RU2210736C1 - Способ измерения угловой скорости двухстепенным роторным вибрационным гироскопом - Google Patents

Способ измерения угловой скорости двухстепенным роторным вибрационным гироскопом Download PDF

Info

Publication number
RU2210736C1
RU2210736C1 RU2002113839/28A RU2002113839A RU2210736C1 RU 2210736 C1 RU2210736 C1 RU 2210736C1 RU 2002113839/28 A RU2002113839/28 A RU 2002113839/28A RU 2002113839 A RU2002113839 A RU 2002113839A RU 2210736 C1 RU2210736 C1 RU 2210736C1
Authority
RU
Russia
Prior art keywords
angular velocity
drive
rvg
degree
freedom
Prior art date
Application number
RU2002113839/28A
Other languages
English (en)
Other versions
RU2002113839A (ru
Inventor
В.В. Савельев
Т.П. Лукашкина
Original Assignee
Тульский государственный университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тульский государственный университет filed Critical Тульский государственный университет
Priority to RU2002113839/28A priority Critical patent/RU2210736C1/ru
Application granted granted Critical
Publication of RU2210736C1 publication Critical patent/RU2210736C1/ru
Publication of RU2002113839A publication Critical patent/RU2002113839A/ru

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

Изобретение относится к гироскопическим приборам, а именно к двухстепенным роторным вибрационным гироскопам (РВГ) с переменной угловой скоростью привода, используемым для измерения угловой скорости подвижных объектов, в частности к двухстепенным РВГ, применяемым для измерения угловой скорости относительно экваториальной оси вращающегося летательного аппарата (ЛА), в которых приводом является сам вращающийся по крену ЛА. Из электрического сигнала датчика угла чувствительного элемента (ЧЭ) по отношению к корпусу выделяется информация об угловой скорости привода, в соответствии с которой вычисляется коэффициент передачи РВГ, соответствующий текущему значению угловой скорости привода. Затем сигнал с датчика угла ЧЭ РВГ делится на величину, равную текущему значению коэффициента передачи, и после этого поступает в измерительную цепь. Амплитуда поступающего в измерительную цепь электрического сигнала пропорциональна величине измеряемой угловой скорости и не зависит от угловой скорости привода. Техническим результатом является повышение точности динамически ненастроенного двухстепенного РВГ при переменной угловой скорости привода. 1 ил.

Description

Изобретение относится к гироскопическим приборам, а именно к двухстепенным роторным вибрационным гироскопам (РВГ) с переменной угловой скоростью привода, используемым для измерения угловой скорости подвижных объектов, в частности к двухстепенным РВГ, применяемым для измерения угловой скорости относительно экваториальной оси вращающегося летательного аппарата (ЛА), в которых приводом является сам вращающийся по крену ЛА.
Упрощенное уравнение движения чувствительного элемента (ЧЭ) под действием постоянных угловых скоростей ωx и ωy может быть записано в виде (Пельпор Д. С. , Осокин Ю.А., Рахтеенко Е.Р. Гироскопические приборы систем ориентации и стабилизации - М.: Машиностроение, 1977 - с.82-83):
Figure 00000002

или
Figure 00000003

где β - угол поворота ЧЭ относительно оси подвеса;
ωд - круговая динамическая частота собственных недемпферированных колебаний,
Figure 00000004
(3)
к - угловая жесткость элементов подвеса;
А, В, С - моменты инерции ЧЭ относительно осей подвеса;
Figure 00000005
- угловая скорость привода;
ξ - степень затухания собственных колебаний ЧЭ;
Figure 00000006

b - коэффициент демпфирования,
Figure 00000007

Вынужденные колебания ЧЭ РВГ при постоянной угловой скорости привода (при этом
Figure 00000008
) и постоянных значениях угловых скоростей ωx и ωy имеют вид:
Figure 00000009

где Крвг - коэффициент передачи (чувствительность) РВГ;
Figure 00000010

ε - фаза колебаний;
Figure 00000011

Из выражении (7) следует, что чувствительность, а следовательно, точность РВГ зависит от угловой скорости привода.
Известен способ устранения влияния угловой скорости привода на точность РВГ [Пельпор Д.С., Осокин Ю.А., Рахтеенко Е.Р. Гироскопические приборы систем ориентации и стабилизации. - М.: Машиностроение, 1977 - с.83-87], который реализуется путем обеспечения условия резонансной динамической настройки, т.е. когда добиваются равенства
Figure 00000012

