RU2339710C2 - Способ получения металла или кремния - Google Patents
Способ получения металла или кремния Download PDFInfo
- Publication number
- RU2339710C2 RU2339710C2 RU2006119281/02A RU2006119281A RU2339710C2 RU 2339710 C2 RU2339710 C2 RU 2339710C2 RU 2006119281/02 A RU2006119281/02 A RU 2006119281/02A RU 2006119281 A RU2006119281 A RU 2006119281A RU 2339710 C2 RU2339710 C2 RU 2339710C2
- Authority
- RU
- Russia
- Prior art keywords
- metal
- oxide
- silicon
- crucible
- melt
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 57
- 239000002184 metal Substances 0.000 title claims abstract description 57
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 19
- 239000010703 silicon Substances 0.000 title claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 8
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 7
- 238000010894 electron beam technology Methods 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 16
- 239000000155 melt Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 12
- 238000005272 metallurgy Methods 0.000 abstract description 9
- 150000002739 metals Chemical class 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract 1
- 229910052753 mercury Inorganic materials 0.000 abstract 1
- 239000007787 solid Substances 0.000 abstract 1
- 238000005303 weighing Methods 0.000 description 16
- 239000002344 surface layer Substances 0.000 description 15
- 238000011068 loading method Methods 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 238000000859 sublimation Methods 0.000 description 9
- 230000008022 sublimation Effects 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 230000035515 penetration Effects 0.000 description 8
- 230000000737 periodic effect Effects 0.000 description 8
- 238000004064 recycling Methods 0.000 description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- -1 for example Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229910001610 cryolite Inorganic materials 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к области металлургии и может быть использовано для получения металлов из их оксидов, а также кремния из его оксида. Способ получения металла или кремния заключается в восстановлении их оксидов. Восстановление осуществляют путем обработки электронным лучом порошка оксида металла или кремния на поверхности расплава металла или кремния. Процесс ведут при плотности тока в луче 5-12 мА/мм2, ускоряющем напряжении 15-35 кВ и вакууме 10-4-10-5 мм рт.ст. Техническим результатом является снижение затрат электроэнергии и получение металла или кремния в виде компактного слитка, не загрязненного примесями. 2 з.п. ф-лы, 1 ил.
Description
Изобретение относится к области металлургии, к переработке оксидсодержащих материалов и может быть использовано для получения металлов из их оксидов, а также кремния из его оксида.
Известен способ получения металлов, например циркония, титана, а также кремния, путем восстановления их оксидов кальцием, магнием и алюминием [Г.А.Меерсон, Ю.В.Гагаринский. Металлургия циркония. - М.: Иностранная литература, 1959. - С.75; Б.В.Громов. Технология редких металлов в атомной технике.- М.: Атомиздат, 1974. - С.231; В.Е.Плющев. Справочник по редким металлам. - М.: Мир, 1965. - С.176; B.C.Емельянов, А.И Евстюхин. Металлургия ядерного горючего. - М.: Атомиздат, 1968. - С.267]. Способ заключается в том, что оксид металла и измельченный металлический восстановитель, например кальций, взятый в избыточном количестве, смешивают для получения однородной шихты, которую прессуют в брикеты и нагревают в атмосфере инертного газа до температуры возбуждения реакции, которая быстро распространяется по всему объему шихты. Для полного восстановления продукты реакции выдерживают при высокой температуре. Последующую переработку полученного спека для отделения металла от оксида кальция осуществляют механическими и химическими методами. Содержание кислорода в конечном металле может колебаться от 0,3 до 3,0%.
Недостатком способа является его многостадийность и высокое содержание кислорода в получаемом продукте.
