RU2196700C2 - Способ снижения гидродинамического трения обшивки корпуса судна - Google Patents

Способ снижения гидродинамического трения обшивки корпуса судна Download PDF

Info

Publication number
RU2196700C2
RU2196700C2 RU98100989/28A RU98100989A RU2196700C2 RU 2196700 C2 RU2196700 C2 RU 2196700C2 RU 98100989/28 A RU98100989/28 A RU 98100989/28A RU 98100989 A RU98100989 A RU 98100989A RU 2196700 C2 RU2196700 C2 RU 2196700C2
Authority
RU
Russia
Prior art keywords
polymer
ship
hull
pump
boundary layer
Prior art date
Application number
RU98100989/28A
Other languages
English (en)
Other versions
RU98100989A (ru
Inventor
Ф.К. Жестовский
ков А.А. Хом
А.А. Хомяков
Г.И. Каневский
В.Б. Амфилохиев
Original Assignee
Жестовский Феликс Кузьмич
Хомяков Альберт Александрович
Каневский Григорий Ильич
Амфилохиев Вальтер Борисович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Жестовский Феликс Кузьмич, Хомяков Альберт Александрович, Каневский Григорий Ильич, Амфилохиев Вальтер Борисович filed Critical Жестовский Феликс Кузьмич
Priority to RU98100989/28A priority Critical patent/RU2196700C2/ru
Publication of RU98100989A publication Critical patent/RU98100989A/ru
Application granted granted Critical
Publication of RU2196700C2 publication Critical patent/RU2196700C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к гидродинамике судов, судостроению и касается снижения сопротивления трения корпуса судна путем управления турбулентным пограничным слоем на обшивке корпуса судна. Способ снижения гидродинамического трения обшивки корпуса судна состоит в подаче водного раствора полимерных добавок в турбулентный пограничный слой жидкости, обтекающей корпус судна. Высококонцентрированный исходный продукт полимера, например пасту, вводят дозатором в предлопастную зону насоса системы подачи полимерного раствора, дистрибьютируют лопастной системой насоса полимерные частицы, раздвигая и дробя продукт взаимодействия пасты с жидкостью, интенсифицируя процесс растворения. При реализации способа формируют трубопроводами и щелевыми камерами трехщелевую систему прокачки забортной жидкости, засасывая забортную жидкость насосной системой в зоне вниз или вверх по потоку от щели подачи водного раствора полимерных добавок. Для реализации способа воду подают напором другого насоса в пограничный слой судна через наклонную к плоскости обшивки щель, снесенную вниз по потоку относительно щели подачи водного раствора добавок. Технический результат реализации изобретения заключается в повышении экономичности эксплуатации судов и подводных аппаратов. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области гидродинамики, в частности к вопросам управления турбулентным пограничным слоем, и может быть использовано для уменьшения сопротивления трения корпуса судна или подводного аппарата (ПА), движущихся в жидкости, обеспечения пониженных энергозатрат и решения других сопутствующих задач ходкости.
Известен в гидродинамике способ Желтухина-Жестовского образования гомогенной газоводяной смеси высокой концентрации, который включает засасывание атмосферного воздуха в зону засасывания насоса гидродинамической трубы и последующее дробление воздуха насосом в лопастной зоне системы прокачки рабочей жидкости. Способ апробирован авторами в 1975 г. и планировался для использования по обоснованию способов и средств уменьшения гидродинамического трения ПА. Устройство (Гидродинамическая труба) защищено авторским свидетельством 521489, 1976 г.
Используются в родственных областях способы, включающие дробление различных добавок и включений. Так в пожарной технике используется подача пенообразователя пожарным насосом автомобиля через стационарный пеносмеситель ПС-5, при наличии водоисточника у места пожара (см. Пожарная техника / Под ред. А. Ф. Иванова, 4.2. Пожарные автомобили. М.: Стройиздат, 1988, с.94). Образованная по данному способу пена представляет собой ячеисто-пленочную дисперсную систему с упругими стенками. Концентрированная эмульсия содержит не менее 75% газа и препятствует поступлению в зону горения горючих паров и газов, в результате чего горение прекращается.
Известен в гидромеханике эффект Томса уменьшения гидродинамического трения поверхности при турбулентном течении в водных растворах полимерных добавок и достоверные доказательства эффекта для внутренней задачи - течение в трубах и лотках (см., например, Иванюта Ю.Ф., Чекалова Л.А. Экспериментальные исследования турбулентного течения в трубе слабых растворов полимеров).
Известен способ снижения гидродинамического трения обшивки корпуса судна, который включает подачу раствора полимерных добавок (раствора ПД) в напорную линию системы подачи водного раствора ПД, дорастворение водного раствора в камерах дорастворения и последуещее введение (подачу) напором насосной системы подачи готового раствора заданной концентрации ПД через наклонную щель в турбулентный пограничный слой на поверхность обшивки корпуса судна (см. Справочник по теории корабля. В 3-х томах / Под ред. Войткунского Я.И., т.1, раздел 2, 12, с.265-268 и рис.11.65). Данный способ принят за прототип и часто является тестовым для оценки эффекта снижения сопротивления на телах различной геометрии.
Основным недостатком как способа-прототипа, так и других известных способов снижения сопротивления, основанных на эффекте Томса, является его относительно низкая эффективность при решении внешней задачи обтекания поверхностей. Это объясняется как сложностью кинетики и математического описания процессов, лежащих в основе известного уже почти 50 лет аномального гидродинамического явления, так и полуэмпирикой гидродинамики и сложностью согласования параметров многопараметрической системы реализации эффекта в натурных условиях. Отметим для ясности, что задача повышения эффективности данного способа является комплексной.
