в центральной части города; причем вертодром занимает меньше места, чем обычный аэродром, процесс посадки упрощается и достигается экономия времени.
Сущность настоящего изобретения заключается в объединении способности самолета к ВВП с горизонтальным полетом, осуществляемым при помощи турбовинтовых или реактивных двигателей, который значительно более экономичен (в дальнейшем это соединение качеств условимся обозначать как ВВП-ГП - Вертикальный Взлет и Посадка - Горизонтальный Полет).
Специалистам также известно, что уже существуют две модели летательных аппаратов, обладающие ВВП-ГП характеристиками, которые были созданы международной космической промышленностью, а именно "Harrier" и V-22 "Оsprey".
"Harrier" представляет собой военный реактивный самолет, выпущенный в Великобритании совместно фирмами "British Aerospace" и "McDonnel Douglas".
V-22 "Osprey" - военный турбореактивный самолет, оборудованный наклоняемой группой "несущий винт - двигатель" и изготовленный в США компаниями "Bell Textron" и "Boeing". Уже можно ожидать появления гражданского варианта такого самолета.
В самолетах "Harrier" возможность ВВП осуществлена путем поворота вниз тягового усилия основных реактивных двигателей на стадии взлета или посадки.
Напротив, свойства ВВП-ГП самолета V-22 "Osprey" обеспечиваются путем непосредственного использования тех же основных двигателей и связанных с ними тяговых механизмов как в вертолетном режиме (при взлете и посадке), так и в качестве турбовинтовых двигателей (при горизонтальном полете), при этом основные двигатели, расположенные на концах крыльев, поворачивают (наклоняют) сверху вниз.
Тяговый механизм V-22 сконструирован как нечто среднее между большим пропеллером и несущим винтом, для того чтобы они могли работать как в турбовинтовом (ГП), так и в вертолетном (ВВП) режимах.
Оба эти решения относятся к самолетам, специально разработанным для использования в качестве устройств ВВП-ГП: когда они летят горизонтально, работают те же самые основные двигатели, мощность которых соответствует тяговому усилию, требуемому для осуществления вертикального взлета и посадки, что в результате сказывается на стоимости эксплуатации.
В патентном документе US-A-5244167 описана система для увеличения подъемной силы самолета. В патентном документе US-A-3823898 описан самолет, гидравлически управляемый потоком текучей среды. На этих документах основана ограничительная часть п.1 формулы изобретения.
Ввиду вышеизложенного заявитель рассмотрел решение, позволяющее применить ВВП-ГП-технику в качестве комплекта оборудования для модернизации имеющихся самолетов.
Предложенное решение предусматривает, что основные двигатели не наклоняются вверх и вниз, а на всех стадиях полета остаются в обычном горизонтальном положении (Горизонтальный Полет), причем используются обычные пропеллеры или реактивные двигатели, которые уже имеются на самолете для осуществления горизонтального полета. Дополнительная мощность, необходимая для осуществления вертикального взлета, получена путем передачи тяги обычных винтовых ВВП-двигателей, управляемых гидронасосами или гидроусилителями, а также при помощи малых реактивных двигателей, установленных с возможностью наклона в хвостовой части и/или на фюзеляже, которые отключают во время горизонтального полета. Малые реактивные двигатели могут также представлять собой турбовентиляторные двигатели, имеющие гидравлический привод или не имеющие такового.
Целью настоящего изобретения является создание экономичной системы, соединяющей вертикальный взлет и посадку с горизонтальным полетом (ВВП-ГП).
Еще одной целью настоящего изобретения является создание системы, позволяющей без затруднения осуществлять усовершенствование существующих транспортных средств (как новых, так и бывших в употреблении самолетов и вертолетов) путем преобразования их, после переоборудования и внесения небольших изменений в конструкцию, в ВВП-ГП самолет.
Еще одной целью настоящего изобретения является создание системы, позволяющей повысить безопасность полета на переходной стадии, в режиме "без одного двигателя".
Кроме того, целью настоящего изобретения является создание вышеуказанной системы, которая обладает высокой надежностью и имеет преимущества с точки зрения аэродинамических качеств и грузоподъемности.
Еще одной целью настоящего изобретения является создание системы, которая может быть применена на реактивных самолетах, вертолетах и других средствах передвижения (таких, как суда и автомобили).
Таким образом, конкретной целью настоящего изобретения является система для преобразования самолета, имеющего основные двигатели и предназначенного для горизонтального взлета и посадки, в гибридный комбинированный самолет с вертикальными взлетом и посадкой, содержащая гидравлическую силовую установку, соединенную с основными двигателями и предназначенную для привода в действие, по меньшей мере, одного лопастного несущего винта для вертикального взлета и посадки, причем она снабжена, по меньшей мере, одним дополнительным двигателем, предназначенным для установки в хвостовой и/или нижней части самолета с возможностью постепенного наклона и поворота между двумя крайними вертикальным и горизонтальным положениями, при этом средства перемещения вперед самолета выполнены с возможностью отключения во время вертикального взлета и посадки и на переходной стадии, и подключения во время полета, а, по меньшей мере, один лопастной несущий винт и, по меньшей мере, один дополнительный двигатель выполнены с возможностью включения во время вертикального взлета и посадки, а также на переходной стадии, и отключения во время самоподдерживаемого горизонтального полета.
Более подробно, в соответствии с изобретением, в зависимости от размеров самолета, на нем установлен по меньшей мере один лопастной несущий винт с приводом от гидравлической двигательной установки, действующей от основных двигателей, при этом упомянутый винт установлен или в носовой, или центральной, или хвостовой частях на фюзеляже или на крыльях для выполнения вертикальных взлета и посадки.
В соответствии с изобретением указанный, по меньшей мере, один дополнительный двигатель предпочтительно представляет или реактивный, или ракетный, или турбовентиляторный двигатель, имеющий или не имеющий гидравлический привод.