Известен способ получения металла, например циркония, путем восстановления его оксида углем или карбидом циркония [Г.А.Меерсон, Ю.В.Гагаринский. Металлургия циркония. - М.: Иностранная литература, 1959. - стр.75]. Способ заключается в тонком измельчении исходных материалов, хорошем перемешивании, брикетировании и последующем проведении реакции восстановления в твердой фазе и глубоком вакууме. Температуру в ходе реакции необходимо постоянно контролировать, исключая ее повышение выше некоторого порогового значения, чтобы предотвратить оплавление или спекание брикетов, приводящее к немедленному прекращению реакции. Для обеспечения полноты реакции шихта может быть охлаждена, раздроблена, измельчена, вновь сбрикетирована и подвергнута повторному нагреву.
Примесь углерода в полученном металле колеблется от 0,02 до 0,05%.
Недостатком способа является отсутствие стабильного температурного режима в ходе реакции, а также сложность получения чистого, не загрязненного углеродом металла.
Известен способ получения металла, например титана, из его оксида путем прямого электрохимического восстановления в расплавленном CaCl2, а также из его хлорида [Б.В.Громов. Технология редких металлов в атомной технике. - М.: Атомиздат, 1974. - стр.231]. Способ заключается в смешивании порошка чистого оксида металла с соответствующим связующим до получения пасты, которая затем отливается в катоды прямоугольной формы, прокаливается и спекается. Восстановление осуществляют в закрытом электролизере, заполненном инертным газом, после чего остатки CaCl2 удаляют из металлической губки путем водного выщелачивания.
Недостатком способа является малая производительность, дорогостоящий процесс подготовки гранул оксида металла и предварительная обработка исходного материала для придания ему свойств электропроводности.
Известен промышленный способ получения алюминия электролизом глинозема (Al2О3), растворенного в расплавленном криолите (Na3AlF6), при температуре около 950°С. [Кистяковский Б.Б., Гудима Н.В. Производство цветных металлов. - М.: Металлургия, 1978. - С.274]. Способ заключается в том, что при прохождении тока через электролит, состоящий из 6-8% глинозема и 92-94% криолита, на катоде, которым служит подина электролизера, выделяется расплавленный алюминий, а на аноде выделяется кислород, образующий с угольным анодом СО и СО2. Расплавленный алюминий чистотой около 99,7% извлекают с помощью вакуумного ковша и разливают в формы.
Недостатком способа являются большие затраты электроэнергии и загрязнение атмосферного воздуха летучими соединениями фтора.
Известен способ получения металла, например, меди путем восстановления ее оксида водородом, окисью углерода и активными металлами, такими, как Mg, Al, Zn [Кистяковский Б.Б., Гудима Н.В. Производство цветных металлов. - М.: Металлургия, 1978. - С.170]. Способ заключается в том, что в ванну с шихтой подают мазут или природный газ, которые при разложении образуют восстанавливающий закись меди газ: Н2, СО. Полученную на этой стадии медь с содержанием кислорода 0,15÷0,2% затем подвергают электролитическому рафинированию в сернокислом растворе. Извлекаемые после этого катоды содержат более 99,96% меди и около 0,02% в сумме различных примесей. Недостатком способа является многоэтапный процесс получения чистого металла.
Известен способ получения кремния путем восстановления его оксида углеродом в электропечах [Справочник по редким металлам. Под ред. д-ра. хим. наук профессора В.Е.Плющева. М.: Мир, 1965 год]. Способ заключается в том, что в дуговую печь загружают SiO2, углерод (в виде угля, щепок и кокса) и погружают в нее электрод. Процесс ведут при высокой температуре. Кремний, полученный таким способом, выпускается с пода печи и отливается в чушки, его чистота составляет около 99,9%. Для получения более чистого кремния осуществляют его хлорирование с последующей очисткой различными способами от примесей. Недостатком способа является многоэтапный процесс получения кремния высокой чистоты.
