RU2191835C1 - Способ переработки свинцовых отходов, содержащих благородные и редкие металлы - Google Patents

Способ переработки свинцовых отходов, содержащих благородные и редкие металлы Download PDF

Info

Publication number
RU2191835C1
RU2191835C1 RU2001105614A RU2001105614A RU2191835C1 RU 2191835 C1 RU2191835 C1 RU 2191835C1 RU 2001105614 A RU2001105614 A RU 2001105614A RU 2001105614 A RU2001105614 A RU 2001105614A RU 2191835 C1 RU2191835 C1 RU 2191835C1
Authority
RU
Russia
Prior art keywords
melt
lead
metals
rare metals
charge
Prior art date
Application number
RU2001105614A
Other languages
English (en)
Other versions
RU2001105614A (ru
Inventor
Г.Ф. Казанцев
Н.М. Барбин
Г.К. Моисеев
Н.А. Ватолин
Original Assignee
Институт металлургии Уральского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт металлургии Уральского отделения РАН filed Critical Институт металлургии Уральского отделения РАН
Priority to RU2001105614A priority Critical patent/RU2191835C1/ru
Application granted granted Critical
Publication of RU2191835C1 publication Critical patent/RU2191835C1/ru
Publication of RU2001105614A publication Critical patent/RU2001105614A/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области цветной металлургии, в частности к способам переработки свинцовых отходов, содержащих благородные и редкие металлы. Способ включает загрузку отходов в смеси с восстановителем в расплав карбонатов щелочных металлов, расплавление и восстановление шихты при 870-1050oС с получением сплава свинца, содержащего благородные металлы, которые извлекают. В оставшийся расплав загружают карбонаты щелочных металлов, новую порцию исходной шихты и процесс повторяют до накопления в расплаве не менее 18% мышьяка, 2-10% селена, 2-3% теллура, после чего обогащенный редкими металлами расплав сливают. Соотношение массы отходов и восстановителя в расплаве поддерживают 1:(0,12-0,25), а массы расплава карбонатов и загружаемой шихты 1:(0,1-0,27). Способ обеспечивает комплексную переработку свинцовых отходов с получением веркблея и концентрата редких металлов, из которых благородные и редкие металлы могут быть извлечены известными способами. 2 з. п. ф-лы, 4 табл.

