RU2189372C2 - Способ получения бутенолигомеров из олефинов по синтезу фишера-тропша - Google Patents

Способ получения бутенолигомеров из олефинов по синтезу фишера-тропша Download PDF

Info

Publication number
RU2189372C2
RU2189372C2 RU97112631/04A RU97112631A RU2189372C2 RU 2189372 C2 RU2189372 C2 RU 2189372C2 RU 97112631/04 A RU97112631/04 A RU 97112631/04A RU 97112631 A RU97112631 A RU 97112631A RU 2189372 C2 RU2189372 C2 RU 2189372C2
Authority
RU
Russia
Prior art keywords
stage
butene
oligomerization
isobutene
line
Prior art date
Application number
RU97112631/04A
Other languages
English (en)
Other versions
RU97112631A (ru
Inventor
Франц НИРЛИХ (DE)
Франц НИРЛИХ
Вальтер ТЕЧ (DE)
Вальтер ТЕЧ
Пауль ОЛЬБРИХ (DE)
Пауль ОЛЬБРИХ
Вильхельм ДРОСТЕ (DE)
Вильхельм ДРОСТЕ
Рихард МЮЛЛЕР (DE)
Рихард МЮЛЛЕР
Original Assignee
Дегусса-Хюльс Акциенгезельшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дегусса-Хюльс Акциенгезельшафт filed Critical Дегусса-Хюльс Акциенгезельшафт
Publication of RU97112631A publication Critical patent/RU97112631A/ru
Application granted granted Critical
Publication of RU2189372C2 publication Critical patent/RU2189372C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxo-reaction combined with reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/175Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of an oxo group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Использование: нефтехимия. Сущность: содержащиеся во фракции С4 углеводороды по синтезу Фишера-Тропша бутены подвергают олигомеризации на стадии олигомеризации и из смеси олигомеризации получают дибутен, который на стадии четкой ректификации разделяют на ди-н-бутен и ди-изобутен. В одной форме выполнения способа содержащийся в олефинах по синтезу Фишера-Тропша этилен димеризуют, и смесь димеризации возвращают на стадию 12 разделения фракции С4. В другой форме выполнения способа между стадией 12 разделения фракции С4 и стадией 13 селективного гидрирования предусматривают стадию 5 этерификации, на которой содержащийся в подаваемой по линии 1 фракции С4 изобутен подвергают взаимодействию с подаваемым по линии 25 спиртом с получением отводимого по линии 26 алкил-трет-бутилового эфира и лишь оставшийся н-бутен олигомеризуют на стадии 2 олигомеризации, так что в качестве отводимого по линии 4 дибутена образуется исключительно ди-н-бутен, отводимый по линии 6. Кроме того, может иметься стадия 27 изомеризации, на которой непрореагировавшийся на стадии 2 олигомеризации н-бутен изомеризуют до изобутена, который подают на стадию 5 этерификации. Технический результат - повышение эффективности способа. 6 з.п.ф-лы, 2 ил.

