RU2208850C2 - Способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора - Google Patents

Способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора Download PDF

Info

Publication number
RU2208850C2
RU2208850C2 RU2001123082/06A RU2001123082A RU2208850C2 RU 2208850 C2 RU2208850 C2 RU 2208850C2 RU 2001123082/06 A RU2001123082/06 A RU 2001123082/06A RU 2001123082 A RU2001123082 A RU 2001123082A RU 2208850 C2 RU2208850 C2 RU 2208850C2
Authority
RU
Russia
Prior art keywords
wire
stainless steel
pipe
tubular parts
zirconium pipe
Prior art date
Application number
RU2001123082/06A
Other languages
English (en)
Other versions
RU2001123082A (ru
Inventor
Е.Г. Бек
А.В. Филиппов
Ю.Г. Заниздра
А.Ф. Солоухин
Б.А. Селиверстова
В.И. Курылев
Original Assignee
Открытое акционерное общество "Машиностроительный завод"
Государственное унитарное предприятие "Опытное конструкторское бюро машиностроения" им. И.И.Африкантова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Машиностроительный завод", Государственное унитарное предприятие "Опытное конструкторское бюро машиностроения" им. И.И.Африкантова filed Critical Открытое акционерное общество "Машиностроительный завод"
Priority to RU2001123082/06A priority Critical patent/RU2208850C2/ru
Application granted granted Critical
Publication of RU2208850C2 publication Critical patent/RU2208850C2/ru
Publication of RU2001123082A publication Critical patent/RU2001123082A/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Изобретение относится к технологии сборки деталей и узлов, в частности при соединении трубчатых деталей из разнородных материалов, и может быть использовано в различных областях техники. Способ заключается в том, что на наружную поверхность циркониевой трубы 2 устанавливают с натягом по спирали проволоку 3 из нержавеющей стали, предварительно навитую. Затем устанавливают трубу с проволочной навивкой внутрь внешней трубы 1 из нержавеющей стали. Осуществляют ротационное обжатие по наружной поверхности внешней трубы. Величину натяга выбирают в зависимости от отношения внутреннего диаметра Dспс проволочной спирали в свободном состоянии к внутреннему диаметру Dспн проволочной спирали в навитом состоянии. Данное отношение составляет от 0,73 до 0,84. Диаметр d проволоки из нержавеющей стали выбирают от 0,47•Δ до 0,53•Δ, где Δ - толщина стенки циркониевой трубы. В результате повышается степень фиксации проволоки на циркониевой трубе, уменьшается неравномерность внедрения проволоки в материалы трубчатых деталей, исключается образование в соединении зон с низкими механическими и коррозионными свойствами, повышается надежность соединения трубчатых деталей в условиях радиационного облучения. 4 ил.

