RU2181386C1 - Способ переработки медьсодержащего вторичного сырья - Google Patents

Способ переработки медьсодержащего вторичного сырья Download PDF

Info

Publication number
RU2181386C1
RU2181386C1 RU2000124990A RU2000124990A RU2181386C1 RU 2181386 C1 RU2181386 C1 RU 2181386C1 RU 2000124990 A RU2000124990 A RU 2000124990A RU 2000124990 A RU2000124990 A RU 2000124990A RU 2181386 C1 RU2181386 C1 RU 2181386C1
Authority
RU
Russia
Prior art keywords
copper
secondary raw
salt
melt
raw material
Prior art date
Application number
RU2000124990A
Other languages
English (en)
Inventor
Г.Ф. Казанцев
Н.М. Барбин
Г.К. Моисеев
Н.А. Ватолин
Original Assignee
Институт металлургии Уральского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт металлургии Уральского отделения РАН filed Critical Институт металлургии Уральского отделения РАН
Priority to RU2000124990A priority Critical patent/RU2181386C1/ru
Application granted granted Critical
Publication of RU2181386C1 publication Critical patent/RU2181386C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относиться к способам переработки вторичного медьсодержащего сырья и может быть использовано при переработке отходов химической и электрохимической промышленности. В предложенном способе, включающем загрузку исходной шихты в расплав солей, плавление в соляной ванне при температуре, превышающей точку плавления меди, с последующей разливкой в слитки и полуфабрикаты, согласно изобретению из вторичного сырья предварительно удаляют железо, шихту загружают в расплав солей щелочных и щелочноземельных металлов и плавят выше температуры плавления меди на 10-310oС, извлекают жидкую медь, а с поверхности солей удаляют образовавшийся нагар, после чего цикл повторяют, при этом соотношение объемов загружаемой шихты и расплава солей поддерживают в пределах (2-3,4):1; причем медьсодержащее вторичное сырье в виде медных проводов в полимерной и хлопчатобумажной изоляции плавят в расплаве солей следующего состава, вес.%: NaF - 28,3, СаF2 - 28,3, BaCl2 - остальное; причем медьсодержащее вторичное сырье, содержащее стеклоткань и слюду, плавят при температуре 1250-1300oС в расплаве бутылочного стекла; причем в качестве расплава солей используют смесь следующего состава, вес. %: ВаСl2 - 50-80, CaCl2 - 20-50; причем медьсодержащее вторичное сырье в виде голых проводов с изоляцией из лака плавят в соляном расплаве карбоната натрия. Достигается уменьшение объемов отходящих газов и шлаков, экономия топлива, трудозатрат, упрощение процесса, уменьшение переделов. 4 з.п.ф-лы, 2 табл.

