RU2194791C1 - Рельсовая сталь - Google Patents
Рельсовая сталь Download PDFInfo
- Publication number
- RU2194791C1 RU2194791C1 RU2001125722/02A RU2001125722A RU2194791C1 RU 2194791 C1 RU2194791 C1 RU 2194791C1 RU 2001125722/02 A RU2001125722/02 A RU 2001125722/02A RU 2001125722 A RU2001125722 A RU 2001125722A RU 2194791 C1 RU2194791 C1 RU 2194791C1
- Authority
- RU
- Russia
- Prior art keywords
- steel
- rail
- nitrogen
- aluminum
- rails
- Prior art date
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Изобретение относится к металлургии, а именно к разработке рельсовой стали для скоростных участков железнодорожных путей, эксплуатируемых при температуре до минус 60oС. Предложена рельсовая сталь, содержащая компоненты в следующем отношении, мас.%: углерод 0,71 - 0,87; кремний 0,40 - 1,20; марганец 0,70 - 1,30; хром 0,10 - 1,20; ванадий 0,05 - 0,20; титан 0,01 - 0,05; алюминий 0,014 - 0,05; азот 0,007 - 0,020; кальций 0,02 - 0,04; лантан 0,001 - 0,005; неодим 0,001 - 0,005; церий 0,003 - 0,010; железо - остальное. Причем соотношение содержания алюминия к азоту составляет 2,0 - 2,5. Техническим результатом изобретения является повышение ударной вязкости при отрицательных температурах до -60oС, повышение твердости на поверхности катания головки рельса и износостойкости. 1 з.п.ф-лы, 2 табл.
Description
Изобретение относится к области черной металлургии, конкретнее к химическому составу сталей, предназначенных преимущественно для изготовления железнодорожных рельсов широкой колеи типа Р65, эксплуатируемых на скоростных участках магистральных железнодорожных путей, в том числе в регионах с холодным (до-60oС) климатом.
Одним из эффективных путей разрешения транспортных проблем, как показывает мировой опыт, является строительство высокоскоростных железнодорожных магистралей (ВСМ), так, например, пассажирские железнодорожные перевозки со скоростями движения поездов до 330-350 км/ч, получившие широкое применение в Западных странах (Франция, Германия, Италия и Япония), которые экономичнее по сравнению с автомобильным и воздушным транспортом в 5 и 10 раз соответственно.
В России введена в эксплуатацию ВСМ "Санкт-Петербург - Москва". В ближайшей перспективе строительство ВСМ будет интенсивно расширяться. Причем особенностью российских ВСМ является совмещение пассажирского и грузового движения, остающегося одним из главных способов грузоперевозок в нашей стране, в том числе в регионах Западной и Восточной Сибири.
Важной характеристикой рельсов для ВСМ является их прямолинейность (величина предельных неровностей на поверхности катания) в вертикальной плоскости, так как, чем она лучше, тем, соответственно, меньше динамическая нагрузка на рельсы при движении поездов, а следовательно, выше надежность и срок службы рельсов [1]. Минимизация величины дефектов по прямолинейности является также эффективным средством снижения шума при движении поездов.
Совмещение пассажирского и грузового движения на отечественных ВСМ, в том числе в регионах с холодным климатом, выдвигает дополнительные требования к рельсам для ВСМ. Они наряду с высокой прямолинейностью должны иметь повышенную износостойкость, определяемую в основном твердостью (прочностью) головки катания, и надежность, т.е. ударную вязкость при отрицательных климатических температурах (до -60oС). Так, по данным ГУП ВНИИЖТ повышение твердости на поверхности катания головки рельсов с 300 до 400 НВ увеличивает их износостойкость в 1,5-2,0 раза.
Широко используются для изготовления железнодорожных рельсов широкой колеи типа Р65, в том числе для ВСМ, углеродистые марганцовистые стали (0,70-1,30% Mn) типа 76Г, раскисленные комплексными сплавами, содержащими Si, V, Ti, Al, Ca, Zr, после термического упрочнения путем объемной закалки в масле [2, 3].