Поставленная цель достигается тем, что в известном способе снижения гидродинамического трения обшивки судна путем подачи водного раствора полимерных добавок в турбулентный пограничный слой жидкости, обтекающей корпус судна, дополнительно высококонцентрированный исходный продукт полимера, например пасту ПД вводят дозатором в предлопастную зону насоса системы подачи раствора ПД, дистрибутируют лопастной системой насоса полимерные частицы, раздвигая и дробя комковатый продукт взаимодействия пасты с жидкостью, интенсифицируя процесс растворения и дорастворения, формируют трубопроводами и щелевыми камерами трехщелевую систему прокачки забортной жидкости, засасывая забортную жидкость насосной системой прокачки в зоне вниз или вверх по потоку от щели подачи водного раствора ПД, а подавая напором другого насоса в пограничный слой судна через наклонную к плоскости обшивки щель, снесенную вниз по потоку относительно щели подачи раствора ПД. Кроме того, регулируют дозатором расход пасты пропорционально скорости судна и заданной весовой концентрации готового водного раствора ПД с надбавкой на 30÷50% или более.
Ведение операций по предложенному способу и гидродинамическая картина процесса снижения сопротивления отличаются от прототипа. Так операция дистрибутации, как показали стендовые испытания, проведенные авторами в 1994 г. , дает возможность уменьшить энергозатраты в предложенном способе по сравнению с прототипом, что доказано натурными испытаниями опытного образца для решения внутреннего течения жидкости. Формирование указанной системы прокачки, как показали теоретические и модельные испытания, позволяют построить квазиоптимальную по указанным параметрам регулирования систему, что в совокупности и обеспечивает положительный эффект.
Авторами с 1993 г. проведены работы по созданию математической модели явления по заявленному способу, серия модельных и лабораторно-стендовых испытаний 1994-95 г.г., достоверно подтверждающих, что дополнительный эффект способа по сравнению с прототипом составляет 30% и более. Отметим для ясности, что регулирование ведут пропорционально скорости, измеряемой штатным ЛАГом судна, а заданную концентрацию увеличивают на 30-50% в рационально спроектированных системах прокачки, так что при неблагоприятных условиях течения дополнительный расход исходного продукта может быть и больше, а к основным факторам, определяющим эффективность способа, относятся: местные числа Rе, характерные толщины погранслоев и распределений концентраций, геометрия лопастной системы и элементов системы подачи, характеристики исходного продукта ПД и системы ввода раствора ПД, место и форма заборной щели, распределение давления по корпусу судна и др.
Реализация заявленного способа иллюстрируется принципиальной схемой, представленной на чертеже.
В обшивке 1 корпуса судна выполнены щелевые камеры 2, 3 и 4. Совместно со щелями 5, 6 и 7, насосами 8 и 9, трубопроводами 10, 11, 12, 13 они представляют собой сформированную систему прокачки забортной жидкости, которая должна отвечать заданным критериям. Насосная система приводится в заданное движение регулируемым приводом 14. Дозатор 15 связан информационно-измерительным каналом с ЛАГом судна, линиями 16 и 17 - с напорной линией и предлопастной зоной насоса 8. В полости 18 дозатора 15 находится исходный продукт - концентрированная паста типа WSR.
При движении судна на обшивке 1 его корпуса образуется пограничный слой жидкости (см. эпюру на чертеже) с характерными параметрами и профилем скорости
Figure 00000002
. При запуске насосов 8 и 9 системы прокачки приводом 14 обеспечивают расчетный режим работы системы прокачки забортной жидкости. Засасывают насосами 8 и 9 через щель 7 забортную воду и через щелевую камеру 4 и линию 13 с регулятором подают чистую воду насосом 9 в напорную линию 10, прокачивая ее через щелевую камеру 3, и вводят воду напором насоса 9 в пограничный слой через щель 6, формируя "подстилку" на обшивке корпуса судна. Дозатором 15 по линии 17 вводят в предлопастную зону насоса 8 из полости 18 исходный продукт ПД, например пасту высокомолекулярного полимера типа WSR, дистрибутируют лопастной системой насоса 8 частицы полимера, раздвигая и дробя комковатый продукт - гель высокой концентрации, интенсифицируя процесс приготовления раствора ПД заданной концентрации. Подают раствор ПД напором насоса 8 по трубопроводу 11 в шелевую камеру 2 и, через наклонную к плоскости обшивки 1 щель 5 в турбулентный пограничный слой жидкости. Взаимодействие раствора ПД, "подстилки" и турбулентного пограничного слоя по данным теоретической модели течения, в совокупности с указанными выше операциями обеспечивает снижение гидродинамического трения обшивки корпуса судна. Регулирование системы снижения сопротивления может осуществляться как в ручном режиме оператором, так и автоматически регулятором.
Предварительная оценка эффективности заявленного технического решения проведена авторами с учетом массогабаритных и энергетических характеристик типовых элементов и схем. По сравнению с прототипом предложенный способ позволяет вплотную приблизиться к кривой Вирка, обеспечив снижение (относительно чистой жидкости) гидродинамического трения на 60%. Достоверность прогноза подтверждена буксировочными испытаниями модели для внешней задачи и натурными испытаниями для внутренней задачи (течение в трубе) при проведении плановых работ.
Планируется конструктивная привязка способа для макетного варианта типового образца и его последующие испытания.