Description

Изобретение относится к цветной металлургии, в частности к способам переработки вторичного медьсодержащего сырья, и может быть использовано при переработке отходов химической и электротехнической промышленности в виде проводов, шин, кабеля и других видов отходов, имеющих изоляцию в виде органики, лака, хлопчатобумажной оплетки, слюды и стеклоткани.
Основным способом переработки проводов, кабеля и других видов меди, применяемых в электротехнике, является многоступенчатый процесс, включающий плавку в шахтных и отражательных печах на черновую медь, продувку в конвертере с целью окисления менее благородных металлов (железо, цинк, свинец, олово и другие) или огневое рафинирование, так называемое дразнение с помощью древесины или углеродистых материалов, отливка в виде анодов, электролитическое рафинирование с получением катодной меди. Катодную медь снова расплавляют и получают слитки и полуфабрикаты, пригодные для прокатки и волочения в виде лент, листов, шин и проволоки [1].
Этот процесс сопряжен с потерями меди на каждом из 3-х металлургических переделов, требует больших затрат топлива и связан с экологически вредными процессами.
В частности, медные провода перед загрузкой в печь обжигают, при этом выделяется сажа и вредные органические вещества, содержащие хлор.
К недостаткам существующего способа переработки отходов меди, применяемых в электротехнике, относятся:
- многостадийность процесса, сопряженного с потерями меди, большим количеством отходов в виде шлака, сплесов, съемов, газов;
- большие затраты топлива и электроэнергии;
- использование дорогого, экологически вредного процесса электролитического рафинирования меди;
- необходимость повторной плавки катодной меди;
- большие трудовые затраты;
- необходимость экологически вредного обжига проводов, кабеля, других изделий, покрытых изоляцией.
Обычно отходы цветных металлов смешивают с солями щелочных металлов, например с содой, азотнокислым натрием, шихту спекают и выщелачивают водой [2] .
Недостатками этих способов являются:
- большие энерго- и трудовые затраты на приготовление спека;
- образование вязких прилипающих к футеровке печи спеков, затрудняющих промышленное использование процесса.
Медь, употребляемая для электротехнических изделий, не содержит примесей, в том числе и благородных металлов, и не требует электролитического рафинирования. Такую медь можно перерабатывать по укороченному циклу, который позволит избежать потерь меди на каждом переделе, снизить энергозатраты и получить качественную медь, пригодную для изготовления электротехнических изделий и полуфабрикатов.
Наиболее близким по технической сущности и достигаемому результату является способ переработки вторичного медьсодержащего сырья в электропечи с соляной ванной, куда загружается перерабатываемая шихта и плавится при температуре выше температуры плавления меди. Расплавленная медь, имеющая наибольший удельный вес из продуктов плавки, собирается на дне соляной ванны и выпускается через вертикальный канал, выполненный в электроде [3].
Переработке по данному способу подвергается шихта, содержащая лом черных и цветных металлов, например якори электродвигателей, изготовленные из стали, и содержащие медь, что непосредственно влияет на показатели извлечения меди, так как уже при температуре плавления меди 5-8% железа растворяется в расплаве. Отсюда недостатки известного способа: низкое извлечение и необходимость дополнительных переделов получаемого продукта.
Технической задачей настоящего изобретения является упрощение способа переработки, утилизация всех видов отходов и получение сплава высокого качества.
Поставленная задача достигается тем, что в способе переработки медьсодержащего вторичного сырья, включающего загрузку исходной шихты в расплав солей и плавление в соляной ванне при температуре, превышающей точку плавления меди, с последующей разливкой в слитки и полуфабрикаты, согласно изобретению из вторичного сырья, предварительно удаляют железо, шихту загружают в расплав солей щелочных и щелочноземельных металлов и плавят выше температуры плавления меди на 10-310oС, извлекают жидкую медь, а с поверхности солей удаляют образовавшийся нагар, после чего цикл повторяют, при этом соотношение объемов загружаемой шихты и расплава солей поддерживают в пределах (2-3,4):1.
При этом в качестве расплава солей может быть использована смесь следующего состава, вес. %: BaCl2 - 50-80, CaCl2 - 20-50.
Переработку медьсодержащего вторичного сырья в виде медных проводов в полимерной и хлопчатобумажной изоляции осуществляют в расплаве солей следующего состава, вес. %: NaF - 28,3, CaF2 - 28,3, ВаСl2 - остальное, а с изоляцией из лака - в соляном расплаве карбоната натрия.
Медьсодержащее вторичное сырье, содержащее стеклоткань и слюду, плавят при температуре 1250-1300oС в расплаве бутылочного стекла.
Органика при погружении в расплав солей обугливается в основной массе и частично горит на поверхности (5-10% от массы), стеклоткань, слюда, оксиды растворяются в расплаве солей и за счет свойства адгезии солей отделяются от меди. Происходит рафинирование меди от углерода, оксидов, инородных включений и повышается чистота меди до марок М3, M1.
При температуре, превышающей температуру плавления меди менее чем на 10oС, медь становится менее жидкотекучей, от нее плохо отделяются примеси в виде стеклоткани, углерода, оксидов, а при температуре, превышающей температуру плавления меди более чем на 310oС, медь сильно перегревается, разъедает футеровку печи, стекло также вступает в реакцию с футеровкой.