Description

Изобретение относится к способу получения бутенолигомеров из олефинов по синтезу Фишера-Тропша. Бутенолигомеры представляют собой ценные исходные вещества для получения спиртов. Предпочтительными бутенолигомерами являются изомерные октены, которые представляют собой димерные бутены и которые, следовательно, называют также дибутеном. Пользующимся большим спросом дибутеном является ди-н-бутен. Поэтому изобретение относится также к способу, в котором ди-н-бутен отделяется от дибутена. Кроме того, изобретение относится к способам, в результате проведения которых получают, кроме высших бутенолигомеров, в качестве дибутена исключительно ди-н-бутен, при этом в качестве побочных продуктов получают ценные алкил-трет-бутиловые эфиры.
Дибутен представляет собой смесь изомеров, которая образуется наряду с высшими бутенолигомерами в результате димеризации и/или со-димеризации бутенов, то есть н-бутена и/или изобутена при олигомеризации бутенов. Ди-н-бутеном называют продукт димеризации н-бутена, то есть 1 -бутена и/или 2-бутена. Существенными компонентами ди-н-бутена являются 3-метил-2-гептен, 3,4-диметил-2-гексен и, в меньшей степени, н-октены. Ди-изобутен представляет собой смесь изомеров, образующуюся в результате димеризации изобутена. Ди-изобутен содержит более разветвленные молекулы, чем дибутен, который, со своей стороны, более разветвлен, чем ди-н-бутен.
Дибутен, ди-н-бутен и ди-изобутен являются исходными веществами для получения изомерных нонанолов путем гидроформилирования и гидрирования образующихся альдегидов с 9 атомами углерода. Сложные эфиры этих нонанолов, в частности сложные эфиры фталевой кислоты, представляют собой пластификаторы, которые производят в значительном количестве и употребляют прежде всего для получения поливинилхлорида. Нонанолы из ди-н-бутена являются менее разветвленными, чем нонанолы из дибутена, которые со своей стороны менее разветвлены, чем нонанолы из ди-изобутена. Сложные эфиры нонанолов из ди-н-бутена именно из-за своей более линейной структуры имеют технологические преимущества по сравнению со сложными эфирами из нонанолов на основе дибутена и ди-изобутена и пользуются большим спросом.
Бутены для димеризации можно получать, например, из фракции С4, полученной в результате крекинга с водяным паром, или каталитического крекинга в псевдоожиженном слое. Фракцию перерабатывают, как правило, путем отделения 1,3-бутадиена селективной промывкой, например, N-метилпирролидоном. Изобутен является желаемым и особо ценным компонентом фракции С4, так как он подвергается химической реакции с получением пользующихся большим спросом продуктов. Он подвергается, например, взаимодействию с изобутаном с получением высокооктанового изооктана или же с алканолом, таким, как метанол, с получением метил-трет-бутилового эфира, который в качестве присадки к автомобильному бензину улучшает его октановое число. После реакции изобутена остаются н-бутен, н- и изобутан. Однако доля н-бутена в продуктах расщепления крекинга с водяным паром или каталитического крекинга в псевдоожиженном слое относительно низка. Она составляет менее 10% от веса главного целевого продукта этилена. На установке для крекинга с водяным паром с производительностью 600000 т этилена в год получают лишь около 60000 т н-бутена в год. Количество н-бутена (а также изобутена), правда, можно повышать путем дегидрирования 15000 т н- и изобутана в год, которые получают наряду с н-бутеном. Это, однако, не рекомендуется, так как установки для дегидрирования требуют высоких капиталовложений и являются нерентабельными в случае такой незначительной производительности.
Как уже упомянуто, изобутен представляет собой пользующийся большим спросом крекинг-продукт и поэтому, как правило, не может быть использован для олигомеризации. Однако количество н-бутенов, непосредственно полученных на установке для крекинга с водяным паром или установке каталитического крекинга в псевдоожиженном слое, не хватает для производства достаточного количества дибутена для установки получения нонанолов, производительность которой является такой большой, что она может экономически конкурировать с имеющимися крупными установками получения значительных спиртов для получения пластификаторов, таких, как 2-этилгексанол. Это означает, что необходимо собирать полученный на разных крекинг-установках н-бутен и подвергать его олигомеризации для покрытия потребности крупной установки производства нонанолов в дибутене. В качестве альтернативы можно собирать еще неразделенные фракции С4 из разных крекинг-установок и перерабатывать на месте до н-бутена. Этому противостоит, однако, тот факт, что транспорт сжиженных газов стоит дорого, не в последнюю очередь из-за проведения требуемых дорогостоящих мер безопасности.
Поэтому желательно предоставлять бутены для олигомеризации на одном лишь месте без перевозки через большие расстояния в количествах, требуемых для эксплуатации большой установки для получения нонанолов, имеющей, например, производительность 200000-800000 т/год. Также желательно использовать при этом бутены, которые неизбежно получают в результате проведения способа, направленного на получение других олефинов, и таким образом улучшить создание стоимости этого способа. Кроме того желательно иметь способ получения бутенолигомеров, в котором ценный ди-н-бутен можно отделять от дибутена. В дальнейшем желательно такое управление способом, чтобы кроме высших бутенолигомеров в качестве дибутена образовался исключительно ди-н-бутен, а в качестве желаемых побочных продуктов получались простые алкил-трет-бутиловые эфиры. Также желательно иметь возможность регулировать количественное соотношение этих веществ.
Способ согласно изобретению поясняется блок-схемами на приложенных фигурах 1 и 2, в которых изложены нижеописанные варианты способа с обязательными и факультативными стадиями способа.
Изобретение представляет собой способ получения бутенолигомеров из олефинов по синтезу Фишера-Тропша, в котором содержащиеся в подаваемой по линии 1 фракции С4 олефинов по синтезу Фишера-Тропша бутены подвергают олигомеризации на стадии 2 олигомеризации, а из отводимой по линии 3 смеси олигомеризации получают отводимый по линии 4 дибутен.
Этот способ с его разными факультативными стадиями, которые в нижеследующем поясняются с помощью фигуры 1, называют вариантом А.
