RU2210764C1 - Способ определения плотности жидкостей и устройство для его осуществления - Google Patents

Способ определения плотности жидкостей и устройство для его осуществления Download PDF

Info

Publication number
RU2210764C1
RU2210764C1 RU2002100675/28A RU2002100675A RU2210764C1 RU 2210764 C1 RU2210764 C1 RU 2210764C1 RU 2002100675/28 A RU2002100675/28 A RU 2002100675/28A RU 2002100675 A RU2002100675 A RU 2002100675A RU 2210764 C1 RU2210764 C1 RU 2210764C1
Authority
RU
Russia
Prior art keywords
input
output
signal
acoustic signal
density
Prior art date
Application number
RU2002100675/28A
Other languages
English (en)
Inventor
А.В. Фомин
С.Г. Синников
В.Н. Астапов
Б.В. Скворцов
Original Assignee
Самарский государственный аэрокосмический университет им. акад. С.П. Королева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самарский государственный аэрокосмический университет им. акад. С.П. Королева filed Critical Самарский государственный аэрокосмический университет им. акад. С.П. Королева
Priority to RU2002100675/28A priority Critical patent/RU2210764C1/ru
Application granted granted Critical
Publication of RU2210764C1 publication Critical patent/RU2210764C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Использование: при исследовании физических свойств жидкостей техническими средствами ультразвукового контроля. Техническим результатом изобретения является высокая точность измерения плотности жидкостей, простота и надежность конструкции, простота обслуживания. Сущность изобретения: способ акустического измерения плотности жидкостей заключается в пропускании акустического сигнала от излучателя через жидкость, при этом измеряют время прохождения сигнала через жидкость, амплитуду принятого сигнала и температуру жидкости, а величину плотности определяют по измеренным величинам по формуле. Устройство для осуществления этого способа содержит кювету, на противоположных стенках которой установлены соосно излучатель акустического сигнала и приемник акустического сигнала, формирователь пачки импульсов заданной частоты, усилитель сигналов, компаратор, высокочастотный прецизионный генератор импульсов, счетчик импульсов, пиковый детектор, блок измерения амплитуды, датчик температуры, вычислительное устройство, блок памяти и блок цифровой индикации. 2 с.п. ф-лы, 2 ил.