Соотношение загружаемого материала и соляного расплава поддерживается в пределах (2-3,4):1. При соотношении 1,9:1 и меньше падает производительность печи, так как медь плавится значительно быстрее, а загрузка металла отстает. При большем количестве загружаемых медных отходов соль застывает, и приходится увеличивать период между загрузками, что опять же снижает производительность печи.
Различный состав солей связан с различными видами изоляции проводов и найден эмпирическим путем с учетом физико-химических свойств индивидуальных солей.
Возгоны мелкодисперсного углерода (технический углерод) можно уловить в рукавных фильтрах и использовать как наполнитель резины, лаков, краски, эбонита.
Преимуществом данного способа является простота, уменьшение количества металлургических переделов, уменьшение отходов меди, затрат топлива.
Например, в индукционной печи расходуется только электроэнергия и соли. При переработке электротехнических отходов с изоляцией из слюды и стеклоткани последние сплавляются со стеклом и могут быть использованы для витражей, стеклянных изоляторов.
Исключается процесс электролитического рафинирования, сопряженный с большим количеством трудозатрат, электроэнергии и испарением кислоты.
Техническим результатом, достигаемым в заявляемом способе при его реализации, является уменьшение переделов, уменьшение объема отходящих газов и шлаков, экономия топлива, трудозатрат, упрощение процесса.
Пример 1. В печь Таммана с графитовым нагревателем устанавливают алундовый тигель высотой 5,5 см, диаметром 5 см, загружают в него 15 г NaF, 15 г CaF2 и 23 г BaCl2. Расплавляют при температуре 1093oС и загружают первую порцию медной проволоки с изоляцией из слюды, с перерывом в 5-6 мин загружают еще 2 порции проволоки общим весом 103 г. Средняя температура опыта была 1106oС, время плавки - 17 мин.
Тигель извлекли, соль вылили в алундовый тигель, а медь - в графитовую изложницу.
Получено меди 101,7 г, соли - 41,1 г.
Потери за счет изоляции 1,3 г или 1,25%.
Потери солей с учетом остатка на стенках тигля - 20%.
Пример 2. В печь Таммана установили алундовый тигель диаметром 5,8 см и высотой 7,0 см. В него загрузили 94 г безводной кальцинированной соды (Na2CO3), расплавили и при достижении температуры 1105oС загрузили 1 порцию отходов меди в виде голых проводов с изоляцией из лака. В пять приемов, в течение 13 мин проплавили 214,7 г медных отходов при средней температуре 1112,5oС, на поверхности соли собралась сажа. Тигель извлекли, соль вылили в алундовый тигель, медь - в графитовую изложницу. Получили 205,5 г меди, соли - 75 г.
Извлечение меди составило 95,72%.
Пример 3. В индукционную печь с графитовым тиглем загрузили смесь солей BaCl2 - CaCl2 в соотношении 80% BaCl2 и 20% СаСl2, объем соли - 1/3 тигля. После расплавления солей в несколько приемов загрузили концы голых медно-оловянных контактов, полученных при сборке радиоаппаратуры. Всего загружено при Т~950oС 31,5 кг контактов, получено 31,1 кг сплава. Соль не взвешивали, т.к. плавка других отходов продолжалась. Извлечение сплава составило 98,73%.
Пример 4. В печи сопротивления в алундовом тигле наплавили ~50 г бутылочного стекла, при 1250-1300oС погрузили кусочку толстых проводников в х/б оплетке и слюде. Когда медь расплавилась, тигель извлекли и охладили, медь и стекло не изменились в весе (30 г меди), стекло приобрело зеленовато-голубой яркий цвет.
Результаты всех опытов приведены в табл.1, а химический состав некоторых опытов - в табл.2. Металл в проанализированных образцах имел марки МЗП, M1б по ГОСТ. В опыте 5 получен медно-оловянный сплав.
Состав солей в примере 1 выбран по температуре плавления (около 900oС), уменьшение количества фторидов приведет к снижению растворимости оксидов, присутствующих в слюде, увеличение - соли будут более тугоплавки и растворят тигель печи.
BaCl2 имеет низкую упругость паров и приводит к снижению потерь от испарения. Состав солей в примере 2 выбран как наиболее дешевый, имеющий низкую упругость паров, а также повышенную энергию адгезии при очистке от оксидов и неметаллических включений (сажа, керамика, карбиды).
Использование карбоната натрия наиболее предпочтительно при отходах с изоляцией из органики (пластмасса, х/б ткань, лаки), так как сода взаимодействует с углеродом, хлоридами, растворяет оксиды меди.
Кроме того, использование карбоната натрия обеспечивает хорошую смачиваемость металла, образуя на поверхности расплава прочный защитный покров и тем самым предохраняя его от испарения и окисления.
Стекло можно применять, когда в отходах много слюды, керамики, стеклоткани. При этом стекло не идет в отходы, а возможно его использование для художественных изделий и стеклянной изоляции в электротехнике.
При многократном повторении циклов плавки отходов меди, организации улавливания возгонов и их возврате в печь, расход солей многократно уменьшается, а шлаков как таковых не будет.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Худяков И. Ф. , Дорожкович А.П., Карелов С.В. Металлургия вторичных цветных металлов. М.: Металлургия. 1987.
2. Авторское свидетельство СССР 730849, МКИ C 22 B 7/00, приоритет 11.07.77, опубликовано в БИ 16, 1980.
3. Патент СССР 449490, МКИ C 22 B 7/00, приоритет 19.04.71, опубликовано в БИ 41, 1974.