Известен способ получения металла, например, никеля путем восстановления его оксида при высокой температуре водородом, окисью углерода или электролизом расплавов [Производство цветных металлов, Кистяковский Б.Б., Гудима Н.В. - М.: Металлургия, 1978. - стр.212]. Способ заключается в том, что в дуговую печь загружают обожженный материал. В качестве восстановителя применяют мелочь каменного угля. После полного расплавления сплав выпускают из пода печи в ковш и разливают в изложницы. Для получения более чистого Ni применяется электролитическое рафинирование, при котором никель используется в качестве анода. Процесс рафинирования проводят в растворе сульфата и хлорида никеля, в результате которого чистота получаемого никеля доходит до 99,95%. Недостатком является то, что производство требует больших затрат электроэнергии.
Задачей изобретения является расширение арсенала способов переработки оксидсодержащих материалов, а именно оксидов металлов или оксида кремния, с получением металлов или кремния.
Поставленную задачу решают способом переработки оксидсодержащих материалов восстановлением оксидов, включающим получение в тигле исходного расплава и подачу порции порошка оксидсодержащего материала на поверхность исходного расплава, при этом осуществляют обработку порошка оксидсодержащего материала на поверхности расплава электронным лучом при плотности тока в луче 5-12 мА/мм2, ускоряющем напряжении 15-35 кВ и вакууме 10-4-10-5 мм рт.ст.
Порции порошка оксида металла подают на поверхность исходного расплава металла. Порции порошка оксида кремния подают на поверхность исходного расплава кремния.
В переработке могут быть использованы оксиды, имеющие любую степень прокалки, или оксидосодержащие технологические отходы, представляющие собой гомогенную смесь оксида и металла.
На чертеже представлена схема опытной установки. Установка включает электронную пушку 1, тигель 2, цилиндрический водоохлаждаемый конденсационный элемент 3, устройство 4 для наблюдения за лучом 5 электронной пушки 1 на поверхности расплава 6 и за процессом подачи оксида дозатором сыпучих материалов 7.
Способ осуществляют следующим образом.
Тигель с заданным количеством металла, предназначенным для образования исходного расплава (затравка), устанавливают в электронно-лучевую вакуумную печь, которую вакуумируют до давления, не превышающего 10-4 мм рт.ст. Содержимое тигля расплавляют электронным лучом.
На поверхность жидкого металла загружают равномерным слоем толщиной до 0,5 мм порцию оксида металла или оксида кремния и обрабатывают слой оксида электронным лучом. По мере восстановления оксида (на поверхности появляется зеркало расплавленного металла) на жидкометаллическую поверхность осуществляют периодически порционную загрузку оксидов. Загрузку производят дозатором сыпучих материалов, обеспечивая регулировку порций по массе и равномерное ее распределение по поверхности расплава. Контроль за процессом восстановления может осуществляться специальной системой TV наблюдения и/или визуально.
По окончании процесса тигель с восстановленным металлом охлаждают, после чего металл извлекают из тигля в виде слитка, а возгон металла, сконденсированный на водоохлаждаемой поверхности конденсационного элемента 3, возвращают на повторную переработку.
Электронно-лучевые печи (ЭЛП), используемые в металлургической промышленности, пригодны для реализации данного способа.
ПРИМЕР 1.
Тигель, внутренний диаметр которого равен 84 мм, с затравочным количеством алюминия в виде слитка массой 100,0 г устанавливают в электронно-лучевую печь.
Печь вакуумируют до остаточного давления в ней 10-4-10-5 мм рт.ст., которое поддерживают в течение процесса. Расплавляют содержимое тигля.
На поверхность расплавленного металла производят периодическую порционную загрузку слоя оксида алюминия (до 0,5 мм), который обрабатывают электронным лучом с плотностью тока в луче 10,6 мА/ мм2 при ускоряющем напряжении 17,6 кВ, поддерживая температуру в поверхностном слое на глубину проникновения электронов луча в расплав 1000°С.
Процесс обработки электронным лучом осуществляют в течение 5 минут, при этом на поверхности расплавленного металла визуально наблюдается процесс удаления ("рассасывания") поверхностного слоя оксидов.