Description

Изобретение относится к цветной металлургии, в частности к способам извлечения благородных металлов и редких элементов из свинцовых отходов в виде пылей, кеков, шламов, съемов.
Известен способ переработки плавильных пылей шламового производства [1], включающий следующие технологические операции: низкотемпературный окислительный отжиг, с целью отгонки SeO2 в газовую фазу; избирательный перевод сульфатных форм Рb в щелочной раствор; очистка раствора от Pb, As, S, Те; плавка кеков выщелачивания, концентрирующих благородные и редкие металлы, совместно с обожженными шламами на Au-Ag сплав. Данный способ включает две пирометаллургические операции и две гидрометаллургические, требуется улавливать из газовой фазы селен, используются щелочные растворы.
Полученный кек самостоятельно не может быть использован, а только как добавка к обожженным шламам медеэлектролитного, а также никелевого или свинцового электрохимических процессов.
Таким образом, этот способ многостадийный, энергоемкий, с использованием громоздкого оборудования и агрессивных растворов.
Известен способ извлечения металлов из богатых свинцом анодных шламов [2]. Этот способ касается обезмеженных до 2% и менее по меди шламов, содержащих более 15% свинца в сульфатной форме, а также серебро и другие благородные металлы.
Шлам смешивают с раствором соды (10-150 г/л). Мольное количество соды по отношению к мольному содержанию свинца в шламе должно быть не ниже 0,8:1. Затем шлам отделяют от раствора и перемешивают в растворе фторкремниевой кислоты (10-45%). Ее количество должно составлять 0,5-2,8 кг (чистой кислоты) на 1 кг Рb, содержащегося в шламе. Остаток шлама отделяют от раствора и перерабатывают в любой печи известным способом. Раствор H2SiF6 смешивают с H2SO4 в мольном отношении 0,5-1 по отношению к содержанию в нем свинца. После выделения сульфата свинца раствор направляют на повторный процесс.
Недостатком данного процесса является гидрометаллургическая обработка шлама агрессивными растворами (содовый раствор, серной кислоты, раствор H2SiF6). Получаются полупродукты в виде шлама, содержащего благородные металлы, и сульфат свинца, для получения металлов из которых необходимы отдельные пирометаллургические процессы.
Известен способ извлечения свинца и серебра из хвостов и технологических отходов [3], по которому отходы, содержащие свинец в виде сульфата и серебро в виде самородного серебра, хлорида, сульфида или сульфата, а также в форме комплексных соединений с другими металлами, образуются при обжиге и выщелачивании сульфидных концентратов, содержащих свинец, цинк, медь и серебро.
Отходы обрабатывают рассолом, образующийся раствор обрабатывают известью для осаждения свинца в виде хлорокиси. Осадок обжигают для получения смеси ортоплюмбата кальция и окиси свинца. Остаточный хлорид может быть легко вымыт из полученного продукта, который затем обрабатывают в шахтной печи для плавки свинца, чтобы извлечь свинец и связанное с ним серебро в элементарном состоянии.
Основным недостатком этого процесса является его многостадийность для получения веркблея (сплав свинца, содержащий благородные металлы), а также наличие гидрометаллургических операций.
Наиболее близким по технической сущности и достигаемому результату является способ переработки отходов свинца, содержащих сурьму, олово и медь, включающий загрузку исходной шихты и углеродистого восстановителя в расплав солей щелочных и щелочноземельных металлов, расплавление шихты, восстановление металлов и получение сплавов на основе свинца [4].
Однако известный способ не обеспечивает возможности прямого извлечения из отходов благородных металлов в отдельный продукт из-за высокого содержания меди и сложности дальнейшей переработки сплава, содержащего медь и благородные металлы.
Кроме того, по известному способу для накопления редких металлов до концентраций, обеспечивающих его последующую переработку и получение редких металлов традиционными методами, необходимо вести процесс очень длительный период (до нескольких десятков часов).
Техническим результатом предлагаемого изобретения является создание технологии, обеспечивающей комплексную переработку свинцовых отходов, содержащих благородные и редкие металлы, с получением сплава благородных металлов и концентрата, содержащего редкие металлы, с последующим извлечением всех металлов известными способами.
Указанный технический результат достигается тем, что в способе переработки свинцовых отходов, содержащих благородные и редкие металлы, включающем загрузку исходного материала и углеродистого восстановителя в расплав карбонатов щелочных металлов, расплавление шихты и восстановление металлов, согласно изобретению восстановление проводят при 870-1050oС с получением сплава свинца, содержащего благородные металлы, который извлекают из расплава, затем дополнительно загружают карбонаты щелочных металлов, новую порцию исходной шихты и цикл повторяют до достижения в расплаве не менее 18% мышьяка, 2-10% селена, 2-3% теллура, после чего обогащенный редкими металлами расплав сливают, при этом соотношение массы отходов и восстановителя в расплаве поддерживают 1:(0,12-0,25), а соотношение массы расплава карбонатов к шихте - 1:(0,1-0,27).
Из полученного веркблея (сплав свинца с благородными металлами) благородные металлы извлекаются обычными способами, а мышьяк, селен, теллур и другие редкие элементы - гидрометаллургическими способами из плава солей.
Для уменьшения объемов растворов при извлечении мышьяка и редких элементов операции загрузки сырья и выливки повторяют столько раз, чтобы в расплаве солей накопилось не менее 18% мышьяка, 2-10% селена, 2-3% теллура, что обеспечивает возможность их последующего извлечения классическими методами.
Испытания показали, что достигается практически полное разделение на два продукта: свинец с благородными металлами в виде веркблея и плав солей, содержащий мышьяк, селен и теллур.