при котором чувствительность РВГ
Figure 00000013

не зависит от угловой скорости привода. Однако, при малых габаритах РВГ и небольшой скорости вращения привода (сотни радиан в секунду), что имеет место при использовании в качестве привода вращающегося ЛА, требуются упругие элементы подвеса весьма малой угловой жесткости:
Figure 00000014

что во многих случаях сложно реализовать технически. Кроме того, в случае резонансной динамической настройки чувствительность РВГ возрастает до максимального значения, что приводит к ограничению величины измеряемой угловой скорости.
Известен способ уменьшения влияния угловой скорости на точность микромеханического РВГ, при котором основным моментом, уравновешивающим измеряемый момент, является момент демпфирования [Коновалов С.Ф., Кулешов А.В., Фролов Е.Н. Микромеханический датчик угловой скорости для вращающегося носителя// Приборы и системы. Сборник материалов Всероссийской научно-технической конференции "Приборы и приборные системы". Тула, 2001 г., с.25-28]. В этом случае значение чувствительности РВГ приближенно определяется формулой (10). Большой коэффициент демпфирования ЧЭ РВГ в обсуждаемом способе удалось достигнуть благодаря возможностям технологии твердотельной микроэлектроники. При этом ЧЭ вибрирует в малом зазоре (измеряемом микронами), заполненном азотом. Получить столь значительный коэффициент демпфирования в РВГ обычной механической схемы затруднительно. Кроме того, коэффициент демпфирования сильно зависит от температуры, что нежелательно при использовании РВГ на вращающемся ЛА. Нестабильность коэффициента передачи рассмотренной схемы достигает 30%.
Задачей настоящего изобретения является повышение точности динамически ненастроенного двухстепенного РВГ при переменной угловой скорости привода. Техническим результатом решения поставленной задачи является обеспечение пропорциональности поступающего в измерительную цепь сигнала величине измеряемой угловой скорости и его независимость от угловой скорости привода.
Поставленная задача достигается тем, что из электрического сигнала датчика угла ЧЭ по отношению к корпусу выделяется информация об угловой скорости привода, в соответствии с которой по формуле (7) вычисляется чувствительность РВГ, соответствующая текущему значению угловой скорости. Затем сигнал с датчика угла ЧЭ РВГ делится на величину, равную текущему значению чувствительности Крвг, и после этого поступает в измерительную цепь. Амплитуда поступающего в измерительную цепь электрического сигнала пропорциональна величине измеряемой угловой скорости ωx1 = ωxcosγ+ωysinγ и не зависит от угловой скорости привода.
На чертеже приведен пример реализации предлагаемого способа увеличения точности двухстепенного РВГ.
ЧЭ 2 крепится элементами подвеса 3 на приводном валу 1, который вращается с угловой скоростью
Figure 00000015
Параметры колебания ЧЭ измеряются бесконтактным датчиком 4, преобразующим перемещение ЧЭ в электрический сигнал. Выходной сигнал с датчика 4 поступает на вход частотомера 5 и вход делителя 7. Выход частотомера 5 соединен с входом вычислителя 6. Выход вычислителя 6 соединен с входом делителя 7. Выходной сигнал с делителя 7 подается в измерительную цепь.
Схема работает следующим образом:
При вращении корпуса РВГ вокруг оси х с угловой скоростью ωx ЧЭ начинает совершать колебания с частотой вращения ракеты по крену. Амплитуда этих колебаний пропорциональна измеряемой угловой скорости, а фаза зависит от направления этой скорости. При изменении скорости вращения ракеты по крену изменяется частота колебаний ЧЭ. Аналогично РВГ реагирует на вращение корпуса вокруг оси у. Колебания ЧЭ измеряются датчиком, частота изменения выходного напряжения которого равна частоте вращения привода. Т.о. с выхода РВГ на частотомер подается напряжение модулированное по частоте. Выходное напряжение частотомера, пропорциональное скорости вращения привода, поступает в вычислитель. В вычислителе, в соответствии с формулой (7) происходит расчет коэффициента передачи РВГ при определенной скорости вращения привода.
Выходные сигналы с РВГ и вычислителя подаются на делитель, в котором напряжение с выхода РВГ делится на напряжение с выхода вычислителя. Выходной сигнал с делителя, подаваемый в измерительную цепь, пропорционален измеряемой угловой скорости ωx1 = ωxcosγ+ωysinγ и не зависит от изменения скорости вращения привода.