Description

Предлагаемое изобретение относится к исследованию физических свойств жидкостей и может быть использовано для экспрессного контроля плотности нефтепродуктов как в лабораторных условиях, так и в потоке, непосредственно на технологической установке.
Наиболее близким по технической сущности к предлагаемому техническому решению является способ ультразвукового контроля плотности раствора, основанный на измерении затухания ультразвуковых волн - изгибных волн Лэмба, возбуждаемых в наружной стенке герметичного корпуса (пат. Российской Федерации 2085933, МПК G 01 N 29/00, 1997, Бюл. 21).
Этот способ имеет основные недостатки, заключающиеся в сложности получения волн Лэмба и в том, что при измерении плотности жидкости не учитывается ее температура.
Известно устройство для ультразвукового контроля плотности раствора, имеющее герметичный корпус, на внутренней стенке которого закреплены преобразователи, соединенные со схемой возбуждения и приема волн Лэмба, выносной индикатор, электрически связанный посредством кабеля с измерителем амплитуд, и установленный в корпусе совместно с блоками возбуждения и регистрации автономный блок питания (пат. Российской Федерации 2085933, МПК G 01 N 29/00, 1997, Бюл. 21).
Известное устройство имеет недостатки: сложность изготовления герметичного корпуса со встроенной электроникой и сложность его обслуживания.
В основу изобретения положена задача - создать способ определения плотности жидкостей и устройство для его реализации, которые позволили бы повысить точность определения плотности жидкостей, надежность устройства и простоту его обслуживания.
Поставленная задача достигается тем, что в способе определения плотности жидкостей, заключающемся в пропускании акустического сигнала через жидкость, согласно изобретению, измеряют время прохождения сигнала через жидкость, измеряют амплитуду принятого сигнала и температуру жидкости, а величину плотности определяют по измеренным величинам:
Q = a1•c+a2•θ+a3•α,
где ск, θк, αк (к=1, 2, 3) - измеренные скорость акустического сигнала, температура и затухание акустического сигнала в контролируемой жидкости;
ак (к=1, 2, 3) - коэффициенты, полученные при калибровке.
Кроме того, в устройстве для определения плотности жидкостей, содержащем кювету с жидкостью, снабженную излучателем акустического сигнала и соосно с ним приемником акустического сигнала, согласно изобретению, дополнительно введены формирователь пачки импульсов заданной частоты, усилитель сигналов, компаратор, блок измерения времени прохождения сигнала, пиковый детектор, блок измерения амплитуды, датчик температуры, вычислительное устройство, блок памяти и блок цифровой индикации, причем первый выход формирователя пачки импульсов подключен к входу пьезоэлектрического излучателя акустического сигнала, выход пьезоэлектрического приемника акустического сигнала подключен к входу усилителя сигнала, выход которого подключен к входу компаратора и пикового детектора, выход компаратора подключен к первому входу блока измерения времени, ко второму входу которого подключен второй выход формирователя пачки импульсов, выход блока измерения времени подключен к первому входу вычислительного устройства, выход пикового детектора подключен к входу блока измерения амплитуды, выход которого подключен ко второму входу вычислительного устройства, к третьему входу которого подключен датчик температуры, выход вычислительного устройства подключен к блоку памяти и блоку цифровой индикации.
На фиг.1 представлены временные диаграммы, поясняющие способ определения плотности жидкостей; на фиг.2 - устройство для его осуществления.
Способ осуществляется следующим образом.
Пробу жидкости помещают в рабочую кювету 1 (aиг.2) (для определения плотности в потоке кюветой служит технологическая труба), с формирователя 4 пачка импульсов заданной частоты поступает на излучатель 2, который вырабатывает акустический сигнал, и на второй вход управляемого высокочастотного прецизионного генератора импульсов 7, выход которого подключен к входу счетчика импульсов 8, выход которого в свою очередь подключен к первому входу вычислительного устройства 13, прошедший через контролируемую жидкость прямой акустический сигнал поступает на приемник 3, где звуковой сигнал преобразуется в электрический сигнал и поступает через усилитель 5 на компаратор уровня 6, который исключает из дальнейшей обработки "паразитный" акустический сигнал, прошедший по стенке кюветы 1, передний фронт отфильтрованного сигнала фиксируется в управляемом высокочастотном прецизионном генераторе 7, время прохождения сигнала определяется разностью времени фиксации переднего фронта принятого сигнала и времени фиксации переднего фронта поступающей с формирователя пачки импульсов 4 (Фиг.1), время прохождения сигнала через жидкость напрямую связано с плотностью жидкости. Так как на скорость прохождения акустического сигнала влияют вязкость и температура жидкости, то для корректировки погрешности вычисления плотности измеряют амплитуду принятого сигнала, коэффициент затухания которой зависит от вязкости жидкости, температуру и по данным измерениям определяют уточненную плотность жидкости.
В общем случае плотность жидкости связана с другими ее электрофизическими параметрами выражением:
Q = F(c,θ,α),
где с - скорость акустического сигнала в контролируемой жидкости;
θ - температура контролируемой жидкости;
α - затухание акустического сигнала в контролируемой жидкости.
Калибровочная модель процесса определения плотности жидкости:
Figure 00000002

где Qк (к=1, 2, 3) - предварительно известные значения плотностей эталонных жидкостей;
ск, θкк (к=1, 2, 3) - измеренные скорость акустического сигнала, температура и затухание акустического сигнала в контролируемой жидкости;
ак (к=1, 2, 3) - неизвестные связывающие коэффициенты.
Коэффициенты ак находятся по формулам:
Figure 00000003