Вариантом Б, которому соответствует фигура 2, называют способ, в котором сначала на стадии 5 этерификации содержащийся в подаваемой по линии 1 фракции С4 изобутен подвергают взаимодействию с подаваемым по линии 25 алканолом с получением отводимого по линии 26 алкил-трет-бутилового эфира и олигомеризуют лишь оставшийся н-бутен с получением в качестве дибутена исключительно ди-н-бутена, отводимого по линии 6. В особой форме выполнения варианта Б имеется стадия 27 изомеризации, на которой непрореагировавшийся на стадии 2 олигомеризации н-бутен изомеризуют до изобутена, который возвращают на стадию 5 этерификации.
В частности, последняя форма выполнения варианта Б отличается высокой гибкостью. В зависимости от требований рынка можно получать изменяющиеся количества ди-н-бутена и алкил-трет-бутилового эфира.
Фракции С4 в качестве исходного вещества способа
Исходным веществом предлагаемого способа является подаваемая по линии 1 фракция С4, полученная из способа Фишера-Тропша, в котором, как известно, из синтез-газа (окиси углерода и водорода) производят углеводороды или же кислородсодержащие продукты. Синтез-газ можно получать из самых различных энергоносителей, таких, как, например, природный газ, мазут, остаточное масло, бурый уголь и каменный уголь, практически в любых количествах.
Синтез Фишера первоначально был разработан для получения бензина, однако после Второй мировой войны интерес концентрировался прежде всего на разработке способов получения богатых альфа-олефинами фракций углеводородов с низким числом атомов углерода. Здесь подобно как на установках крекинга с водяным паром на первом плане стоит оптимизация выхода этилена, а также пропилена, так как эти олефины являются основными компонентами многих важных химических продуктов, таких, как, например, полиэтилен, полипропилен, поливинилхлорид, окись этилена и окись пропилена.
Получение главным образом короткоцепных углеводородов с 2-6 атомами углерода, преобладающим образом представляющихся олефины и, в частности, альфа-олефины, обеспечивает, например, способ согласно заявке ЕР 0 216 972. Его существенный признак - выбор определенного катализатора, а именно однофазной, карбидсодержащей и восстановленной шпинели без носителя, образующейся из окисного соединения эмпирической формулы Fexy04, в которой х и у означают целые или десятичные числа, при условии, что сумма х + у = 3 и соотношение х/у составляет по меньшей мере 7. Поверхность катализатора составляет по меньшей мере около 0,1 до 5 м2/г. В качестве промотора катализатор может содержать соединение металла группы IA или IIА периодической системы элементов.
Катализатор является пирофорным. Поэтому его дезактивируют с помощью небольших количеств кислорода в инертном газе для улучшения обращения с ним. Его можно применять в виде суспензии в инертной органической жидкости, такой, как высококипящие парафины, ароматические углеводороды или простые эфиры, третичные амины или смеси таких веществ, в количествах от 10 до 50 г сухого катализатора на 500 г органической жидкости. До подачи синтез-газа катализатор кондиционируют, то есть вновь активируют, путем промывки азотом и обработки водородом при повышенной температуре.
Соотношение окиси углерода и водорода в синтез-газе может колебаться в широких пределах и преимущественно составляет 1:1 до 2:1. Оптимальная температура для получения желаемых короткоцепных альфа-олефинов с 2-6 атомами углерода равняется 230-270oС, в частности 240-260oС. Эта температура является критической, так как при повышенных температурах образуется больше метана, а низкие температуры способствуют образованию воскообразных продуктов. Способ осуществляют, как правило, при давлении в диапазоне от 350 до 2200 кПа.
В подобных условиях и в способе с неподвижным слоем катализатора предпочтительно производят углеводороды с 2-6 атомами углерода, большинство которых представляет собой олефины, и предпочтительно альфа-олефины. Фракцию С4 стандартным образом выделяют из углеводородной смеси, преимущественно путем фракционной перегонки при низкой температуре и/или повышенном давлении.
Необходимо подчеркнуть, что в качестве источника фракции С4 пригодна не только эта специальная форма выполнения способа Фишера-Тропша. Можно скорее применять любую фракцию С4, полученную из установок, работающих по методу Фишера-Тропша. В Южноафриканской Республике по оптимированным способам Фишера-Тропша в промышленном масштабе производят больше 400000 т этилена и 500000 т пропилена в год. Недостаток этих способов заключается в том, что неизбежно образуется примерно такое же количество высших углеводородов и, в частности, углеводородов с 4 атомами углерода, для которых практически не существует подходящего применения, кроме их применения в качестве присадки к карбюраторным топливам. Но даже для топлива фракция С4 скорее не пригодна из-за ее высокой доли олефинов, которые склонены к осмолению, и из-за высокого давления пара, являющегося экологической нагрузкой. Таким образом способ согласно изобретению обеспечивает полезное применение неизбежно образующихся веществ и улучшает создание стоимости способа Фишера-Тропша.
Вариант А
Из подаваемого по линии 7 энергоносителя на стадии 8 синтез-газа производят синтез-газ соответствующего его назначению состава, который по линии 9 подают на стадию 10 синтеза Фишера-Тропша, где производят, например, по способу согласно заявке ЕР 0 216 972, богатую олефинами смесь углеводородов с большой долей углеводородов с 2-6 атомами углерода. Смесь по линии 11 подают на стадию 12 разделения, где из смеси стандартным образом получают отводимую по линии 1 фракцию С4, например путем сжижения газообразных компонентов при температуре -30oС и фракционной перегонки. Полученная фракция С4 имеет, как правило, следующий состав:
1-Бутен - 70±10%
Изобутен - 10±5%
2-Бутен - 10±5%
н-/Изобутен - 12±3%
1,3-Бутадиен - Следы
Можно повышать выход отводимой по линии 1 фракции С4 путем димеризации поступающегося на стадии 12 разделения этилена на стадии 12а димеризации. Для этого пригоден, например, способ получения торгового продукта димерсола, описанный автором Y. Chauvin и др. в источнике "Erdol, Erdgas, Kohle" 106, 7/8 (1990 г. ), стр. 309 и cл. Работают в жидкой фазе с катализатором типа катализаторов Циглера на основе соединения никеля, которое активируют с помощью металлоорганического соединения. "Дегенерированная полимеризация" додимера протекает в умеренных условиях при температуре около 20-80oС. Конверсия по циклу составляет 50-90%. Смесь димеризации возвращают на стадию 12 разделения.