Общее количество переработанного оксида алюминия составило 100 г.
По окончании процесса тигель охлаждают, после чего извлекают из тигля алюминий в виде слитка массой 148,2 г, а возгон металла в количестве 3,7 г направляют на повторную переработку со следующей партией оксидов или на отдельной операции.
ПРИМЕР 2.
Тигель с затравочным количеством алюминия в виде слитка массой 100,0 г устанавливают в электронно-лучевую печь.
Печь вакуумируют до остаточного давления в ней 10-4-10-5 мм рт.ст., которое поддерживают в течение процесса.
Расплавляют содержимое тигля.
На поверхность расплавленного металла производят периодическую порционную загрузку слоя оксида алюминия (до 0,5 мм), который обрабатывают электронным лучом с плотностью тока в луче 11,9 мА/ мм2 при ускоряющем напряжении 31,0 кВ, поддерживая температуру в поверхностном слое на глубину проникновения электронов луча в расплав 1050°С.
Процесс обработки электронным лучом осуществляют в течение 10 минут, при этом на поверхности расплавленного металла визуально наблюдается процесс удаления ("рассасывания") поверхностного слоя оксидов.
Общее количество переработанного оксида алюминия составило 100 г.
По окончании процесса тигель охлаждают, после чего извлекают из тигля алюминий в виде слитка массой 141,9 г, а возгон металла в количестве 9,1 г направляют на повторную переработку со следующей партией оксидов или на отдельной операции.
ПРИМЕР 3.
Тигель с затравочным количеством меди в виде слитка массой 1126,5 г устанавливают в электронно-лучевую печь.
Печь вакуумируют до остаточного давления в ней 10-4-10-5 мм рт.ст., которое поддерживают в течение процесса.
Расплавляют содержимое тигля.
На поверхность расплавленного металла производят периодическую порционную загрузку слоя оксида меди (до 0,5 мм), который обрабатывают электронным лучом с плотностью тока в луче 10,3 мА/ мм2 при ускоряющем напряжении 31,0 кВ, поддерживая температуру в поверхностном слое на глубину проникновения электронов луча в расплав 1160°С.
Процесс обработки электронным лучом осуществляют в течение 20 минут, при этом на поверхности расплавленного металла визуально наблюдается процесс удаления ("рассасывания") поверхностного слоя оксидов.
Общее количество переработанного оксида меди составило 29,5 г.
По окончании процесса тигель охлаждают, после чего извлекают из тигля медь в виде слитка массой 1146,3 г, а возгон металла в количестве 2,4 г направляют на повторную переработку со следующей партией оксидов или на отдельной операции.
ПРИМЕР 4.
Тигель с затравочным количеством никеля в виде слитка массой 1122,5 г устанавливают в электронно-лучевую печь.
Печь вакуумируют до остаточного давления в ней 10-4-10-5 мм рт.ст., которое поддерживают в течение процесса.
Расплавляют содержимое тигля.
На поверхность расплавленного металла производят периодическую порционную загрузку слоя оксида никеля (до 0,5 мм), который обрабатывают электронным лучом с плотностью тока в луче 8,2 мА/ мм2 при ускоряющем напряжении 21,0 кВ, поддерживая температуру в поверхностном слое на глубину проникновения электронов луча в расплав 1580°С.
Процесс обработки электронным лучом осуществляют в течение 10 минут, при этом на поверхности расплавленного металла визуально наблюдается процесс удаления ("рассасывания") поверхностного слоя оксидов.
Общее количество переработанного оксида никеля составило 46,5 г.
По окончании процесса тигель охлаждают, после чего извлекают из тигля никель в виде слитка массой 1148,8 г, а возгон металла в количестве 8,8 г направляют на повторную переработку со следующей партией оксидов или на отдельной операции.
ПРИМЕР 5.
Тигель с затравочным количеством скандия в виде слитка массой 139,0 г устанавливают в электронно-лучевую печь.