где
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007

Тогда плотность контролируемой жидкости будет определяться:
Q = a1•c+a2•θ+a3•α.
На фиг. 2 изображена схема устройства для реализации предлагаемого способа определения плотности жидкостей.
Устройство содержит кювету 1 (или технологическая труба), на противоположных стенках которой установлены соосно излучатель акустического сигнала 2 и приемник акустического сигнала 3, формирователь пачки импульсов заданной частоты 4, усилитель сигналов 5, компаратор 6, управляемый высокочастотный прецизионный генератор импульсов 7, счетчик импульсов 8, пиковый детектор 9, блок измерения амплитуды 10, датчик температуры 11, вычислительное устройство (в качестве которого может выступать однокристальная микроЭВМ) 12, блок памяти 13 и блок цифровой индикации 14. Первый выход формирователя пачки импульсов 4 подключен к входу излучателя акустического сигнала 2, выход приемника акустического сигнала 3 подключен к входу усилителя сигнала 5, выход которого подключен к входам компаратора 6 и пикового детектора 9, выход компаратора 6 подключен к первому входу управляемого высокочастотного прецизионного генератора импульсов 7, ко второму входу которого подключен второй выход формирователя пачки импульсов 4, выход генератора 7 подключен к входу счетчика импульсов 8, который в свою очередь подключен к первому входу вычислительного устройства 12, выход пикового детектора 9 подключен к входу блока измерения амплитуды 10, выход которого подключен ко второму входу блока 12, к третьему входу блока 12 подключен датчик температуры 11, выход вычислительного устройства 12 подключен к входу блока памяти 13 и к входу блока цифровой индикации 14.
Устройство работает следующим образом.
В кювету 1 наливается контролируемая жидкость, формирователь 4 формирует через определенные промежутки времени пачки импульсов заданной частоты (передний фронт пачки импульсов фиксируется в управляемом высокочастотном прецизионном генераторе импульсов 7), которые поступают на вход излучателя акустического сигнала 2, акустический сигнал проходит через жидкость и принимается приемником 3, где акустический сигнал преобразуется в электрический, который усиливается усилителем сигналов 5, с выхода усилителя 5 сигнал поступает на компаратор уровня 6, который исключает из дальнейшей обработки "паразитный" акустический сигнал, прошедший по стенкам кюветы 1, передний фронт принятого сигнала фиксируется в управляемом высокочастотном прецизионном генераторе импульсов 7. Передним фронтом пачки импульсов (фиг.1) с формирователя 4 запускается высокочастотный прецизионный генератор 7, импульсы которого подсчитываются счетчиком 8, а передним фронтом принятого сигнала (фиг. 1) генератор 7 отключается, по количеству импульсов, подсчитанных счетчиком 8, определяется время прохождения сигнала через жидкость (фиг.1). Данные о времени прохождения сигнала поступают в вычислительное устройство 12. С выхода усилителя 5 сигнал поступает также на вход пикового детектора 9, где выделяется максимальная амплитуда принятого сигнала, величина которой определяется в блоке измерения амплитуды 10, данная величина также поступает в вычислительное устройство 12, куда также поступают данные с датчика температуры 11. В блоке памяти 13 хранятся в цифровом виде величины, характеризующие время прохождения акустических сигналов через эталонные жидкости низкой, средней и высокой плотности при различных температурах, вязкости, определяемые при калибровке устройства. Вычислительное устройство 12, используя полученные результаты измерений и матрицу соответствия плотности эталонных сред при различных температурах и вязкости, определяет плотность исследуемой пробы. Эта величина высвечивается на индикаторе 14.

Claims (2)

1. Способ определения плотности жидкостей, заключающийся в пропускании акустического сигнала от излучателя через жидкость, отличающийся тем, что измеряют время прохождения сигнала через жидкость, измеряют амплитуду принятого сигнала и температуру жидкости, а величину плотности определяют по измеренным величинам по формуле
Q = a1•c+a2•θ+a3•α,
где ск, θк, αк(к= 1, 2, 3) - измеренные скорость акустического сигнала, температура и затухание акустического сигнала в контролируемой жидкости;
ак(к= 1, 2, 3) - коэффициенты полученные при калибровке.
2. Устройство для определения плотности жидкостей, содержащее кювету с жидкостью, снабженную излучателем акустического сигнала и соосно с ним приемником акустического сигнала, отличающееся тем, что в него дополнительно введены формирователь пачки импульсов заданной частоты, усилитель сигналов, компаратор, блок измерения времени прохождения сигнала, пиковый детектор, блок измерения амплитуды, датчик температуры, вычислительное устройство, блок памяти и блок цифровой индикации, причем первый выход формирователя пачки импульсов подключен к входу пьезоэлектрического излучателя акустического сигнала, выход пьезоэлектрического приемника акустического сигнала подключен к входу усилителя сигнала, выход которого подключен к входу компаратора и пикового детектора, выход компаратора подключен к первому входу блока измерения времени, ко второму входу которого подключен второй выход формирователя пачки импульсов, выход блока измерения времени подключен к первому входу вычислительного устройства, выход пикового детектора подключен к входу блока измерения амплитуды, выход которого подключен ко второму входу вычислительного устройства, к третьему входу которого подключен датчик температуры, выход вычислительного устройства подключен к блоку памяти и блоку цифровой индикации.
RU2002100675/28A 2002-01-03 2002-01-03 Способ определения плотности жидкостей и устройство для его осуществления RU2210764C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002100675/28A RU2210764C1 (ru) 2002-01-03 2002-01-03 Способ определения плотности жидкостей и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002100675/28A RU2210764C1 (ru) 2002-01-03 2002-01-03 Способ определения плотности жидкостей и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2210764C1 true RU2210764C1 (ru) 2003-08-20