Плав солей легко растворим, и из него возможно дробной кристаллизацией выделить отдельные соединения селена, теллура и мышьяка.
Полное извлечение благородных металлов в сплав свинца осуществляется при 870- 1050oС и времени выдержки не менее двух часов.
Снижение температуры ниже 870oС приводит к снижению извлечения свинца и связанных с ним благородных металлов, повышение температуры выше 1050oС приводит к улетучиванию солей и увеличению расхода солей. Также снижаются показатели извлечения благородных металлов при уменьшении заявленной доли восстановителя по отношению к массе исходного сырья, повышение доли восстановителя приводит к увеличению возгона солей за счет взаимодействия углерода с карбонатами.
Специальными опытами и термодинамическими расчетами установлено, что мышьяк может накапливаться в расплавах карбонатов до 30%, а при содержании менее 18% мышьяк не возгоняется в газовую фазу, а переходит в сплав свинца в заметном количестве. Селен может накапливаться до 2-10%, а теллур - до 2-3%, что обеспечивает возможность их полного извлечения из расплава.
Кроме того, новым в предлагаемом процессе является совместное восстановление тяжелых цветных и благородных металлов и накопление последних в веркблее, откуда они извлекаются известными методами.
Также новым является накопление редких элементов в карбонатном расплаве до концентраций, когда их можно извлечь в малом объеме растворов, с высоким извлечением в отдельные элементы.
Заявленные соотношения сырья восстановителя, а также разовой порции загружаемого сырья к массе расплава карбонатов и оптимальная температура процесса способствуют более полному переходу металлов в разделяемые полупродукты.
Пример 1. В шахтную печь сопротивления установили тигель из окиси бериллия, в который загрузили 90 г Na2CO3 и 30 г К2СО3, смесь расплавили и нагрели до 875oС, загрузили 15,4 г свинца, для создания "лужи" на дне тигля, а затем в четыре приема загрузили смесь пыли (40 г) и древесного угля (6 г). После окончания загрузки расплав выдержали в течение 40 мин и содержимое вылили в изложницу. Соль и веркблей отделили, взвесили и проанализировали. Средняя температура опыта 882,9oС, время выдержки от загрузки пыли до выемки 1,28 ч. Состав загруженной пыли, (мас.%): Рb - 30,6; Sb - 0,32; Sn - 7,36; Cu - 1,89; Zn - 21,84; Bi - 0,23; Au 8 - 10-4; Ag - 1,69-10-3. Состав полученных продуктов приведен в табл. 2 и 3 (опыт 14).
Было получено 20,3 г свинца (прирост металла 4,9 г) и 110,3 г солей. По анализам в металл перешло 23,26% Au и 86,67% Ag, остальное осталось в расплаве солей. При этом в веркблей извлеклось свинца - 73,4%.
Пример 2. В печь сопротивления установили тигель из окиси бериллия, загрузили 90 г Na2CO3 и 30 г К2СО3, расплавили, загрузили 16,7 г свинца, нагрели до 985oС и порциями в четыре приема загрузили шихту из смеси пыли предыдущего состава (40 г) и древесного угля (6,5 г). Средняя температура опыта была 1004oC, время выдержки 1,25 ч. Расплав солей вылили в изложницу, охладили, отделили королек веркблея свинца, взвесили. Металл и соли проанализировали.
Было получено 21,6 г сплава свинца и 98,9 г плава солей. Результаты анализа приведены в табл. 3, 4 (опыт 15). Прирост металла составил 4,9 г, а извлечение свинца из пыли - 75%, золота - 73,05%, серебра - 88,01%.
Пример 3. В опытную шахтную печь сопротивления с селитовыми нагревателями поместили тигель из силицированного графита с внутренними размерами: ⌀-280 мм, Н - 300 мм. В тигель загрузили 6 кг Nа2СО3 и 6 кг K2CO3, расплавили, нагрели до 840oС, загрузили Pb-Sb сплав в количестве 2390 г; в сплаве содержалось 1,8% Sb, он образовал на дне слой 30 мм. В расплав солей загрузили шихту из пыли из фильтра РФКДИ в количестве 16,34 кг и 3,7 кг древесного угля, измельченного до 8-10 мм. В процессе опыта шихту загружали порциями 700-800 г, через 15-20 мин. В течение опыта добавили еще 2 кг К2СО3 и 1 кг Na2CO3. Средняя температура опыта составила 917,6oС. Вся шихта была загружена в 25 приемов, в течение 7,66 ч.
Над печью было установлено устройство из стальной сетки для улавливания части цинковой пыли с последующим ее анализом.
После опыта печь охладили, разбили тигель и извлекли 7,93 кг свинцового сплава, 1 кг плавов солей. Состав исходной пыли был следующий, мас.%: Сu - 0,98; Zn - 35,1; S - 5,02; Pb - 24,6; Sn - 9,19; Fe - 0,41; As - 0,88; Au - 0,8 г/т; Ag - 104,8 г/т.
Прирост металла составил 5,56 кг, извлечение 98%. Состав металла и солей показан в табл. 3, 4. Состав возгонов цинка, мас.%: Pb - 9,8; Sb - 0,12; Sn - 3,12; Cu - 1,3; Zn - 40,7; Au - 1,74 г/т; Ag - 8 г/т. Количество возгонов 6 кг. Баланс во всех 3-х продуктах дает следующие результаты (см. табл. 1).
Пример 4. В шахтную селитовую печь установили тигель из силицированного графита, загрузили 400 г карбоната натрия, расплавили и нагрели до 900oС, загрузили в четыре приема 250 г пыли после процесса купелирования золота и серебра, выдержали 2,5 ч и вылили содержимое в изложницу. Сплав свинца отделили от плава солей, взвесили, а сплав и плав солей проанализировали (результат в табл. 2, 3, 4. Опыт 46).
Состав пыли следующий, мас.%: Сu - 0,18; Sb - 12,8-17,0; As - 4,44; Pb - 32,0-46,0; Те - 1,91; S - 3,8; Se - 1,59; Au от 5,0 г/т до 140,0 г/т; Ag -15365 г/т.
Получено 135 г сплава свинца и 400 г плава солей. В свинцовый сплав перешло 100% золота и 99,99% серебра. Восстановлено 97, 28% свинца, 78% сурьмы, селен полностью остался в плаве солей, а теллур распределился следующим образом: 71,7% в плаве солей и 28,3% в сплаве свинца. Мышьяк также почти полностью остался в плаве солей.
Источники информации
1. Беленький А. М. и др. Комплексное использование минерального сырья. 1981, 3, с. 30-34.
2. Патент ПНР 144849, МКИ С 22 B 7/00, 31.01.81.
3. Заявка ЕП 0042702, МКИ С 22 B 13/00, 11/00, 30.12.81.
4. Патент РФ 2114200, С 22B 7/00, 27.06.98.