Description

Область техники, к которой относится изобретение.
Изобретение относится к технологии сборки деталей и узлов, в частности при соединении трубчатых деталей из разнородных материалов, и может быть использовано в различных областях техники: в химическом, авиационном энергетическом машиностроении и пр., особенно в атомном машиностроении при соединении изделий, которые эксплуатируются в условиях повышенных температур и подвергаются воздействию агрессивных сред и нейтронного потока.
Уровень техники
В самых различных областях машиностроения и в быту используется множество способов соединения деталей, в частности, трубчатой формы, выполненных как из однородных материалов, так и из разнородных материалов. Соединения выполняют с помощью клея, сварки трением, электронно-лучевой сварки, диффузионной сварки, при помощи муфт, резьбовых элементов, посредством промежуточных элементов и пр.
Известен способ соединения труб, заключающийся во введении между трубами герметизирующего клеевого состава (SU 1679124, F 16 L 13/04, 1986). Использование клеевого состава упрощает технологию соединения трубчатых деталей и позволяет соединять элементы из разнородных материалов. Однако использовать такое соединение в условиях высоких температур, тем более при значительных механических нагрузках, невозможно в связи с разрушением клеевого состава.
Известен способ холодной сварки разнородных металлов, заключающийся в том, что детали из разнородных металлов помещают между пуансонами сварочного аппарата и сжимают значительным давлением (SU 1727293, В 23 К 20/00, 1989). При повышенных давлениях частицы металлов проникают друг в друга, обеспечивая соединение деталей. Способ не обеспечивает достаточную прочность соединения.
Известен способ сварки трением деталей из разнородных материалов с применением промежуточной вставки из материала, более мягкого, чем свариваемые материалы (SU 1764901, В 23 К 20/12, 1989). Данный способ имеет высокую трудоемкость и не обеспечивает необходимую прочность при эксплуатации соединения в условиях высоких температур.
Способ диффузионной сварки нержавеющих сталей с несвариваемыми составами предполагает установку между соединяемыми поверхностями промежуточной трехслойной переходной прокладки, внешние слои которой свариваются с соединяемыми деталями (SU 1593849, В 23 К 20/16, 1988). Способ позволяет получить качественное соединение при работе в условиях высоких температур и нагрузок.
Наиболее близким по технической сущности к описываемому изобретению является способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора, заключающийся в том, что на наружную поверхность циркониевой трубы навивают по спирали проволоку из нержавеющей стали, устанавливают циркониевую трубу с проволочной навивкой внутрь внешней трубы из нержавеющей стали и осуществляют ротационное обжатие по наружной поверхности внешней трубы (RU 2127178, В 23 К 20/16, 1999). В известном способе после навивки проволоки из нержавеющей стали на поверхность циркониевой трубы осуществляют фиксацию проволочной спирали путем сварки ее концов с наружной поверхностью циркониевой трубы. Однако фиксация спирали посредством сварки может привести к негативному воздействию в процессе соединения труб при ротационном обжатии и при эксплуатации в условиях высоких нагрузок, особенно в условиях радиационного облучения по следующим причинам. Во-первых, несмотря на приварку концов проволоки к наружной поверхности циркониевой трубы, витки проволоки могут перемещаться вдоль оси циркониевой трубы под действием сил, воздействующих на проволоку в процессе ротационного обжатия. В результате витки проволоки будут внедрены в материалы труб с неравномерным шагом, что снижает прочность соединения. Во-вторых, неравномерный шаг витков проволоки приведет к тому, что при внедрении проволоки в материалы труб будет иметь место неоднородная деформация в различных поперечных сечениях проволоки, что также снизит надежность и прочность соединения. В-третьих, при сварке концов проволоки с наружной поверхностью циркониевой трубы в зоне сварки образуется эвтектика с низкими механическими и коррозионными свойствами, что недопустимо. Кроме того, негативные вышеотмеченные факторы будут усилены в условиях радиационного облучения, а сварка концов проволоки с поверхностью циркониевой трубы увеличивает трудоемкость технологического процесса в целом.
Сущность изобретения
Задачей настоящего изобретения является разработка и создание способа соединения трубчатых деталей из разнородных материалов, упрощающего технологию изготовления и обеспечивающего повышение прочности соединения в условиях высоких температур и силовых нагрузок, особенно в агрессивных средах, под действием давлений и радиационного облучения.
В результате решения данной задачи могут быть получены новые технические результаты, заключающиеся в повышении степени фиксации проволоки на циркониевой трубе, уменьшении неравномерности внедрения проволоки в материалы трубчатых деталей и в исключении образования в соединении зон с низкими механическими и коррозионными свойствами, а также в повышении надежности соединения трубчатых деталей в условиях радиационного облучения.