Недостатком рельсов из этих сталей является их пониженная ударная вязкость при отрицательных климатических температурах и повышенная искривленность по поверхности катания головки рельса, возникающая при их объемной закалке вследствие неравномерного охлаждения в масле из-за большой разнотолщинности рельсового профиля, которая трудно исправима после термической обработки правкой в правильных машинах.
В последние годы в отечественной и зарубежной практике железнодорожные рельсы колеи типа Р65 для скоростного движения изготовляют из низколегированных хромом, марганцем, кремнием и ванадием сталей типа ХГСФ, которые не подвергают объемной закалке в масле и используют в горячекатаном состоянии для обеспечения высоких требований по прямолинейности рельсов.
Наиболее близкой из указанного типа сталей (к предлагаемой по технической сущности и достигаемому результату) является сталь, содержащая в массе %: углерода 0,65-0,75; кремния 0,30-0,70; марганца 0,95-1,30; хрома 0,75-1,15; ванадия 0,04-0,12; железа - остальное [4].
Эта сталь (прототип) в горячекатаном состоянии имеет низкую ударную вязкость при температуре -60oС, а также пониженную твердость и, как следствие, износостойкость.
Техническим результатом изобретения является повышение ударной вязкости при отрицательных климатических температурах (-60oС) и твердости, а следовательно, износостойкости горячекатаных рельсов.
Технический результат достигается тем, что сталь, содержащая углерод, кремний, марганец, хром, ванадий, алюминий, кальций, азот и железо, отличающаяся тем, что она дополнительно содержит лантан, неодим и церий при следующем отношении ингредиентов (в % по массе): углерод 0,71-0,87; кремний 0,40-1,20; марганец 0,70-1,30; хром 0,10-1,20; ванадий 0,05-0,20; титан 0,01-0,05; алюминий 0,014-0,050; кальций 0,02-0,04; лантан 0,001-0,005; неодим 0,001-0,005; церий 0,003-0,010; железо - остальное, причем соотношение содержания алюминия к азоту составляет 2,0-2,5, а максимальная и минимальная суммарная массовая доля лантана, неодима и церия равна соответственно 0,015 и 0,008%.
Комплексное легирование предложенной стали элементами V, Ti, Al, N обеспечивает выделение дисперсных карбонитридных фаз в процессе кристализации, горячей пластической деформации и последующего полиморфного (γ→α)-превращения, что способствует развитию процессов дисперсного упрочнения и формирования в горячекатаных рельсах мелкодисперсной перлитной структуры, необходимой для высокопрочного состояния. Модифицирование стали La, Nd и Се способствуют более глубокому раскислению стали, т.е. снижению в ней вредных оксидных неметаллических включений и глобуляризации сульфидных включений, что существенно повышает ударную вязкость стали, особенно при отрицательных климатических температурах. Пределы содержания элементов, входящих в состав предлагаемой рельсовой стали, выбирались экспериментальным путем.
При соотношении содержания Al/N менее 2 снижается твердость (прочность) горячекатаной стали из-за недостаточного объема выделяемых при дисперсионном твердении дисперсных нитридных фаз-упрочнителей. При соотношении Al/N более 2,5 ухудшается ударная вязкость и пластичность стали из-за большого количества образующихся оксидов алюминия, загрязняющих сталь неметаллическими включениями.
При содержании лантана менее 0,001% не обеспечивается нужной модификации и глобуляризации неметаллических включений, что снижает ударную вязкость при отрицательных температурах. При содержании лантана более 0,005% увеличивается загрязненность стали неметаллическими включениями, снижая ее ударную вязкость.
При содержании неодима менее 0,001% не обеспечивается нужная модификация и глобуляризация неметаллических включений, что снижает ударную вязкость и пластичность стали при отрицательных температурах. При содержании неодима более 0,005% увеличивается загрязненность стали неметаллическими включениями, снижающая ее ударную вязкость.