Печь вакуумируют до остаточного давления в ней 10-4-10-5 мм рт.ст., которое поддерживают в течение процесса.
Расплавляют содержимое тигля.
На поверхность расплавленного металла производят периодическую порционную загрузку слоя оксида скандия (до 0,5 мм), который обрабатывают электронным лучом с плотностью тока в луче 11,9 мА/ мм2 при ускоряющем напряжении 34,4 кВ, поддерживая температуру в поверхностном слое на глубину проникновения электронов луча в расплав 1650°С.
Процесс обработки электронным лучом осуществляют в течение 25 минут, при этом на поверхности расплавленного металла визуально наблюдается процесс удаления ("рассасывания") поверхностного слоя оксидов.
Общее количество переработанного оксида скандия составило 23,0 г.
По окончании процесса тигель охлаждают, после чего извлекают из тигля скандий в виде слитка массой 149,5 г, а возгон металла в количестве 3,2 г направляют на повторную переработку со следующей партией оксидов или на отдельной операции.
ПРИМЕР 6.
Тигель с затравочным количеством титана в виде слитка массой 517,3 г устанавливают в электронно-лучевую печь.
Печь вакуумируют до остаточного давления в ней 10-4-10-5 мм рт.ст., которое поддерживают в течение процесса.
Расплавляют содержимое тигля.
На поверхность расплавленного металла производят периодическую порционную загрузку слоя оксида титана (до 0,5 мм), который обрабатывают электронным лучом с плотностью тока в луче 7,0 мА/мм2 при ускоряющем напряжении 18,0 кВ, поддерживая температуру в поверхностном слое на глубину проникновения электронов луча в расплав 1850°С.
Процесс обработки электронным лучом осуществляют в течение 30 минут, при этом на поверхности расплавленного металла визуально наблюдается процесс удаления ("рассасывания") поверхностного слоя оксидов.
Общее количество переработанного оксида титана составило 35,0 г.
По окончании процесса тигель охлаждают, после чего извлекают из тигля титан в виде слитка массой 526,6 г, а возгон металла в количестве 10,3 г направляют на повторную переработку со следующей партией оксидов или на отдельной операции.
ПРИМЕР 7.
Тигель с затравочным количеством циркония в виде слитка массой 1788,7 г устанавливают в электронно-лучевую печь.
Печь вакуумируют до остаточного давления в ней 10-4-10-5 мм рт.ст., которое поддерживают в течение процесса.
Расплавляют содержимое тигля.
На поверхность расплавленного металла производят периодическую порционную загрузку слоя оксида циркония (до 0,5 мм), который обрабатывают электронным лучом с плотностью тока в луче 7,8 мА/мм2 при ускоряющем напряжении 21,0 кВ, поддерживая температуру в поверхностном слое на глубину проникновения электронов луча в расплав 2100°С.
Процесс обработки электронным лучом осуществляют в течение 15 минут, при этом на поверхности расплавленного металла визуально наблюдается процесс удаления ("рассасывания") поверхностного слоя оксидов.
Общее количество переработанного оксида циркония составило 14,3 г.
По окончании процесса тигель охлаждают, после чего извлекают из тигля цирконий в виде слитка массой 1795,5 г, а возгон металла в количестве 2,8 г направляют на повторную переработку со следующей партией оксидов или на отдельной операции.
ПРИМЕР 8.
Тигель с затравочным количеством кремния в виде слитка массой 140,8 г устанавливают в электронно-лучевую печь.
Печь вакуумируют до остаточного давления в ней 10-4-10-5 мм рт.ст., которое поддерживают в течение процесса.
Расплавляют содержимое тигля.
На поверхность расплавленного кремния производят периодическую порционную загрузку слоя оксида кремния (до 0,5 мм), который обрабатывают электронным лучом с плотностью тока в луче 5,9 мА/мм2 при ускоряющем напряжении 19,2 кВ, поддерживая температуру в поверхностном слое на глубину проникновения электронов луча в расплав 1550°С.