Данные технические результаты достигаются тем, что в способе соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора, заключающемся в том, что циркониевую трубу с проволочной навивкой устанавливают внутрь внешней трубы из нержавеющей стали и осуществляют ротационное обжатие по наружной поверхности внешней трубы, проволоку предварительно навивают, затем устанавливают на поверхность циркониевой трубы с натягом, характеризующимся тем, что отношение внутреннего диаметра Dспс проволочной спирали из нержавеющей стали в свободном состоянии к внутреннему диаметру Dспс проволочной спирали из нержавеющей стали в навитом состоянии составляет от 0,73 до 0,84, причем диаметр d проволоки из нержавеющей стали выбирают от 0,47•Δ до 0,53•Δ, где Δ - толщина стенки циркониевой трубы.
Отличительная особенность настоящего изобретения состоит в следующем. Осуществление установки проволоки на наружную поверхность с натягом позволяет, с одной стороны, повысить надежность фиксации всех витков проволоки на циркониевой трубе и исключить смещение витков проволоки в процессе ротационного обжатия. С другой стороны, установка проволоки на циркониевую трубу с натягом исключает необходимость проведения операции приварки концов проволоки к наружной поверхности циркониевой трубы, что исключает образование на циркониевой трубе зон с низкими механическими и коррозионными свойствами. Усилие натяга выбрано экспериментально. Величина натяга характеризуется отношением внутреннего диаметра Dспс проволочной спирали в свободном состоянии к внутреннему диаметру Dспс проволочной спирали в навитом состоянии и составляет от 0,73 до 0,84. Очевидно, что при установке проволоки с натягом на циркониевую трубу после снятия проволочной спирали с трубы ее диаметр уменьшится за счет упругих свойств материала проволоки. Если внутренний диаметр Dспс проволочной спирали в свободном состоянии после установки с натягом и снятии с циркониевой трубы больше 0,84•Dспс, то величина натяга мала для надежной фиксации спирали. Если внутренний диаметр Dспс проволочной спирали в свободном состоянии после установки с натягом и снятии с циркониевой трубы будет меньше 0,73•Dспс, то возможна существенная пластическая деформация проволоки, а также формоизменение циркониевой трубы при установке проволоки на циркониевую трубу с натягом. Естественно, что внутренний диаметр Dспс проволочной спирали в навитом состоянии равен наружному диаметру Dцт циркониевой трубы. При фиксации проволоки за счет натяга существенным является не только величина натяга, но и диаметр d проволоки в зависимости от толщины Δ стенки циркониевой трубы. Если диаметр проволоки меньше, чем 0,47•Δ, проволока в меньшей степени внедряется в циркониевую трубу при ротационном обжатии и не создает требуемой прочности соединения. Если диаметр проволоки больше 0,53•Δ, то возможно формоизменение циркониевой трубы в процессе ротационного обжатия, поскольку навивка проволоки на трубу осуществляется с натягом, при котором циркониевая труба подвергается механическому нагружению.
На фиг. 1 показан общий вид соединения, получаемого при реализации описываемого способа.
На фиг. 2 изображена часть проволочной спирали, установленной с натягом на поверхность циркониевой трубы.
На фиг.3 изображена проволочная спираль в свободном состоянии.
На фиг.4 приведена картина внедрения в металл трубчатых деталей.
Сведения, подтверждающие возможность осуществления изобретения.
Соединение состоит из внешней трубы 1, выполненной из нержавеющей стали, в которую установлена циркониевая труба 2. На наружной поверхности циркониевой трубы установлена по спирали проволока 3 из нержавеющей стали. Проволоку из нержавеющей стали устанавливают на поверхность циркониевой трубы с натягом. Величину натяга определяют несложными экспериментами исходя из получаемых отношений внутреннего диаметра Dспс проволочной спирали из нержавеющей стали в свободном состоянии к внутреннему диаметру Dспн проволочной спирали из нержавеющей стали в навитом состоянии в зависимости от усилия натяга. Усилие натяга выбирают таким образом, чтобы указанное отношение составляло от 0,73 до 0,84. При изготовлении трубчатых деталей из нержавеющей стали и цирконийсодержащих материалов путем установки проволоки с натягом необходимо использовать проволоку с диаметром d, величина которого зависит от толщины Δ стенки циркониевой трубы. Диаметр d проволоки из нержавеющей стали выбирают от 0,47•Δ до 0,53•Δ. Предварительно навитую проволоку 3 устанавливают на поверхность циркониевой трубы с натягом на стандартном оборудовании.
Способ осуществляют следующим образом. Предварительно навитую проволоку 3 устанавливают на наружную поверхность циркониевой трубы 2 с натягом, количество витков которой, а следовательно, шаг навивки выбирают путем проведения несложных экспериментов в зависимости от требуемой прочности соединения. Затем циркониевую трубу 2 с установленной на ней проволокой 3 вставляют в трубу 1 из нержавеющей стали и производят окончательную операцию - ротационное обжатие на любом известном оборудовании. В результате происходит деформация проволоки 3 и ее внедрение в стенку трубы 1 из нержавеющей стали и стенку циркониевой трубы 2 (фиг.4).
Надежность фиксации внутренней циркониевой трубы 2 в трубе 1 из нержавеющей стали с промежуточным элементом - проволокой 3, установленной по спирали, подтверждена при нагреве соединения до температуры 350oС с механическим нагружением до требуемой величины.
Таким образом, использование описываемого способа позволяет за счет простой технологии с использованием стандартного известного оборудования получить надежное соединение трубчатых деталей при обеспечении прочности, надежности и герметичности. Особенно способ рекомендуется использовать при изготовлении направляющих каналов для тепловыделяющих сборок ядерных реакторов, поскольку соединение надежно функционирует в условиях радиационного облучения.