При содержании церия менее 0,003% не достигается нужный эффект глобуляризации сульфидных включений, что проявляется в снижении ударной вязкости стали. При содержании церия более 0,010% увеличивается загрязненность стали оксидными включениями, из-за чего снижается ее ударная вязкость.
Уменьшение массовой доли La, Nd и Се менее 0,015% (против 0,020%) способствует минимальной загрязненности стали оксидными неметаллическими включениями, которая практически не снижает ударную вязкость горячекатаных рельсов. Увеличение минимальной массовой доли La, Nd и Се до 0,008% обеспечивает наиболее полную глобуляризацию сульфидных включений при допустимом содержании оксидных неметаллических включений в стали.
Ниже приведены варианты осуществления и использования изобретения (табл. 1 и 2), не исключающие другие варианты в объеме формулы изобретения.
Пример
Рельсовую сталь составов по таблице 1 выплавляли на ОАО "НТМК" дуплекс-процессом в 160-т кислородном конвертере в виде полупродукта (железоуглеродистого расплава), выпускали при температуре металла не менее 1630oС в ошлакованный ковш с температурой футеровки не ниже 900oС.
Рельсовую сталь составов по таблице 1 выплавляли на ОАО "НТМК" дуплекс-процессом в 160-т кислородном конвертере в виде полупродукта (железоуглеродистого расплава), выпускали при температуре металла не менее 1630oС в ошлакованный ковш с температурой футеровки не ниже 900oС.
Температура металла в ковше после слива из конвертера не ниже 1530oС. При наполнении ковша на 1/3 производили присадку раскислителей и легирующих, в частности ферросилиция (ФС45), силикомарганца (CMn20), ферромарганца (FMn70), феррохрома (ФХ100) и феррованадия (ФВд40) из расчета получения в ковшевой пробе: углерода, марганца, кремния, хрома и ванадия на 0,05% ниже заданного предела содержания этих элементов в стали требуемого состава. Окончательная корректировка химического состава стали до заданного производилась присадкой необходимых ферросплавов на установке "печь-ковш". Температура металла после обработки на установке "печь-ковш" была в пределах 1570-1580oС. Рельсовую сталь всех выплавленных составов подвергали вакуумированию на установке циркуляционного типа. Длительность вакуумирования - не менее 15 минут при остаточном давлении не более 3,0 М/бар. В конце вакуумирования сталь продувалась через пористую трубку в дне ковша азотом в течение 3-5 минут с расходом азота от 50 м3/ч до получения заданного содержания азота в стали. После завершения продувки азотом (азотирования) стали вводилась алюминевая и силикокальцевая проволока в количестве 0,07-0,15 кг/т и 1,0-1,3 кг/т соответственно, а также 100-150 кг металла, содержащего лантан, неодим и церий. Температура металла в сталеразливочном ковше перед разливкой на МНЛЗ находилась в пределах 1525-1540oС.
Разливка плавок рельсовой стали производилась на МНЛЗ в кристаллизатор сечением 300х360 мм. Со скоростью 0,4-5 м/мин. Температура металла в промковше составляла 1475-1495oС.
Прокатка отлитых заготовок на рельсы типа Р65 производилась на рельсобалочном стане 800 по серийной технологии.
Результаты образцов на растяжение по ГОСТ 24182, а также ударной вязкости при комнатной и отрицательной (-60oС) температуре горячекатаных рельсов типа Р65 представлены в таблице 2. Одновременно (справочно) оценивалась с помощью измерительного устройства ГУП ВНИИЖТ с базой 1,5 м продольная прямолинейность нетермоупрочненных рельсов из предлагаемой стали, стали-прототипа и серийных объемно-закаленных рельсов.