Claims (5)

1. Способ переработки медьсодержащего вторичного сырья, включающий загрузку исходной шихты в расплав солей, плавление в соляной ванне при температуре, превышающей точку плавления меди, с последующей разливкой в слитки и полуфабрикаты, отличающийся тем, что из вторичного сырья предварительно удаляют железо, шихту загружают в расплав солей щелочных и щелочноземельных металлов и плавят выше температуры плавления меди на 10-310oС, извлекают жидкую медь, а с поверхности солей удаляют образовавшийся нагар, после чего цикл повторяют, при этом соотношение объемов загружаемой шихты и расплава солей поддерживают в пределах (2-3,4): 1.
2. Способ по п. 1, отличающийся тем, что медьсодержащее вторичное сырье в виде медных проводов в полимерной и хлопчатобумажной изоляции плавят в расплаве солей следующего состава, вес. %: NaF - 28,3, CaF2 - 28,3, BaCl2 - остальное.
3. Способ по п. 1, отличающийся тем, что медьсодержащее вторичное сырье, содержащее стеклоткань и слюду, плавят при 1250-1300oС в расплаве бутылочного стекла.
4. Способ по п. 1, отличающийся тем, что в качестве расплава солей используют смесь следующего состава, вес. %: BaCl2 - 50-80, CaCl2 - 20-50.
5. Способ по п. 1, отличающийся тем, что медьсодержащее вторичное сырье в виде голых проводов с изоляцией из лака плавят в соляном расплаве карбоната натрия.
RU2000124990A 2000-10-02 2000-10-02 Способ переработки медьсодержащего вторичного сырья RU2181386C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000124990A RU2181386C1 (ru) 2000-10-02 2000-10-02 Способ переработки медьсодержащего вторичного сырья

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000124990A RU2181386C1 (ru) 2000-10-02 2000-10-02 Способ переработки медьсодержащего вторичного сырья

Publications (1)

Publication Number Publication Date
RU2181386C1 true RU2181386C1 (ru) 2002-04-20

Family

ID=20240612

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000124990A RU2181386C1 (ru) 2000-10-02 2000-10-02 Способ переработки медьсодержащего вторичного сырья

Country Status (1)

Country Link
RU (1) RU2181386C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099555A1 (ru) 2013-12-23 2015-07-02 Виктор Викторович ШИГИН Способ совмещенного литья и прокатки медных сплавов из медных ломов
RU2689828C2 (ru) * 2014-06-13 2019-05-29 Аурубис Аг Способ извлечения металлов из вторичного сырья и других материалов с органическими компонентами
RU2730352C2 (ru) * 2015-06-29 2020-08-21 Юрбанголд Гмбх Устройство и система для металлургического передела лома и способ металлургического передела лома

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КОЙБАШ В.А. и др. Первичная переработка лома и отходов цветных металлов за рубежом. - М.: Институт "Цветметинформация", 1973. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099555A1 (ru) 2013-12-23 2015-07-02 Виктор Викторович ШИГИН Способ совмещенного литья и прокатки медных сплавов из медных ломов
RU2689828C2 (ru) * 2014-06-13 2019-05-29 Аурубис Аг Способ извлечения металлов из вторичного сырья и других материалов с органическими компонентами
RU2730352C2 (ru) * 2015-06-29 2020-08-21 Юрбанголд Гмбх Устройство и система для металлургического передела лома и способ металлургического передела лома

Similar Documents

Publication Publication Date Title
CN104032155B (zh) 废杂黄铜熔炼用覆盖剂及其应用
AU647974B2 (en) Method for the treatment of potlining residue from primary aluminium smelters
Velasco et al. Recycling of aluminium scrap for secondary Al-Si alloys
CN1878879A (zh) 从含锌残渣中回收有色金属的方法和装置
Gupta Extractive metallurgy of niobium, tantalum, and vanadium
RU2181386C1 (ru) Способ переработки медьсодержащего вторичного сырья
Peterson A historical perspective on dross processing
WO1998058879A1 (en) A process for the manufacture of pure metallic lead from exhausted batteries
US11661638B2 (en) Recovery of nickel and cobalt from Li-ion batteries or their waste
US4478637A (en) Thermal reduction process for production of magnesium
CA1220349A (en) Thermal reduction process for production of magnesium using aluminum skim as a reductant
JP4198434B2 (ja) 金属チタンの製錬方法
US4992096A (en) Metallothermic reduction or rare earth metals
Ochoa et al. Manufacture of Al-Zn-Mg alloys using spent alkaline batteries and cans
CN111187916A (zh) 一种利用工业钛渣制备高纯钛的方法
RU2386711C1 (ru) Способ рафинирования серебряно-золотых сплавов
AU2022281009B2 (en) Recovery of nickel and cobalt from li-ion batteries or their waste
RU2339710C2 (ru) Способ получения металла или кремния
US3269830A (en) Production of niobium from niobium pentachloride
WO2023217710A1 (en) Recovery of nickel and cobalt from black mass
Bassett Zinc Losses.
EA047882B1 (ru) Извлечение никеля и кобальта из литий-ионных батарей или их лома
RU2652905C1 (ru) Способ получения алюминиево-кремниевых сплавов
JP2022129591A (ja) 鉄スクラップ中のトランプエレメントの電気化学的分離方法
US20230369667A1 (en) Recovery of nickel and cobalt from Black Mass

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20061003