Claims (1)

  1. Способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора, заключающийся в том, что циркониевую трубу с проволочной навивкой устанавливают внутрь внешней трубы из нержавеющей стали и осуществляют ротационное обжатие по наружной поверхности внешней трубы, отличающийся тем, что проволоку предварительно навивают, затем устанавливают на поверхность циркониевой трубы с натягом, характеризующимся тем, что отношение внутреннего диаметра Dспс проволочной спирали из нержавеющей стали в свободном состоянии к внутреннему диаметру Dспн проволочной спирали из нержавеющей стали в навитом состоянии составляет от 0,73 до 0,84, причем диаметр d проволоки из нержавеющей стали выбирают от 0,47•Δ до 0,53•Δ, где Δ - толщина стенки циркониевой трубы.
RU2001123082/06A 2001-08-17 2001-08-17 Способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора RU2208850C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001123082/06A RU2208850C2 (ru) 2001-08-17 2001-08-17 Способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001123082/06A RU2208850C2 (ru) 2001-08-17 2001-08-17 Способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора

Publications (2)

Publication Number Publication Date
RU2208850C2 true RU2208850C2 (ru) 2003-07-20
RU2001123082A RU2001123082A (ru) 2003-07-20

Family

ID=29210252

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001123082/06A RU2208850C2 (ru) 2001-08-17 2001-08-17 Способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора

Country Status (1)

Country Link
RU (1) RU2208850C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943195A (zh) * 2010-09-13 2011-01-12 中国核电工程有限公司 一种拉杆端部紧固接头及其制作方法
RU2633760C2 (ru) * 2017-01-31 2017-10-18 Юрий Васильевич Потапов Устройство для навивки проволочной спирали на трубчатую оболочку
RU2636962C1 (ru) * 2016-11-23 2017-11-29 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр им. М.В. Хруничева" Способ получения неразъемного соединения осесимметричных полых деталей из разнородных материалов
CN113427096A (zh) * 2021-07-01 2021-09-24 中国航发贵州黎阳航空动力有限公司 一种用于试样钎焊的工装及试样装炉方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943195A (zh) * 2010-09-13 2011-01-12 中国核电工程有限公司 一种拉杆端部紧固接头及其制作方法
CN101943195B (zh) * 2010-09-13 2012-07-11 中国核电工程有限公司 一种拉杆端部紧固接头及其制作方法
RU2636962C1 (ru) * 2016-11-23 2017-11-29 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр им. М.В. Хруничева" Способ получения неразъемного соединения осесимметричных полых деталей из разнородных материалов
RU2633760C2 (ru) * 2017-01-31 2017-10-18 Юрий Васильевич Потапов Устройство для навивки проволочной спирали на трубчатую оболочку
CN113427096A (zh) * 2021-07-01 2021-09-24 中国航发贵州黎阳航空动力有限公司 一种用于试样钎焊的工装及试样装炉方法
CN113427096B (zh) * 2021-07-01 2022-06-03 中国航发贵州黎阳航空动力有限公司 一种用于试样钎焊的工装及试样装炉方法

Similar Documents

Publication Publication Date Title
US6419147B1 (en) Method and apparatus for a combined mechanical and metallurgical connection
EP0071261B1 (en) Corrosion-resistant, multiple-wall pipe structure and method
US8083268B2 (en) Coupling, joint and method for fixedly and sealingly securing components to one another
US4883292A (en) Corrosion resisting steel pipe and method of manufacturing same
US5992898A (en) Quick-connect assembly and method of manufacture
RU2208850C2 (ru) Способ соединения трубчатых деталей из разнородных материалов, преимущественно направляющих каналов тепловыделяющих сборок ядерного реактора
US7841509B2 (en) Method of brazing with two different braze compositions
US4914950A (en) Ceramic conduit assembly with metal outer tube
RU2157478C1 (ru) Способ соединения металлических труб с внутренним покрытием
US5690148A (en) Closure fitting and flexibility support assembly for double-containment piping systems
EP0134566A2 (en) Method for permanent joining of tubular members
RU2127178C1 (ru) Способ соединения деталей из разнородных материалов
RU2079033C1 (ru) Способ соединения труб с внутренним покрытием
JPH04219590A (ja) パイプの漏出箇所をブリッジするための金属スリーブ
EP3660376B1 (en) Pipe joint and pipe joint structure
KR880002284B1 (ko) 건축용 금속제 봉제의 연결방법
JP4439309B2 (ja) 油浸形ソレノイド
EP0163957B1 (en) Corrosion-resistant pipe coupling structures
AU2020355421B2 (en) Method for producing a pipeline arrangement, and pipeline arrangement
CN212178112U (zh) 一种具有胶粘界面的双金属复合焊管
RU2084024C1 (ru) Корпус канала ядерного реактора
JPH0549385B2 (ru)
RU22814U1 (ru) Полимерный трубопровод
EP0163958A1 (en) Corrosion-resistant pipe coupling structures
JPS60222682A (ja) 耐蝕鋼管及びその製造方法

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20100916