Установлено, что максимальная величина неровностей на длине 1,5 м не превышала 0,3-0,4 мм горячекатаных рельсов из предлагаемой стали, 0,4-0,5 мм у горячекатаных рельсов из стали-прототипа и 0,7-0,8 мм у серийных объемно-закаленных выправленных рельсов. Следовательно, горячекатаные рельсы типа Р65 из предлагаемой стали удовлетворяют требованиям по скоростным совмещенным движениям.
Как видно из табл. 1 и 2 рельсовая сталь, удовлетворяющая заявленному составу (плавки 1-4), имеет повышенную твердость и ударную вязкость при отрицательной температуре (-60oС). Сталь-прототип (плавка 7) и сталь с содержанием элементов, выходящих за заявленные пределы (плавки 5-6), не имеют комплекса свойств, необходимого для достижения технического результата изобретения.
Источники информации
1. Высокоскоростные железнодорожные магистрали. Материалы Всероссийской конференции. Железнодорожный транспорт. 1991, 3
2. Поляков В. В., Великанов А.В. Основы технологии производства железнодорожных рельсов. М., Металлургия, 1970, 415с.
1. Высокоскоростные железнодорожные магистрали. Материалы Всероссийской конференции. Железнодорожный транспорт. 1991, 3
2. Поляков В. В., Великанов А.В. Основы технологии производства железнодорожных рельсов. М., Металлургия, 1970, 415с.
3. Металловедение. Сталь. Справ. изд. в 2-х томах: пер. с нем. т.2. Применения. В 2-х кн. Кн. 2. Под ред. С.Б. Масленкова - М., Металлургия, 1995, 399с.
4. Галихадзе С.С., Гордиенко М.С., Долгополова А.Ф. и др. Сталь, 2001, 4, стр.62-63.
Claims (2)
1. Рельсовая сталь, содержащая углерод, кремний, марганец, хром, ванадий, титан, алюминий, кальций, азот и железо, отличающаяся тем, что она дополнительно содержит лантан, неодим и церий при следующем соотношении ингредиентов, мас. %:
Углерод - 0,71 - 0,87
Кремний - 0,40 - 1,20
Марганец - 0,70 - 1,30
Хром - 0,10 - 1,20
Ванадий - 0,05 - 0,20
Титан - 0,01 - 0,05
Алюминий - 0,014 - 0,050
Азот - 0,007 - 0,020
Кальций - 0,02 - 0,04
Лантан - 0,001 - 0,005
Неодим - 0,001 - 0,005
Церий - 0,003 - 0,010
Железо - Остальное
причем соотношение содержания алюминия к азоту составляет 2,0 - 2,5.
Углерод - 0,71 - 0,87
Кремний - 0,40 - 1,20
Марганец - 0,70 - 1,30
Хром - 0,10 - 1,20
Ванадий - 0,05 - 0,20
Титан - 0,01 - 0,05
Алюминий - 0,014 - 0,050
Азот - 0,007 - 0,020
Кальций - 0,02 - 0,04
Лантан - 0,001 - 0,005
Неодим - 0,001 - 0,005
Церий - 0,003 - 0,010
Железо - Остальное
причем соотношение содержания алюминия к азоту составляет 2,0 - 2,5.