Также в соответствии с изобретением имеется, по меньшей мере, один наклоняемый дополнительный двигатель, преимущественно установленный в хвостовой части самолета или в его нижней части, предназначенный для использования во время вертикального взлета и посадки и на переходной стадии.
Полностью в соответствии с изобретением, по меньшей мере, один лопастной несущий винт установлен с возможностью фиксации во время горизонтального полета, возможно, под обтекателем внутри конструкции самолета.
Кроме того, в соответствии с изобретением, лопастные несущие винты выполнены складными с возможностью размещения в кожухе в фюзеляже самолета.
Далее настоящее изобретение описано для раскрытия его сущности, но не для ограничения его объема, в соответствии с предпочтительными вариантами его выполнения, с подробными ссылками на прилагаемые чертежи, на которых:
на фиг.1а, 1b и 1с показаны соответственно виды сбоку, сверху и спереди первого варианта конструкции самолета, переоборудованного в соответствии с изобретением, на стадии вертикального взлета/посадки;
на фиг.2а, 2b и 2с показаны соответственно виды сбоку, сверху и спереди самолета, представленного на фиг. 1, переоборудованного в соответствии с предлагаемым изобретением, на стадии горизонтального полета;
на фиг.3а, 3b и 3с показаны соответственно виды сбоку, сверху и спереди второго варианта конструкции самолета, переоборудованного в соответствии с предлагаемым изобретением, на стадии вертикального взлета/посадки;
на фиг.4а, 4b и 4с показаны соответственно виды сбоку, сверху и спереди самолета, представленного на фиг. 3, переоборудованного в соответствии с предлагаемым изобретением, на стадии горизонтального полета;
на фиг.5а, 5b и 5с показаны соответственно виды сбоку, сверху и спереди третьего варианта конструкции самолета, переоборудованного в соответствии с предлагаемым изобретением, на стадии вертикального взлета/посадки;
на фиг.6а, 6b и 6с показаны соответственно виды сбоку, сверху и спереди самолета, представленного на фиг. 5, переоборудованного в соответствии с предлагаемым изобретением, во время горизонтального полета; и
на фиг.7 схематически проиллюстрированы различные стадии взлета, полета и посадки самолета, переоборудованного в соответствии с предлагаемым изобретением.
Когда в нижеследующем описании делаются ссылки сразу на все фигуры приложенных чертежей, следует учитывать очевидные различия между тремя вариантами конструкции, представленными на чертежах.
Как уже сказано, предлагаемая система позволяет модифицировать существующие самолеты. Основной составляющей предлагаемой системы является возможность вертикального взлета и посадки (ВВП), которая обеспечена совместной вертикальной тягой лопастного несущего ВВП-винта (винтов) 1 с приводом от гидравлических двигателей (не показаны), а также совместной тягой дополнительных двигателей или реактивных, или ракетных, или турбовентиляторных двигателей 2, имеющих гидравлический привод, или не имеющих такового.
В частности, имеется, по меньшей мере, один лопастной несущий ВВП-винт с приводом от легких и эффективных гидравлических двигателей соответствующего размера, приводимых в действие гидросистемой, соединенной с источником тяги в виде основных двигателей 3 и приводимых в действие от этого же источника.
Во время взлета и посадки валы основных двигателей 3 временно отключены от средств 8 перемещения вперед самолета, например пропеллеров, и присоединены к гидравлическому компрессору (не показан) при помощи муфты или другого соответствующего передаточного механизма.
Таким образом, 100% тяги основного двигателя или основных двигателей передано при помощи гидросистемы, в результате чего во время взлета или посадки приводится в действие гидравлический двигатель или гидравлические двигатели и связанные с ними несущие ВВП-винты.
Вся тяга (или часть тяги), которая направлена в гидросистему, затем передается на средства 8 перемещения вперед самолета для обеспечения горизонтального полета (ГП) после завершения взлета (см. фиг.7).
При небольших размерах самолета гидравлический двигатель (двигатели) и связанный с ним(и) лопастной несущий винт (винты) 1 обычно установлены в верхней части фюзеляжа 4. Если требуется установить два и более несущих винта 1, то их располагают в любом подходящем месте, например, на концах крыльев 5, в верхней части фюзеляжа или на хвосте 6.
Как можно увидеть из трех различных вариантов конструкции, показанных соответственно на фиг.1 и 2, 3 и 4, 5 и 6, несущие винты 1 могут быть:
- зафиксированными (фиг.1 и 2): лопасти 1 находятся в аэродинамическом кожухе и заторможены во время горизонтального полета (ГП). Если применены уравновешенные лопасти, они могут находиться в кожухе, но заторможены в положении, в котором баланс направлен вперед;
- складными (фиг.3 и 4): после взлета и во время горизонтального полета (ГП) лопасти несущего винта 1 автоматически складывают с перекрытием одну над другой (см. подробнее на фиг.4b). Этот "комплект" лопастей 1 медленно вводят в продольную щель 7, выполненную в верхней части фюзеляжа 4 и/или, если лопастные несущие винты 1 установлены на крыльях 5, в горизонтальный аэродинамический кожух на концах крыльев 5;
- двойного применения: для обеспечения дополнительной тяги при ВВП и ГП (фиг.5 и 6), в особенных случаях;
Для осуществления вертикального взлета или посадки ВВП к тяге основных двигателей 3 и гидравлического несущего винта 1 добавляет свою тягу по меньшей мере один дополнительный наклоняемый реактивный или ракетный (например, взятый от радиоуправляемых ракет или самолетов-мишеней), или турбовентиляторный двигатель 2, установленный внизу в хвостовой части самолета и/или под фюзеляжем 4.
Дополнительный двигатель/двигатели посредством своей тяги и изменения направления указанной тяги обеспечивают переход от ВВП к ГП (и обратно). Во время ВВП-ГП эти двигатели используют следующим образом:
- взлет: дополнительные двигатели направлены вниз, благодаря чему обеспечены тяга и скорость, достаточные для поддержки и дополнения тяги гидравлического лопастного несущего винта 1, а также для поддержания горизонтального равновесия;
- после взлета, перед переходом: дополнительные двигатели постепенно поворачиваются из положения, когда тяга направлена вниз, в горизонтальное положение, когда тяга направлена назад, к хвостовой части (см. фиг.7): таким образом, получена тяга снизу (тем самым толкающая самолет вверх), которая постепенно поворачивается, и направляется назад (тем самым толкая самолет вверх);