Claims (3)

1. Способ переработки свинцовых отходов, содержащих благородные и редкие металлы, включающий загрузку исходного материала и углеродистого восстановителя в расплав карбонатов щелочных металлов, расплавление шихты и восстановление металлов, отличающийся тем, что восстановление проводят при 870-1050oС с получением сплава свинца, содержащего благородные металлы, который извлекают из расплава, затем дополнительно загружают карбонаты щелочных металлов, новую порцию исходной шихты и цикл повторяют до достижения в расплаве не менее 18% мышьяка, 2-10% селена, 2-3% теллура, после чего обогащенный редкими металлами расплав сливают.
2. Способ по п.1, отличающийся тем, что соотношение массы отходов и восстановителя в расплаве поддерживают 1:(0,12-0,25).
3. Способ по п.1, отличающийся тем, что соотношение массы расплава карбонатов и массы загружаемой шихты поддерживают 1:(0,1-0,27).
RU2001105614A 2001-02-27 2001-02-27 Способ переработки свинцовых отходов, содержащих благородные и редкие металлы RU2191835C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001105614A RU2191835C1 (ru) 2001-02-27 2001-02-27 Способ переработки свинцовых отходов, содержащих благородные и редкие металлы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001105614A RU2191835C1 (ru) 2001-02-27 2001-02-27 Способ переработки свинцовых отходов, содержащих благородные и редкие металлы