Подаваемая по линии 1 фракция С4 содержит следы 1,3-бутадиена. Рекомендуется удалить эти диены, так как даже ничтожные количества диенов могут повреждать катализатору олигомеризации. Подходящим способом является селективное гидрирование 13, которое, кроме того, повышает долю желаемого н-бутена. Подходящий способ описан, например, автором F. Nierlich и др. в источнике "Erdol & Kohle, Erdgas, Petrochemie, 1986 г., стр. 73 и ел. В жидкой фазе способа работают с полностью растворенным водородом в стехиометрических количествах. В качестве селективных катализаторов гидрирования пригодны, например, никель и, в частности, палладий на носителе, например 0,3 вес. % палладия на активном угле или предпочтительно на окиси алюминия. Небольшое количество окиси углерода в диапазоне ч/милл. способствует селективности гидрирования 1,3-бутадиена до моноолефина и противодействует образованию полимеров, так называемому зеленому маслу, инактивирующих катализатор. Способ осуществляют при комнатной температуре или слегка повышенной температуре до 60oС и при повышенном давлении, целесообразно составляющих до 20 бар. Содержание 1,3-бутадиена в подаваемой по линии 1 фракции С4 таким образом снижается до величин ниже 1 ч/милл., которые не мешают при олигомеризации.
Кроме того целесообразно перед поступлением на стадию 2 олигомеризации максимально освобожденную от 1,3-бутадиена фракцию С4 подавать на стадию 14 очистки, представляющую собой молекулярное сито, благодаря чему удаляются другие вредные для катализатора олигомеризации вещества и повышается срок его службы. К вредным веществам относятся соединения кислорода и серы. Очистка с помощью молекулярных сит описана автором F. Nierlich и др. в патенте ЕР 0 395 857. Целесообразно используют молекулярное сито с диаметром пор, равным 4-15
Figure 00000002
преимущественно 7-13
Figure 00000003
В некоторых случаях по экономическим причинам целесообразно смесь дегидрирования последовательно подавать через молекулярные сита с разными размерами пор. Способ можно осуществлять в газовой фазе, жидкой фазе или газожидкой фазе. Давление соответственно составляет, как правило, 1 - 200 бар. Целесообразно работают при комнатной температуре или повышенных температурах до 200oС.
Химические свойства молекулярных сит менее важны, чем их физическая характеристика, то есть, в частности размер, пор. Следовательно, можно применять самые различные молекулярные сита, например кристаллические, естественные силикаты алюминия, например силикаты со слоистой решеткой, а также синтетические молекулярные сита, например сита с цеолитной структурой. Цеолиты типа А, Х и Y можно получать в качестве торговых продуктов фирм Байер АГ, Доу Кемикл Ко., Юнион Карбайд Корпорейшн, Лапорте Индустриз Лтд. и Мобил Ойл Ко. Пригодными являются также такие синтетические молекулярные сита, которые наряду с алюминием и кремнием содержат еще другие, введенные путем катионообмена атомы, например галлий, индий или лантан, а также никель, кобальт, медь, цинк или серебро. Кроме того пригодны синтетические цеолиты, у которых наряду с алюминием и кремнием в решетку введены путем смешанного осаждения еще другие атомы, например бор или фосфор.
Как уже упомянуто, стадия 13 селективного гидрирования и стадия 14 очистки с молекулярным ситом являются факультативными, преимущественными мерами для способа согласно изобретению. Их последовательность в принципе может быть любой, однако предпочитается указанная на фиг.1 последовательность.
Подаваемую по линии 1 фракцию С4, в случае необходимости предварительно обработанную описанным образом, подают на стадию 2 олигомеризации, представляющую собой существенную часть предлагаемого способа. Олигомеризация является со-олигомеризацией н-бутена и изобутена, осуществляемой общеизвестным образом, описанным, например, автором F. Nierlich в источнике "Oligomerization for Better Gasoline", Hydrocarbon Processing, 1992 г., стр. 45 и сл., или же F. Nierlich и др. в уже названном патенте ЕР 0 395 857. Как правило, работают в жидкой фазе и в качестве гомогенного катализатора применяют, например, систему, состоящую из октоата никеля (II), хлорида этилалюминия и свободной кислоты жирного ряда (см. патент DE 28 55 423), или же предпочтительно применяют один из многочисленных известных катализаторов в неподвижном слое или суспендированных в смеси олигомеризации катализаторов на основе никеля и кремния. Катализаторы часто дополнительно содержат алюминий. Так в патенте ГДР 160 037 описано получение содержащего никель и алюминий катализатора осаждения на двуокиси кремния в качестве носителя. Другие пригодные катализаторы получают путем замены находящихся на поверхности носителей положительно заряженных частиц, таких, как протоны или ионы натрия, ионами никеля. Это удается в случае самых различных носителей, таких, как аморфный силикат алюминия (см. R. Espinoza и др. в источнике "Appl. Kat", 31, 1987 г., стр. 259-266), кристаллический силикат алюминия (см. патент DE 20 29 624), цеолиты типа ZSM (см. патент NL 8 500 459), цеолиты типа Х (см. патент DE 23 47 235), цеолиты типа Х и Y (см. A. Barth и др. в источнике "Z. Anorg. Allg. Chem." 521, 1985 г., стр. 207-214) и морденит (см. заявку ЕР 0 233 302).
Со-олигомеризацию целесообразно осуществляют в зависимости от катализатора при температуре 20-200oС и давлении 1-100 бар. Время реакции (или же время контактирования) составляет, как правило, 5-60 мин. Параметры способа, в частности вид катализатора, температура и время контактирования, согласуют так, чтобы желаемая степень олигомеризации была достигнута. В случае нонанолов в качестве желаемого целевого продукта речь прежде всего идет о димеризации. Само собой разумеется, что для этого реакцию нельзя осуществлять с целью полной конверсии. Целесообразно намеревается достижение степени конверсии, составляющей 30-70% по циклу. Оптимальные комбинации параметров способа можно определять без проблем путем проведения предварительных испытаний.