- во время перехода к горизонтальному полету: дополнительные двигатели постепенно направляют свою тягу к хвостовой части самолета; добавочная тяга имеет максимальную скорость для того, чтобы поддерживать горизонтальный полет вначале, до тех пор, пока не установится тяга средств перемещения вперед самолета, например пропеллеров, для горизонтального полета, привод которых осуществлен от основного двигателя/двигателей 3. Поддержка от дополнительных двигателей на этой стадии необходима, чтобы сохранить скорость ГП выше, чем скорость сваливания самолета;
- горизонтальный полет: дополнительные двигатели выровнены по отношению к фюзеляжу и могут быть отключены;
- во время перехода к вертикальной посадке: все как во время перехода к горизонтальному полету, но в обратном порядке, снова включается гидросистема, состоящая из двигателя и несущего винта 1, прекращается работа средств (пропеллерных или реактивных) перемещения вперед самолета за счет основных двигателей 3;
- посадка: в обратном порядке по отношению к тому, что изложено о следующей за взлетом стадии;
- завершение посадки: происходит то же, что и при взлете.
В случае, если на самолете установлена только одна лопасть 1, во время посадки-взлета дополнительные двигатели (реактивные/ракетные - турбовентиляторные) будут использованы также в качестве хвостовых стабилизаторов, благодаря чему самолет будет предохранен от вращения.
Все вышеописанные стадии полета могут быть осуществлены при использовании реактивных или ракетных двигателей или турбовентиляторных двигателей, имеющих гидравлический привод или не имеющих такового.
Во время горизонтального полета его возможность обеспечена путем обычного использования основного двигателя/двигателей 3 и соответствующего винтового или реактивного двигателя/двигателей.
Таким образом, в режиме ГП самолет практически не отличается от турбовинтового (или реактивного) самолета, который экономичен, поскольку в этом режиме не использованы гидросистема и дополнительные двигатели 2. К тому же сила тяги вала от основных двигателей к средствам 8 перемещения вперед самолета, например пропеллерам, принимает прежнее значение, пока несущие винты ВВП заторможены и аэродинамически согласованы с самолетом.
В случае выхода из строя двигателя могут быть использованы следующие качества предлагаемой системы ВВП-ГП:
- предусмотрено аварийное резервирование (IV) путем соединения гидравлических систем всех основных двигателей 3 со всеми гидравлическими приводами, к которым присоединены все несущие винты ВВП, установленные на самолете;
- при использовании подходящей системы клапанов возможно обеспечение нормального функционирования, даже единственного основного двигателя 3, соединенного, по меньшей мере, с одним гидродвигателем;
- реактивные или ракетные дополнительные двигатели, находящиеся сейчас в резерве, обеспечивают дополнительную безопасность;
- в случае повреждения основного двигателя 3 (без одного двигателя) работает гидравлическая система, поддерживающая другой двигатель (другие двигатели), заменяющая ту, что отказала, и обеспечивающая аварийную вертикальную посадку при помощи гидравлических несущих винтов и дополнительной поддержки от тяги реактивных или ракетных двигателей;
- возможно также осуществление обычного полета и посадки "без одного двигателя" даже со стандартными средствами самолета с использованием режима посадки на взлетную полосу "без одного двигателя". Этот вариант также действует в случае повреждения гидравлической системы или гидравлического двигателя.
Возвращаясь к сравнению предложенного решения с известными решениями, следует заметить в отношении ВВП-тяги, что обычной тяги и мощности основных двигателей, сконструированных для обычного турбовинтового самолета, в принципе не достаточно для обеспечения (а) необходимого отношения дополнительной тяги к взлетной массе брутто самолета для осуществления вертикального взлета и (б) возмещения потерь мощности, характерных для гидросистем.
Недостаток тяги, необходимой для ВВП (а+б), прежде всего должен быть скомпенсирован при помощи реактивных/ракетных двигателей соответствующего размера, установленных в нижней и/или хвостовой части самолета.
Кроме того, должна быть увеличена максимальная мощность основного двигателя/двигателей 3 на важнейших стадиях ВВП и переходной, которые занимают от 3 до 5 минут, для того чтобы скомпенсировать тягу, затрачиваемую на осуществление ВВП (а+б).
Тем не менее, для снижения расхода топлива при горизонтальном полете самолета, переоборудованного согласно предложенному способу, требуется, чтобы основной двигатель/двигатели развивал(и) эту дополнительную мощность только во время взлета/посадки, занимающих при обычном полете, продолжительностью около 1 часа, не более 10% от всего полетного времени.
При конструировании и/или переоборудовании основных двигателей необходимо заложить возможность снижения коэффициента передачи мощности (например, путем отключения, по меньшей мере, одной ступени двигателя или, по меньшей мере, одного компрессора) при завершении взлета и установлении горизонтального полета.
Для предлагаемой системы должна быть разработана высокоэффективная экономичная конструкция лопастных несущих винтов, предназначенных только для вертикального полета, так как их используют только на этой стадии (в отличие от вертолетов, где их также используют для горизонтального перемещения), обеспечивающая, кроме того (в случае складных лопастей) последующее их складывание и помещение в кожух (и обратно) при отключении (или повторном включении) гидравлического давления.
Последовательное управление стадиями полета в различных атмосферных условиях должно осуществляться автоматически, при помощи компьютера. При изменении условий ВВП необходимо обеспечить ускоренную автоматическую обратную связь через компьютер, для устранения опасности сваливания самолета на переходной стадии полета или при возникновении любой другой опасности.
Настоящее изобретение описано для раскрытия его сущности, но не для ограничения его объема, в соответствии с предпочтительными вариантами его выполнения, однако, очевидно, что специалистами могут быть внесены различные модификации и/или изменения в пределах объема изобретения, ограниченного прилагаемой формулой изобретения.