Claims (2)

1. Способ снижения гидродинамического трения обшивки корпуса судна путем подачи водного раствора полимерных добавок в турбулентный пограничный слой жидкости, обтекающей корпус судна, отличающийся тем, что высококонцентрированный исходный продукт полимера, например пасту, вводят дозатором в предлопастную зону насоса системы подачи полимерного раствора, дистрибьютируют лопастной системой насоса полимерные частицы, раздвигая и дробя продукт взаимодействия пасты с жидкостью, интенсифицируя процесс растворения, формируют трубопроводами и щелевыми камерами трехщелевую систему прокачки забортной жидкости, засасывая забортную жидкость насосной системой в зоне вниз или вверх по потоку от щели подачи водного раствора полимерных добавок, подавая напором другого насоса в пограничный слой судна через наклонную к плоскости обшивки щель, снесенную вниз по потоку относительно щели подачи водного раствора добавок.
2. Способ по п. 1, отличающийся тем, что регулируют дозатором расход пасты пропорционально скорости судна и заданной весовой концентрации полимера с надбавкой на 30-50% или более.
RU98100989/28A 1998-01-23 1998-01-23 Способ снижения гидродинамического трения обшивки корпуса судна RU2196700C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98100989/28A RU2196700C2 (ru) 1998-01-23 1998-01-23 Способ снижения гидродинамического трения обшивки корпуса судна

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98100989/28A RU2196700C2 (ru) 1998-01-23 1998-01-23 Способ снижения гидродинамического трения обшивки корпуса судна

Publications (2)

Publication Number Publication Date
RU98100989A RU98100989A (ru) 1999-10-27
RU2196700C2 true RU2196700C2 (ru) 2003-01-20

Family

ID=20201380

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98100989/28A RU2196700C2 (ru) 1998-01-23 1998-01-23 Способ снижения гидродинамического трения обшивки корпуса судна

Country Status (1)

Country Link
RU (1) RU2196700C2 (ru)

Similar Documents

Publication Publication Date Title
US2954750A (en) Mixer nozzle
US10385669B2 (en) Apparatus and method for servicing a well
RU2015134184A (ru) Системы доставки взрывчатых веществ и связанные с ними способы
US4716932A (en) Continuous well stimulation fluid blending apparatus
CA3147867C (en) Automated drilling-fluid additive system and method
BR0314391A (pt) Processo e aparelho para a preparação e fornecimento de pasta de catalisador a um reator de polimerização
ATE264707T1 (de) Verfahren und vorrichtung zum mischen von hochmolekularen materialien mit flüssigkeiten
KR20200018511A (ko) 압축 방법에 의한 거품 발생을 가진 이동식 소화 장치
RU2663606C2 (ru) Система и способ обработки текучих сред
CN109397538B (zh) 一种泡沫水泥浆发生器和水泥浆带压充气装置及其应用
RU2196700C2 (ru) Способ снижения гидродинамического трения обшивки корпуса судна
US20170259091A1 (en) Fire-fighting system
US20240018836A1 (en) Automated drilling-fluid additive system and method
RU2299152C1 (ru) Двухрежимный водозаборник водометного движителя судна на подводных крыльях
CN102762288A (zh) 制造燃料及可乳化成分的乳化物的设备及方法
RU112984U1 (ru) Устройство для подготовки к сжиганию обводненного мазута
SU1664815A1 (ru) Способ ввода депрессорных присадок
JP5373826B2 (ja) 海洋的および工業的応用のためにポリマーによる抗力低減の効率を高める方法
KR20240007654A (ko) 해양 선박의 항력을 줄이기 위한 시스템 및 방법
CN117442908A (zh) 双组份快速固化型凝胶泡沫的制备装置及方法
RU98100989A (ru) Способ снижения гидродинамического трения обшивки корпуса судна
JP2001354191A (ja) 粉末油ゲル化剤の水中散布方法及び装置。
RU2184678C2 (ru) Двухрежимный водозаборник водометного движителя высокоскоростного судна
Blaznov et al. Dispersion and coalescence in fluid-gas jet apparatus with elongated mixing chamber
RU2113275C1 (ru) Установка для приготовления и транспортировки эмульсии в гидросистему

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050124