Из подаваемой по линии 3 смеси олигомеризации на стадии 15 разделения фракции С4 отделяют отводимый по линии 16 остаточный газ, который в качестве обратного газа по линии 17 частично возвращают на стадию 2 олигомеризации и частично выводят из цикла по линии 18 в качестве отработанного газа. Возвращение части отводимого по линии 16 остаточного газа требуется, потому что, как уже упомянуто, конверсия на стадии 2 олигомеризации является неполной. Отводимый по линии 18 отработанный газ необходимо вывести из цикла, чтобы отводить небольшие количества (12±3%) н-/изобутана, обычно имеющиеся во фракции С4. Конечно, отводимый по линии 18 отработанный газ содержит также бутены, главным образом н-бутен, так как предпочтительно олигомеризуется изобутен, уже имеющийся во фракции С4 в небольшом количестве. Отводимый по линии 16 остаточный газ разделяют на отводимый по линии 17 обратный газ и отводимый по линии 18 отработанный газ в таком соотношении, чтобы содержание н- и изобутана в отводимом по линии 16 остаточном газе повысилось не слишком сильно. В стационарном состоянии его держат преимущественно ниже 70 об. %.
Остающиеся после отделения остаточного газа олигомеры по линии 19 подают на стадию 20 разделения олигомеров, где их разделяют путем перегонки на отводимый по линии 4 дибутен, отводимый по линии 21 трибутен (или додецен) и отводимый по линии 22 остаток. Отводимый по линии 21 трибутен представляет собой желаемый побочный продукт. Его можно подвергать гидроформи-лированию, продукты гидроформилирования можно гидрировать и полученные таким образом тридеканолы можно этоксилировать, в результате чего получают ценный компонент для моющих средств. Отводимый по линии 4 дибутен непосредственно пригоден как исходное вещество для получения нонанолов, тем более что он является относительно линейным из-за высокой доли н-бутена во фракции С4. Если важны особые свойства нонанолов из ди-н-бутена, то отводимый по линии 4 дибутен можно разделять на стадии 23 четкой ректификации на отводимый по линии 6 ди-н-бутен и на отводимые по линии 24 ди-изобутены, которые в качестве более разветвленных молекул кипят при более низких температурах. Последние можно также применять для получения спиртов для получения пластификаторов или в случае необходимости после гидрирования в качестве присадки к автомобильному бензину.
Вариант Б
В варианте Б из подаваемой по линии 1 фракции С4 на стадии 5 этерификации общеизвестным образом отделяют изобутен в результате его взаимодействия с подаваемым по линии 25 алканолом с получением отводимого по линии 26 алкил-трет-бутилового эфира. Реакция является практически селективной, так как оба изомера н-бутена значительно меньше реакционноспособны, чем изобутен. На стадии 2 олигомеризации олигомеризуют исключительно н-бутен, так что в качестве дибутена образуется исключительно ди-н-бутен, отводимый по линии 6.
Подходящими алканолами, подаваемыми по линии 25, являются прежде всего алканолы с 1 - 6 атомами углерода, например метанол, этанол или изобутанол. Их взаимодействие с изобутеном описано, например, в источнике "Methyl-Tert-Butyl Ether", Ullmanns Encyclopedia of Industrial Chemistry, том А 16, стр. 543 и сл. Реакция осуществляется в жидкой фазе или в газожидкой фазе при температуре 50-90oС при давлении, устанавливающемся при соответствующей температуре. Целесообразно работают с небольшим избытком алканола, за счет чего повышается селективность конверсии изобутена и уменьшается его димеризация. В качестве катализатора используют, например, кислый бентонит или кислый ионообменник с крупными порами. Из жидкой смеси этерификации в результате перегонки получают отводимый по линии 26 алкил-трет-бутиловый эфир и в случае необходимости избыточный алканол, который можно возвращать в реакцию.
Отделение изобутена путем его взаимодействия с алканолом рекомендуется, в частности, тогда, если имеется возможность применения алкил-трет-бутилового эфира, в частности метил-трет-бутилового эфира в качестве повышающей октановое число присадки к автомобильному бензину.
В случае особой формы выполнения варианта Б имеется стадия 27 изомеризации, на которой часть н-бутена превращают до изобутена. Дополнительный изобутен возвращают на стадию 5 этерификации. Таким образом можно варьировать количественное соотношение ди-н-бутена и алкил-трет-бутилового эфира и согласовать его с потребностями рынка.
Изомеризацию олефинов также называют скелетной изомеризацией. Стадию 27 изомеризации целесообразно подключают к стадии 15 разделения фракции С4. Отводимый по линии 16 остаточный газ, содержащий до 70 об. % н- и изобутана, затем разделяют на три парциальных потока, а именно на отводимый по линии 17 обратный газ, отводимый по линии 18 отработанный газ и отводимый по линии 28 газ изомеризации. Изомеризация н-бутена до изобутена была разработана в недавнем прошлом. Обзор разных способов приведен автором F. Nierlich в источнике "Recent Developments in Olefin Processing for Cleaner Gasoline", Oil Gas European Magazine, 1992 г. , 4, стр. 31 и cл. Общая черта всех способов заключается в том, что н-бутен смешивают с водяным паром и пропускают его через кислый катализатор, например кислый цеолит, при температуре 500-600oС и атмосферном давлении. При этом н-бутен в самом благоприятном случае изомеризуют до изобутена до достижения равновесия, составляющего в зависимости от температуры 35-50% изобутена и 65-50% н-бутена. Из подаваемой по линии 29 смеси изомеризации под давлением отделяют высококипящие компоненты с помощью промывки 30 циркулирующей водой. Не конденсированные в этих условиях части подаваемой по линии 29 смеси изомеризации, выходящие из верха колонны в качестве азеотропа, состоящего (в основном) из углеводородов с 4 атомами углерода и воды, подают на разделительную стадию 31 - в колонну. Из верха колонны выходит азеотроп, состоящий из низкокипящих компонентов и воды, а в нижней части колонны получают углеводороды с 4 атомами углерода и небольшие количества высококипящих компонентов, которые не осаждались на стадии 30 промывки циркулирующей водой и которые на последующей разделительной стадии 32, также представляющей собой колонну, в качестве кубового продукта отделяют от выходящих из головной части углеводородов с 4 атомами углерода, которые возвращаются на стадию 5 этерификации.