Claims (5)

1. Система для преобразования самолета, имеющего основные двигатели (3) и предназначенного для горизонтального взлета и посадки, в гибридный комбинированный самолет с вертикальными взлетом и посадкой, содержащая гидравлическую силовую установку, соединенную с основными двигателями (3) и предназначенную для привода в действие, по меньшей мере, одного лопастного несущего винта (1) для вертикального взлета и посадки, отличающаяся тем, что она снабжена, по меньшей мере, одним дополнительным двигателем (2), предназначенным для установки в хвостовой и/или нижней части самолета с возможностью постепенного наклона и поворота между двумя крайними вертикальным и горизонтальным положениями, при этом средства (8) перемещения вперед самолета выполнены с возможностью отключения во время вертикального взлета и посадки и на переходной стадии и подключения во время полета, а, по меньшей мере, один лопастной несущий винт (1) и, по меньшей мере, один дополнительный двигатель (2) выполнены с возможностью включения во время вертикального взлета и посадки, а также на переходной стадии и отключения во время самоподдерживаемого горизонтального полета.
2. Система по п.1, отличающаяся тем, что на самолете установлен, по меньшей мере, один лопастной несущий винт (1) с приводом от гидравлической силовой установки, действующей от основных двигателей (3), при этом упомянутый винт (1) установлен или в носовой, или центральной, или хвостовой частях на фюзеляже (4) или на крыльях (5) для выполнения вертикальных взлета и посадки.
3. Система по п.1 или 2, отличающаяся тем, что, по меньшей мере, один дополнительный двигатель (2) представляет или реактивный, или ракетный, или турбовентиляторный двигатель, имеющий или не имеющий гидравлический привод.
4. Система по п.1, или 2, или 3, отличающаяся тем, что по меньшей мере один лопастной несущий винт (1) установлен с возможностью фиксации во время горизонтального полета, возможно под обтекателем внутри конструкции самолета.
5. Система по любому из пп.1-4, отличающаяся тем, что лопастные несущие винты (1) выполнены складными с возможностью размещения в кожухе в фюзеляже самолета.
RU2000114837/11A 1997-12-10 1998-12-09 Система для преобразования самолета самоподдерживаемого горизонтального полета и горизонтального взлета в гибридный комбинированный самолет самоподдерживаемого горизонтального полета с вертикальным взлетом и посадкой RU2218290C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT97RM000762A IT1297108B1 (it) 1997-12-10 1997-12-10 Sistema per la trasformazione di un aeromobile a decollo e volo orizzontale autosostentato in aeromobile integrato, ibrido a decollo
ITRM97A000762 1997-12-10