2. Рельсовая сталь по п. 1, отличающаяся тем, что суммарное содержание в стали лантана, неодима и церия составляет 0,008 - 0,015 мас. %.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001125722/02A RU2194791C1 (ru) | 2001-09-21 | 2001-09-21 | Рельсовая сталь |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001125722/02A RU2194791C1 (ru) | 2001-09-21 | 2001-09-21 | Рельсовая сталь |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2194791C1 true RU2194791C1 (ru) | 2002-12-20 |
Family
ID=20253249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2001125722/02A RU2194791C1 (ru) | 2001-09-21 | 2001-09-21 | Рельсовая сталь |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2194791C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2461639C1 (ru) * | 2008-10-31 | 2012-09-20 | Ниппон Стил Корпорейшн | Рельс с перлитной структурой, обладающий превосходным сопротивлением абразивному износу и отличной ударной вязкостью |
RU2485201C2 (ru) * | 2009-02-18 | 2013-06-20 | Ниппон Стил Корпорейшн | Рельсы из перлитной стали с превосходной износостойкостью и ударной вязкостью |
US8747576B2 (en) | 2009-06-26 | 2014-06-10 | Nippon Steel & Sumitomo Metal Corporation | Pearlite-based high carbon steel rail having excellent ductility and process for production thereof |
-
2001
- 2001-09-21 RU RU2001125722/02A patent/RU2194791C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
ГАХЕЛАДЗЕ Г.С. и др. Качество рельсов из низколегированной стали М70ГСФ. Сталь №4, апрель, 2001, с.65-66. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2461639C1 (ru) * | 2008-10-31 | 2012-09-20 | Ниппон Стил Корпорейшн | Рельс с перлитной структурой, обладающий превосходным сопротивлением абразивному износу и отличной ударной вязкостью |
RU2485201C2 (ru) * | 2009-02-18 | 2013-06-20 | Ниппон Стил Корпорейшн | Рельсы из перлитной стали с превосходной износостойкостью и ударной вязкостью |
US8469284B2 (en) | 2009-02-18 | 2013-06-25 | Nippon Steel & Sumitomo Metal Corporation | Pearlitic rail with excellent wear resistance and toughness |
US8747576B2 (en) | 2009-06-26 | 2014-06-10 | Nippon Steel & Sumitomo Metal Corporation | Pearlite-based high carbon steel rail having excellent ductility and process for production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2734980C (en) | Pearlite rail having superior abrasion resistance and excellent toughness | |
CN102719759B (zh) | 高速铁路扣件用弹条用钢及其冶炼生产方法 | |
CN113186465A (zh) | 低合金铸钢及其冶炼方法、热处理方法和铁路机车零部件 | |
EP4186990A1 (en) | Steel for ball-cage type universal joint retainer and production method therefor | |
JP5845784B2 (ja) | 軸受材料及び軸受材料の製造方法 | |
EP2247764B1 (en) | Rail steel with an excellent combination of wear properties and rolling contact fatigue resistance | |
CN109161803A (zh) | 一种1550MPa级弹簧扁钢及其生产方法 | |
EP2682489B1 (en) | High-carbon steel wire rod excellent in drawability and fatigue characteristics after wire drawing | |
CN109957729A (zh) | 一种有轨电车道岔用耐磨钢板及其生产方法 | |
KR100208676B1 (ko) | 내마모성 및 내내부손상성이 우수한 레일 및 그 제조방법 | |
CN101880822A (zh) | 用于客运钢轨的热轧高韧性碳素钢 | |
CA3094798C (en) | Rail and method for manufacturing same | |
CN115505818A (zh) | 一种含re元素的高碳钢轨冶炼方法 | |
CN102978532A (zh) | 一种铁道车轴用钢及其制造方法 | |
RU2194791C1 (ru) | Рельсовая сталь | |
JP2000199041A (ja) | 耐ころがり疲労損傷性、耐内部疲労損傷性に優れたベイナイト系レ―ル | |
JP2001220651A (ja) | 耐ヘビーシェリング損傷性に優れたレール | |
JP3003844B2 (ja) | 耐熱亀裂性に優れたブレーキディスク材 | |
RU2003728C1 (ru) | Заэвтектоидна рельсова сталь | |
CN112522611B (zh) | 一种大轴重货运列车用车轴及其热处理工艺和生产工艺 | |
RU2484173C1 (ru) | Автоматная свинецсодержащая сталь | |
RU210983U1 (ru) | Колпак скользуна тележки грузового вагона | |
CN117265394A (zh) | 一种超高纯净度、高均匀性铁路货车用渗碳轴承钢及其生产方法 | |
RU2208061C1 (ru) | Сталь ободная | |
RU2203344C2 (ru) | Литейная сталь |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20050922 |