Claims (7)

1. Способ получения бутенолигомеров из олефинов, полученных синтезом по методу Фишера-Тропша, отличающийся тем, что олефины разделяют на стадии разделения выделением фракции С4 углеводородов, полученной синтезом по методу Фишера-Тропша, содержащиеся в ней бутены подвергают олигомеризации и из смеси олигомеризации перегонкой получают дибутен.
2. Способ по п. 1, отличающийся тем, что содержащийся в олефинах по синтезу Фишера-Тропша этилен димеризуют и смесь димеризации возвращают на стадию разделения.
3. Способ по любому из п. 1 или 2, отличающийся тем, что между стадиями разделения и олигомеризации предусмотрена стадия селективного гидрирования для удаления 1,3-бутадиена и/или молекулярное сито в качестве стадии очистки.
4. Способ по любому из пп. 1-3, отличающийся тем, что из образовавшихся на стадии олигомеризации олигомеров перегонкой получают дибутен и трибутен (додецен).
5. Способ по п. 4, отличающийся тем, что дибутен разделяют на стадии четкой ректификации на ди-н-бутен и ди-изобутен.
6. Способ по любому из пп. 1-4, отличающийся тем, что между стадией разделения и стадией селективного гидрирования предусмотрена стадия этерификации, на которой содержащийся в подаваемой фракции С4 углеводородов изобутен подвергают взаимодействию с подаваемым спиртом с получением алкил-трет-бутилового эфира и лишь оставшийся н-бутен олигомеризуют на стадии олигомеризации, так что в качестве дибутена образуется исключительно ди-н-бутен.
7. Способ по одному из пп. 1-6, отличающийся тем, что не прореагировавший на стадии олигомеризации н-бутен изомеризуют на стадии изомеризации до изобутена, который подают на стадию этерификации.
RU97112631/04A 1996-07-24 1997-07-23 Способ получения бутенолигомеров из олефинов по синтезу фишера-тропша RU2189372C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19629906A DE19629906A1 (de) 1996-07-24 1996-07-24 Verfahren zur Herstellung von Butenoligomeren aus Fischer-Tropsch-Olefinen
DE19629906.3 1996-07-24