Publications (2)

Publication Number Publication Date
RU2000114837A RU2000114837A (ru) 2002-07-27
RU2218290C2 true RU2218290C2 (ru) 2003-12-10

Family

ID=11405386

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000114837/11A RU2218290C2 (ru) 1997-12-10 1998-12-09 Система для преобразования самолета самоподдерживаемого горизонтального полета и горизонтального взлета в гибридный комбинированный самолет самоподдерживаемого горизонтального полета с вертикальным взлетом и посадкой

Country Status (11)

Country Link
US (1) US6340133B1 (ru)
EP (1) EP1037797B1 (ru)
JP (2) JP2001525295A (ru)
CN (1) CN1092123C (ru)
AT (1) ATE221015T1 (ru)
AU (1) AU737539B2 (ru)
CA (1) CA2311938C (ru)
DE (1) DE69806807T2 (ru)
IT (1) IT1297108B1 (ru)
RU (1) RU2218290C2 (ru)
WO (1) WO1999029570A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195537A1 (ru) * 2015-06-02 2016-12-08 Михаил Сергеевич НИКИТЮК Способ и средство перемещения летательного аппарата
WO2019172804A1 (ru) * 2018-03-05 2019-09-12 Общество с ограниченной ответственностью "Техноветер" Конвертоплан
RU2704771C2 (ru) * 2015-02-13 2019-10-30 Эйрбас Дефенс Энд Спэйс Гмбх Летательный аппарат, выполненный с возможностью вертикального взлета