Claims (1)

  1. Способ измерения угловой скорости двухстепенным роторным вибрационным гироскопом (РВГ), в котором формируют выходной сигнал, не зависящий от изменений угловой скорости привода, отличающийся тем, что электрический сигнал датчика угла чувствительного элемента РВГ подают на делитель и на частотомер, выходное напряжение которого пропорционально скорости вращения привода, вычисляют чувствительность РВГ по формуле
    Figure 00000016

    где
    Figure 00000017
    - текущее значение угловой скорости привода;
    ωд - круговая динамическая частота собственных недемпферированных колебаний,
    Figure 00000018

    k - угловая жесткость элементов подвеса чувствительного элемента;
    А, В, С - моменты инерции чувствительного элемента относительно осей подвеса;
    ξ - степень затухания собственных колебаний чувствительного элемента,
    Figure 00000019

    b - коэффициент демпферирования,
    Figure 00000020

    затем вычисляют отношение выходного сигнала чувствительного элемента к чувствительности РВГ, соответствующей текущему значению угловой скорости привода, и по результату деления определяют искомую угловую скорость.
RU2002113839/28A 2002-05-27 2002-05-27 Способ измерения угловой скорости двухстепенным роторным вибрационным гироскопом RU2210736C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002113839/28A RU2210736C1 (ru) 2002-05-27 2002-05-27 Способ измерения угловой скорости двухстепенным роторным вибрационным гироскопом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002113839/28A RU2210736C1 (ru) 2002-05-27 2002-05-27 Способ измерения угловой скорости двухстепенным роторным вибрационным гироскопом

Publications (2)

Publication Number Publication Date
RU2210736C1 true RU2210736C1 (ru) 2003-08-20
RU2002113839A RU2002113839A (ru) 2004-03-20

Family

ID=29246672

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002113839/28A RU2210736C1 (ru) 2002-05-27 2002-05-27 Способ измерения угловой скорости двухстепенным роторным вибрационным гироскопом

Country Status (1)

Country Link
RU (1) RU2210736C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПЕЛЬПОР Д.С. и др. Гироскопические приборы систем ориентации и стабилизации. - М.: Машиностроение, 1977, с.78-89. *

Also Published As

Publication number Publication date
RU2002113839A (ru) 2004-03-20

Similar Documents

Publication Publication Date Title
Geiger et al. MEMS IMU for ahrs applications
US6481283B1 (en) Coriolis oscillating gyroscopic instrument
US4870588A (en) Signal processor for inertial measurement using coriolis force sensing accelerometer arrangements
US4590801A (en) Apparatus for measuring inertial specific force and angular rate of a moving body
TW468035B (en) Micro inertial measurement unit
US5987986A (en) Navigation grade micromachined rotation sensor system
US6445195B1 (en) Drive feedthrough nulling system
US6089088A (en) Vibrating microgyrometer
US20080190198A1 (en) Microelectromechanical gyroscope with suppression of capacitive coupling spurious signals and control method
JPS6315528B2 (ru)
CN114964306A (zh) 一种半球谐振陀螺标定因数和零偏自标定方法
JP2900341B2 (ja) 2軸同時測定用の圧電回転センサ及びその測定回路
US3253471A (en) Apparatus for indicating angular velocities or/and accelerations
Yin et al. A phase self-correction method for bias temperature drift suppression of MEMS gyroscopes
RU2210736C1 (ru) Способ измерения угловой скорости двухстепенным роторным вибрационным гироскопом
EP3798642B1 (en) Coriolis vibratory accelerometer system
KR100203315B1 (ko) 2축 내비게이션 그레이드 마이크로머신드 회전 센서 시스템
RU2466354C1 (ru) Микросистемный гироскоп
CA1227067A (en) Apparatus for measuring inertial specific force and angular rate of a moving body and accelerometer assemblies particularly useful therein
Lee et al. Driving and detection system of vibrating piezoelectric gyroscope at atmospheric pressure for multi-axial inertia sensor
CN108318019B (zh) 测量微机械单振子三轴陀螺仪的三轴角速度的方法
Chikovani et al. Errors Compensation of Ring-Type MEMS Gyroscopes Operating in Differential Mode
RU2787809C1 (ru) Датчик угла крена на базе волнового твердотельного гироскопа с металлическим резонатором
RU2490592C1 (ru) Микрогироскоп профессора вавилова
Severov et al. Structure and characteristics of a MEMS wave angular rate sensor with a ring resonator

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040528