Publications (2)

Publication Number Publication Date
RU97112631A RU97112631A (ru) 1999-05-27
RU2189372C2 true RU2189372C2 (ru) 2002-09-20

Family

ID=7800729

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97112631/04A RU2189372C2 (ru) 1996-07-24 1997-07-23 Способ получения бутенолигомеров из олефинов по синтезу фишера-тропша

Country Status (5)

Country Link
US (1) US5994601A (ru)
AU (1) AU725208B2 (ru)
DE (1) DE19629906A1 (ru)
RU (1) RU2189372C2 (ru)
ZA (1) ZA976524B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460713C1 (ru) * 2008-11-17 2012-09-10 Юоп Ллк Способ предварительной обработки в установке метатезиса с образованием октена
RU2538089C1 (ru) * 2013-11-13 2015-01-10 Открытое акционерное общество "Газпромнефть-Московский НПЗ" (ОАО "Газпромнефть-МНПЗ") Способ получения высокооктановых углеводородных смесей

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689927B1 (en) 2001-05-07 2004-02-10 Uop Lcc Process for oligomer production and saturation
AR036902A1 (es) 2001-10-24 2004-10-13 Exxonmobil Chem Patents Inc Un proceso para la oligomerizacion de un material de alimentacion olefinico, usos de un limite en el nivel de azufre en el material de alimentacion, una mezcla oligomerica olefinica, y un ester o una composicion polimerica plastificada
DE10217186A1 (de) * 2002-04-18 2003-11-13 Oxeno Olefinchemie Gmbh Benzoesäureisononylester und deren Verwendung
EP1388528B1 (de) * 2002-08-06 2015-04-08 Evonik Degussa GmbH Verfahren zur Oligomerisierung von Isobuten in n-Buten-haltigen Kohlenwasserstoffströmen
FR2866024A1 (fr) * 2004-02-06 2005-08-12 Arkema Procede de fabrication de dodecylmercaptans.
US20070293711A1 (en) * 2006-06-15 2007-12-20 Refining Hydrocarbon Technologies Llc Low cost high yield Iso-octene/ Isooctane process with capability to revamp the MTBE units
US8193402B2 (en) 2007-12-03 2012-06-05 Gevo, Inc. Renewable compositions
EP2225351A4 (en) 2007-12-03 2016-11-09 Gevo Inc RENEWABLE COMPOSITIONS
US7919664B2 (en) * 2008-07-31 2011-04-05 Chevron U.S.A. Inc. Process for producing a jet fuel
US7955495B2 (en) * 2008-07-31 2011-06-07 Chevron U.S.A. Inc. Composition of middle distillate
US7923593B2 (en) * 2008-07-31 2011-04-12 Chevron U.S.A. Inc. Process for producing a middle distillate
US7919663B2 (en) * 2008-07-31 2011-04-05 Chevron U.S.A. Inc. Process for producing a low volatility gasoline blending component and a middle distillate
US7923594B2 (en) * 2008-07-31 2011-04-12 Chevron U.S.A. Inc. Process for producing middle distillate by alkylating C5+ isoparaffin and C5+ olefin
MY159813A (en) 2010-01-08 2017-02-15 Gevo Inc Integrated methods of preparing renewable chemicals
EP2566830B1 (en) 2010-05-07 2017-03-22 GEVO, Inc. Renewable jet fuel blendstock from isobutanol
TW201247596A (en) 2011-04-19 2012-12-01 Gevo Inc Variations on prins-like chemistry to produce 2,5-dimethylhexadiene from isobutanol
JP5767875B2 (ja) * 2011-06-29 2015-08-26 出光興産株式会社 混合c4留分を原料とするジイソブチレンの製造方法
AU2016220415B2 (en) 2015-02-18 2018-05-31 Exxonmobil Research And Engineering Company Upgrading paraffins to distillates and lube basestocks