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR345501A0 (en) * 2001-03-01 2001-03-29 Kusic, Tom Tandem tilt rotor aircraft
GB2379201A (en) * 2001-08-30 2003-03-05 David Yomi-Alli Aircraft having auxiliary engines in case of main engine failure
US6886776B2 (en) 2001-10-02 2005-05-03 Karl F. Milde, Jr. VTOL personal aircraft
US6622962B1 (en) 2002-04-29 2003-09-23 Bruce D. White Fixed wing aircraft having powered rotor VTOL capability with rotor blades stowable during horizontal flight
AUPS330502A0 (en) * 2002-06-28 2002-07-25 Kusic, Tom Tandem powered power tilting aircraft - june 2002
US6880782B2 (en) * 2003-05-06 2005-04-19 Bell Helicopter Textron Inc. Control system for rotorcraft for preventing the vortex ring state
EP1831073A2 (en) * 2004-12-22 2007-09-12 Aurora Flight Sciences Corporation System and method for utilizing stored electrical energy for vtol aircraft thrust enhancement and attitude control
US7267300B2 (en) * 2005-02-25 2007-09-11 The Boeing Company Aircraft capable of vertical and short take-off and landing
US20070228214A1 (en) * 2005-09-26 2007-10-04 Honeywell International Inc. Autonomous launch pad for micro air vehicles
US8757537B2 (en) 2005-11-02 2014-06-24 The Boeing Company Systems and methods for rotor/wing aircraft
US7395988B2 (en) * 2005-11-02 2008-07-08 The Boeing Company Rotor wing aircraft having an adjustable tail nozzle
FR2916419B1 (fr) * 2007-05-22 2010-04-23 Eurocopter France Helicoptere hybride rapide a grande distance franchissable et rotor de sustentation optimise.
KR20090054027A (ko) * 2007-11-26 2009-05-29 임채호 가변형 회전익을 이용한 수직이착륙기
KR20090057504A (ko) * 2007-12-03 2009-06-08 임채호 가변형 회전익을 이용한 수직이착륙기
CN101602403A (zh) * 2008-06-12 2009-12-16 张庆柳 垂直起降飞机
WO2010038922A1 (en) * 2008-10-04 2010-04-08 Chaeho Lim Taking off and landing airplane using variable rotary wings
JP2010179902A (ja) * 2009-02-06 2010-08-19 Shigeyuki Koike ヘリコプターの翼が1ないし数個付いた飛行機およびその方法
US9889928B2 (en) * 2009-08-26 2018-02-13 Manuel Salz Lift, propulsion and stabilising system for vertical take-off and landing aircraft
ES2367501B1 (es) * 2009-08-26 2012-09-12 Manuel Muñoz Saiz Sistema sustentador, propulsor y estabilizador para aeronaves de despegue y aterrizaje vertical.
ES2388104B1 (es) * 2010-02-11 2013-09-06 Saiz Manuel Munoz Sistema sustentador, propulsor y estabilizador para aeronaves de despegue y aterrizaje vertical.
US8342440B2 (en) * 2009-12-10 2013-01-01 Regents Of The University Of Minnesota Miniature robotic vehicle with ground and flight capability
ES2378039B1 (es) * 2010-09-14 2013-02-28 Manuel MUÑOZ SÁIZ Sistema y procedimiento sustentador, propulsor y estabilizador para aeronaves de despegue y aterrizaje vertical.
WO2012035178A1 (es) * 2010-09-14 2012-03-22 Munoz Saiz Manuel Sistema y procedimiento sustentador, propulsor y estabilizador para aeronaves de despegue y aterrizaje vertical
ES2442390B1 (es) * 2011-04-11 2014-12-12 Manuel MUÑOZ SÁIZ Sistema y procedimiento sustentador, propulsor y estabilizador para aeronaves de despegue y aterrizaje vertical, mejorado
WO2013056493A1 (zh) * 2011-10-17 2013-04-25 Tian Yu 固定翼与电动多旋翼组成的复合飞行器
DE102012010937B4 (de) * 2012-06-01 2020-10-01 Emt Ingenieurgesellschaft Dipl.-Ing. Hartmut Euer Mbh Fluggerät
DE202012011054U1 (de) 2012-11-19 2013-03-18 AIRVIONIC UG (haftungsbeschränkt) Fluggerät
CN103832582A (zh) * 2012-11-28 2014-06-04 陈昌志 多功能直升飞机
CN103754372B (zh) * 2013-10-01 2015-09-09 魏伯卿 能垂直起降空中停留和倒飞的飞机
CN103708029A (zh) * 2014-01-06 2014-04-09 姚昊 轻型飞行器
WO2015157114A1 (en) * 2014-04-11 2015-10-15 Sada-Salinas Jaime G Modular nacelles to provide vertical takeoff and landing (vtol) capabilities to fixed wing aerial vehicles, and associated systems and methods
CN104044743B (zh) * 2014-07-03 2017-05-17 青岛宏百川金属精密制品有限公司 无人直升机的尾气平衡系统
CN104843181B (zh) * 2015-04-10 2017-10-20 桂林航龙科讯电子技术有限公司 一种油电混合动力固定翼垂直起降无人机系统
US10343774B2 (en) 2015-07-14 2019-07-09 Jeremy Duque Quad rotor aircraft with fixed wing and variable tail surfaces
FR3039506B1 (fr) * 2015-07-31 2019-05-24 Innostar Rotor de sustentation et aerodyne hybride a decollage et/ou atterrissage vertical ou court le comportant
FR3040690B1 (fr) * 2015-09-04 2020-01-17 Safran Helicopter Engines Helicoptere equipe d'un dispositif d'assistance d'urgence a la sustentation
US20180162525A1 (en) * 2016-12-08 2018-06-14 Aurora Flight Sciences Corporation Double-Blown Wing Vertical Takeoff and Landing Aircraft
US10183744B2 (en) * 2016-02-10 2019-01-22 Lockheed Martin Corporation Magnetic orientation detent