Family

ID=29246255

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002100675/28A RU2210764C1 (ru) 2002-01-03 2002-01-03 Способ определения плотности жидкостей и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2210764C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607438A (zh) * 2017-08-08 2018-01-19 南京中探海洋物联网有限公司 一种大范围海域的海水密度测量方法
RU2796231C2 (ru) * 2021-10-14 2023-05-18 федеральное государственное бюджетное образовательное учреждение высшего образования "Ижевский государственный технический университет имени М.Т. Калашникова" Способ контроля плотности листов терморасширенного графита и устройство для его реализации

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607438A (zh) * 2017-08-08 2018-01-19 南京中探海洋物联网有限公司 一种大范围海域的海水密度测量方法
CN107607438B (zh) * 2017-08-08 2024-02-02 南京中探海洋物联网有限公司 一种大范围海域的海水密度测量方法
RU2796231C2 (ru) * 2021-10-14 2023-05-18 федеральное государственное бюджетное образовательное учреждение высшего образования "Ижевский государственный технический университет имени М.Т. Калашникова" Способ контроля плотности листов терморасширенного графита и устройство для его реализации

Similar Documents

Publication Publication Date Title
Puttmer et al. Ultrasonic density sensor for liquids
JP4800543B2 (ja) 多相液体/気体混合物の流量及び濃度を同時に測定する方法及び装置
US6644119B1 (en) Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
US6151958A (en) Ultrasonic fraction and flow rate apparatus and method
US5877997A (en) Pulse echo distance measurement
WO1988008516A1 (en) Ultrasonic fluid flowmeter
CN110068387B (zh) 确定待检查的液体中的取决于粘性的声速的修正值的方法
RU2210764C1 (ru) Способ определения плотности жидкостей и устройство для его осуществления
JPH07248315A (ja) 密度計測装置
RU66029U1 (ru) Комплексное устройство измерения расхода, плотности и вязкости нефтепродуктов
GB2195767A (en) Method and apparatus for on-line concentration measurement of a substance using ultrasonic pulses
van Deventer et al. Thermostatic and dynamic performance of an ultrasonic density probe
CN104122170A (zh) 液体密度仪
Bjørndal et al. Acoustic Methods for Obtaining the Pressure Reflection Coefficient from a Buffer Rod Based Measurement Cell
RU2195635C1 (ru) Способ измерения уровня жидких и сыпучих сред
Norli et al. 3I-3 A Three-Way Pulse Method for a Precision Sound Velocity Measurement Cell
SU1437772A1 (ru) Способ определени концентрации свободного газа в газожидкостной среде и устройство дл его осуществлени
RU2390732C2 (ru) Способ контроля наличия остаточного газа в потоке жидкости и устройство для его осуществления
SU1231453A1 (ru) Ультразвуковой измеритель концентрации растворов
Benus Measurement cell for sound speed in liquids: Pulse-echo buffer rod method
JPS623379B2 (ru)
SU1196751A1 (ru) Способ измерени концентрации газовых включений в жидкости
JPH09276270A (ja) 血流量測定装置
Kumar et al. Design of a tuning-fork liquid densitymeter
Gupta et al. Estimating ultrasound propagation velocity in tissues from unwrapped phase spectra

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040104