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE160037C (ru) *
GB1069296A (en) * 1964-11-20 1967-05-17 British Petroleum Co Polymerisation process
IT967655B (it) * 1972-09-20 1974-03-11 Sir Soc Italiana Resine Spa Procedimento per la dimerizzazione delle olefine e catalizzatore relativo
US4046829A (en) * 1975-08-04 1977-09-06 Mobil Oil Corporation Method for improving the Fischer-Tropsch synthesis product distribution
US4052477A (en) * 1976-05-07 1977-10-04 Mobil Oil Corporation Method for upgrading a fischer-tropsch light oil
US4279830A (en) * 1977-08-22 1981-07-21 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
JPS5492901A (en) * 1977-12-29 1979-07-23 Nissan Chem Ind Ltd Dimerization of isobutene-containing butenes
US4482775A (en) * 1982-09-22 1984-11-13 Chemical Research & Licensing Company Isomerization of C4 alkenes
US4544674A (en) * 1983-12-14 1985-10-01 Exxon Research And Engineering Co. Cobalt-promoted fischer-tropsch catalysts
NL8500429A (nl) * 1984-09-28 1986-04-16 Stamicarbon Werkwijze voor het bereiden van hoogverstrekbare polymere gelvoorwerpen.
DE3580760D1 (de) * 1985-09-27 1991-01-10 Indian Petrochemicals Corp Ltd Verfahren zur herstellung von buten-1 aus aethylen.
ATE55467T1 (de) * 1986-02-17 1990-08-15 Hydrotechnik Gmbh Fluidisches system mit messvorrichtung.
US4731490A (en) * 1986-07-23 1988-03-15 Arco Chemical Company Process for methyl, tertiary butyl ether production
GB8804033D0 (en) * 1988-02-22 1988-03-23 Shell Int Research Process for preparing normally liquid hydrocarbonaceous products from hydrocarbon feed
DE3914817C2 (de) * 1989-05-05 1995-09-07 Huels Chemische Werke Ag Verfahren zur Oligomerisierung von Olefinen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460713C1 (ru) * 2008-11-17 2012-09-10 Юоп Ллк Способ предварительной обработки в установке метатезиса с образованием октена
RU2538089C1 (ru) * 2013-11-13 2015-01-10 Открытое акционерное общество "Газпромнефть-Московский НПЗ" (ОАО "Газпромнефть-МНПЗ") Способ получения высокооктановых углеводородных смесей

Also Published As

Publication number Publication date
US5994601A (en) 1999-11-30
DE19629906A1 (de) 1998-01-29
AU725208B2 (en) 2000-10-05
AU3016497A (en) 1998-02-05
ZA976524B (en) 1998-02-03

Similar Documents

Publication Publication Date Title
RU2189372C2 (ru) Способ получения бутенолигомеров из олефинов по синтезу фишера-тропша
US9260355B2 (en) Production of propylene via simultaneous dehydration and skeletal isomerisation of isobutanol on acid catalysts followed by metathesis
RU2165955C2 (ru) Трехстадийный способ получения легких олефинов из метана и/или этана
US7196238B2 (en) Process for dimerizing light olefins
US7732650B2 (en) Oxygenate conversion to olefins with metathesis
KR20160025604A (ko) 최소 1-부텐 함량을 갖는 c4 흐름의 올리고머화
EA008481B1 (ru) Олигомеризация олефинов
RU2189373C2 (ru) Способ получения бутеновых олигомеров из природных бутанов
EP2374780A1 (en) Production of propylene via simultaneous dehydration and skeletal isomerisation of isobutanol on acid catalysts followed by metathesis
KR102336488B1 (ko) 메틸 제3급 부틸 에테르(mtbe) 및 탄화수소의 제조방법
CA2165167C (en) Process for reducing the degree of branching of branched olefins
US20020026087A1 (en) Process for preparing di-iso-butanes, di-iso-butenes and di-n-butenes from field butanes
US5912191A (en) Process for preparing alkyl tert-butyl ethers and di-n-butene from field butanes
RU2178782C2 (ru) Способ совместного получения ди-н-бутена и алкил-трет-бутиловых эфиров из природных бутанов
MXPA97005620A (en) Procedure for the obtaining of alquil-ter.butileteres and di-n-buteno de cabutanos de ca
MXPA97005174A (en) Procedure for the obtaining of debuted oligomers from ac butanos
MXPA97005307A (en) Procedure for the obtaining of rent-ter, butileteres and di-n-buteno from butanos deca
MXPA01007560A (en) Process for preparing di-iso-butanes, di-iso-butenes, and di-n-butenes from field butanes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20030724