CN105857600A (zh) * 2016-03-18 2016-08-17 西安交通大学 一种动力与控制相分离的高机动多功能无人飞行器
US20170300065A1 (en) * 2016-04-18 2017-10-19 Latitude Engineering, LLC Automatic recovery systems and methods for unmanned aircraft systems
US10464667B2 (en) * 2016-09-29 2019-11-05 Ampaire, Inc. Oblique rotor-wing aircraft
EP3539088A1 (en) * 2016-11-11 2019-09-18 Bombardier Inc. Control of flight information recorder operation
US10822101B2 (en) * 2017-07-21 2020-11-03 General Electric Company Vertical takeoff and landing aircraft having a forward thrust propulsor
CN107444662A (zh) * 2017-09-25 2017-12-08 泸县玉流机械制造有限责任公司 三维飞行器
WO2019090191A1 (en) * 2017-11-03 2019-05-09 Uber Technologies, Inc. Vtol m-wing configuration
JP6731604B2 (ja) * 2018-03-31 2020-07-29 中松 義郎 高速ドローン等航空機
DE102018116168A1 (de) 2018-07-04 2020-01-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Luftfahrzeug
DE102018116154B4 (de) 2018-07-04 2022-09-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Luftfahrzeug
KR102025826B1 (ko) * 2018-07-24 2019-09-26 한국항공우주연구원 틸트프롭 항공기
US11732639B2 (en) 2019-03-01 2023-08-22 Pratt & Whitney Canada Corp. Mechanical disconnects for parallel power lanes in hybrid electric propulsion systems
US11628942B2 (en) 2019-03-01 2023-04-18 Pratt & Whitney Canada Corp. Torque ripple control for an aircraft power train
WO2020180374A1 (en) 2019-03-01 2020-09-10 United Technologies Advanced Projects Inc. Distributed propulsion configurations for aircraft having mixed drive systems
WO2020190344A2 (en) 2019-03-18 2020-09-24 United Technologies Advanced Projects Inc. Architectures for hybrid-electric propulsion
US11414183B2 (en) * 2019-08-14 2022-08-16 Textron Innovations Inc. Compound helicopter having a tiltable jet engine
FR3106811B1 (fr) 2020-01-31 2022-12-09 Skydrone Innovations Drone à voilure tournante et fixe à décollage et atterrissage verticaux, à traînée optimisée pour ces deux utilisations
AU2020201310A1 (en) * 2020-02-06 2021-08-26 Poh, Chung-How DR An airplane with tandem roto-stabilizers
JP2020097419A (ja) * 2020-02-27 2020-06-25 中松 義郎 翼回転垂直離着陸長距離航空機
US11486472B2 (en) 2020-04-16 2022-11-01 United Technologies Advanced Projects Inc. Gear sytems with variable speed drive
CN113638338B (zh) * 2021-07-20 2022-11-15 佛山市彩泉电子科技有限公司 一种逃逸车辆逼停装置
CN113320693A (zh) * 2021-08-04 2021-08-31 中国空气动力研究与发展中心空天技术研究所 一种新型可收放串列旋翼复合翼飞行器布局
US20230115625A1 (en) * 2021-10-12 2023-04-13 Jimmy Sherwood Myer Flying car
CN114148513A (zh) * 2021-12-13 2022-03-08 浙江云途飞行器技术有限公司 一种无人机起降平台及一种无人机起飞、降落系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1662406A (en) * 1928-01-10 1928-03-13 Elmer H Thompson Airplane
US1783458A (en) * 1929-02-25 1930-12-02 Albert E Grimm Vertical-lift airplane
US1844786A (en) * 1930-01-06 1932-02-09 Nelson Erik Sigfrid Multihelix
US1889255A (en) * 1932-04-19 1932-11-29 Joseph J Leray Rotoplane
US3156434A (en) * 1962-03-28 1964-11-10 Houston H Harrington Vtol aircraft
US3278138A (en) * 1963-04-20 1966-10-11 Bolkow Gmbh Take-off assist for vtol aircraft
US3823898A (en) * 1968-12-09 1974-07-16 K Eickmann Hydraulically controlled fluidstream-driven aircraft
US3241791A (en) * 1964-04-03 1966-03-22 Frank N Piasecki Compound helicopter with shrouded tail propeller
GB1157822A (en) * 1965-08-21 1969-07-09 Boelkow Gmbh VTOL Aircraft
US3298633A (en) * 1965-09-10 1967-01-17 Dastoli Joseph Separable aircraft
DE1506065A1 (de) * 1966-08-24 1969-06-12 Man Turbo Gmbh Schwenkbare Hubtriebwerke fuer senkrecht startende und landende Flugzeuge
US4492353A (en) * 1982-09-30 1985-01-08 Phillips Bryan D Aircraft capable of vertical short takeoff and landing
US4757962A (en) * 1987-04-09 1988-07-19 Terrence Grant Amphibious vehicle
US5246188A (en) * 1989-09-14 1993-09-21 Koutsoupidis Theodore K Wing turbines in conjuction with propulsion systems for aircraft and helicopters
US5244167A (en) 1991-08-20 1993-09-14 John Turk Lift augmentation system for aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Энциклопедия. Авиация. - М.: ЦАГИ, 1994, с.446. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2704771C2 (ru) * 2015-02-13 2019-10-30 Эйрбас Дефенс Энд Спэйс Гмбх Летательный аппарат, выполненный с возможностью вертикального взлета
WO2016195537A1 (ru) * 2015-06-02 2016-12-08 Михаил Сергеевич НИКИТЮК Способ и средство перемещения летательного аппарата
WO2019172804A1 (ru) * 2018-03-05 2019-09-12 Общество с ограниченной ответственностью "Техноветер" Конвертоплан