Publications (2)

Publication Number Publication Date
RU2191835C1 true RU2191835C1 (ru) 2002-10-27
RU2001105614A RU2001105614A (ru) 2003-01-20

Family

ID=20246651

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001105614A RU2191835C1 (ru) 2001-02-27 2001-02-27 Способ переработки свинцовых отходов, содержащих благородные и редкие металлы

Country Status (1)

Country Link
RU (1) RU2191835C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA035681B1 (ru) * 2019-04-29 2020-07-24 Товарищество с ограниченной ответственностью "Кастинг" Способ переработки медеэлектролитных шламов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КУДРЯВЦЕВ А.А. Химия, технология селена и теллура. - М.: Металлургия, 1968, с.256 и 257. МАСЛЕНИЦКИЙ И.Н. и др. Металлургия благородных металлов. - М.: Металлургия, 1972, с.287-289. Металлургия. РЖ. - М.: ВИНИТИ, 1988, реф. 10Г211П. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA035681B1 (ru) * 2019-04-29 2020-07-24 Товарищество с ограниченной ответственностью "Кастинг" Способ переработки медеэлектролитных шламов

Similar Documents

Publication Publication Date Title
JP5507310B2 (ja) 有価金属の製造方法
CN109136575B (zh) 一种湿法处理多金属粉尘的工艺方法
CA2766812A1 (en) Smelting method
RU2191835C1 (ru) Способ переработки свинцовых отходов, содержащих благородные и редкие металлы
Sahu et al. Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources
US5439503A (en) Process for treatment of volcanic igneous rocks to recover gold, silver and platinum
RU2104321C1 (ru) Способ извлечения золота из горнорудного сырья
RU2258091C1 (ru) Способ извлечения серебра из отходов
US5135624A (en) Electrolytic hydrometallurgical silver refining
RU2114200C1 (ru) Способ переработки отходов свинца, содержащих сурьму, олово и медь
RU2130501C1 (ru) Способ переработки свинцово-цинковых отходов, содержащих олово и медь
RU2131473C1 (ru) Способ кондиционирования свинецсодержащего материала перед плавкой
RU2110594C1 (ru) Способ извлечения благородных металлов из полупродуктов
GB2049734A (en) Extracting precious metals from mattes
RU2355792C2 (ru) Способ переработки продуктов, содержащих халькогениды неблагородных металлов, свинец, металлы платиновой группы, золото и серебро
RU2034061C1 (ru) Способ совместной переработки гидроксидов и цементатов производства металлов платиновой группы
RU2114202C1 (ru) Способ получения благородных металлов из углеродистых материалов
WO1992019699A2 (en) Process for purifying lead using calcium/sodium filter cake
US4410361A (en) Method for desilverizing and removal of other metal values from lead bullion
JPS6134492B2 (ru)
JPH07118769A (ja) 分銀炉産出物の処理判定法
JP2720918B2 (ja) 亜鉛合金からインジウムを回収する方法
US2097560A (en) Lead and lead alloys
RU2095446C1 (ru) Способ переработки золотосодержащих полупродуктов
Whitehead TELLURIUM: ITS SEPARATION FROM COPPER RESIDUES WITH NOTES ON SOME NEW REACTIONS. 2

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080228