Also Published As

Publication number Publication date
CN1092123C (zh) 2002-10-09
AU737539B2 (en) 2001-08-23
JP2001525295A (ja) 2001-12-11
WO1999029570A1 (en) 1999-06-17
DE69806807D1 (de) 2002-08-29
CN1281409A (zh) 2001-01-24
ITRM970762A1 (it) 1999-06-10
WO1999029570A9 (en) 1999-10-07
ATE221015T1 (de) 2002-08-15
CA2311938C (en) 2006-05-02
JP2007137423A (ja) 2007-06-07
EP1037797B1 (en) 2002-07-24
CA2311938A1 (en) 1999-06-17
EP1037797A1 (en) 2000-09-27
DE69806807T2 (de) 2003-03-20
AU1782099A (en) 1999-06-28
US6340133B1 (en) 2002-01-22
IT1297108B1 (it) 1999-08-03

Similar Documents

Publication Publication Date Title
RU2218290C2 (ru) Система для преобразования самолета самоподдерживаемого горизонтального полета и горизонтального взлета в гибридный комбинированный самолет самоподдерживаемого горизонтального полета с вертикальным взлетом и посадкой
US11731772B2 (en) Hybrid propulsion drive train system for tiltrotor aircraft
US11111029B2 (en) System and method for operating a boundary layer ingestion fan
US8636241B2 (en) Hybrid jet/electric VTOL aircraft
US6276633B1 (en) Convertible aircraft with tilting rotors
RU2000114837A (ru) Система для преобразования самолета самоподдерживаемого горизонтального полета и горизонтального взлета в гибридный комбинированный самолет самоподдерживаемого горизонтального полета с вертикальным взлетом и посадкой
EP3663197B1 (en) High-speed hybrid propulsion for aircraft
EP1704089A1 (en) Tilt-rotor aircraft
US20050133662A1 (en) Convertible aircraft provided with two tilt fans on either side of the fuselage and with a third tilt fan arranged on the tail of the aircraft
EP0505509A1 (en) Turbocraft
EP3584168B1 (en) Turbomachinery for an aircraft
US3744743A (en) Helicopter power plant system
RU2227106C2 (ru) Гибридный летательный аппарат аэродинамически самоподдерживаемого горизонтального полета с вертикальным взлетом и посадкой
US20080173769A1 (en) Stabilized tilt rotor aircraft
CN115135577A (zh) 推力换向式飞机
US11970277B2 (en) Hybrid propulsion drive train system for tiltrotor aircraft
CN112373702B (zh) 一种背撑式翼身融合体飞机推进系统及其控制方法
RU2786896C2 (ru) Силовая установка летательного аппарата и способ работы такой установки
EP0378302A2 (en) Helicopters
Shohet Propulsion Systems For Rotary Wing Aircraft With Auxiliary Propulsors
Wilde et al. Lift turbo-fans
CN115593637A (zh) 压翼喷气发动机与应用
CN115593638A (zh) 桨尖喷气飞行器
CN116750189A (zh) 一种共轴双旋翼飞行器
Hudson The Shaft Coupled Lift/Cruise Fan Propulsion System for Navy Multimission V/STOL Aircraft

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091210