Процесс обработки электронным лучом осуществляют в течение 25 минут, при этом на поверхности расплавленного кремния визуально наблюдается процесс удаления ("рассасывания") поверхностного слоя оксидов.
Общее количество переработанного оксида кремния составило 20 г.
По окончании процесса тигель охлаждают, после чего извлекают из тигля кремний в виде слитка массой 145,6 г, а возгон кремния в количестве 2,9 г направляют на повторную переработку со следующей партией оксидов или на отдельной операции.
Заявляемый способ позволяет получить металл в виде компактного слитка, не загрязненного примесями.
Claims (3)
1. Способ переработки оксидсодержащих материалов восстановлением оксидов, включающий получение в тигле исходного расплава и подачу порции порошка оксидсодержащего материала на поверхность исходного расплава, при этом осуществляют обработку порошка оксидсодержащего материала на поверхности расплава электронным лучом при плотности тока в луче 5-12 мА/мм2, ускоряющем напряжении 15-35 кВ и вакууме 10-4-10-5 мм рт.ст.
2. Способ по п.1, отличающийся тем, что осуществляют подачу порции порошка оксида металла на поверхность исходного расплава металла.
3. Способ по п.1, отличающийся тем, что осуществляют подачу порции порошка оксида кремния на поверхность исходного расплава кремния.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006119281/02A RU2339710C2 (ru) | 2006-06-01 | 2006-06-01 | Способ получения металла или кремния |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006119281/02A RU2339710C2 (ru) | 2006-06-01 | 2006-06-01 | Способ получения металла или кремния |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006119281A RU2006119281A (ru) | 2007-12-20 |
RU2339710C2 true RU2339710C2 (ru) | 2008-11-27 |
Family
ID=38916841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006119281/02A RU2339710C2 (ru) | 2006-06-01 | 2006-06-01 | Способ получения металла или кремния |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2339710C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2562717C1 (ru) * | 2014-02-20 | 2015-09-10 | Ашот Александрович Навасардян | Способ получения кремния из оксида кремния |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4504307A (en) * | 1983-02-03 | 1985-03-12 | Voest-Alpine Aktiengesellschaft | Method for carrying out melting, melt-metallurgical and/or reduction-metallurgical processes in a plasma melting furnace as well as an arrangement for carrying out the method |
RU2153016C1 (ru) * | 1999-02-17 | 2000-07-20 | Костин Владимир Владимирович | Способ получения редких тугоплавких металлов, кремния и их соединений |
EP1099767A1 (en) * | 1999-05-06 | 2001-05-16 | Ken Kansa | Method and device for induction-heating and melting metal oxides-containing powder and granular material |
CA2429024A1 (en) * | 2000-11-15 | 2002-05-23 | Cambridge University Technical Services Limited | Metal and alloy powders and powder fabrication |
RU2237616C2 (ru) * | 2002-09-17 | 2004-10-10 | Карабанов Сергей Михайлович | Способ получения кремния солнечного качества |
-
2006
- 2006-06-01 RU RU2006119281/02A patent/RU2339710C2/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4504307A (en) * | 1983-02-03 | 1985-03-12 | Voest-Alpine Aktiengesellschaft | Method for carrying out melting, melt-metallurgical and/or reduction-metallurgical processes in a plasma melting furnace as well as an arrangement for carrying out the method |
RU2153016C1 (ru) * | 1999-02-17 | 2000-07-20 | Костин Владимир Владимирович | Способ получения редких тугоплавких металлов, кремния и их соединений |
EP1099767A1 (en) * | 1999-05-06 | 2001-05-16 | Ken Kansa | Method and device for induction-heating and melting metal oxides-containing powder and granular material |
CA2429024A1 (en) * | 2000-11-15 | 2002-05-23 | Cambridge University Technical Services Limited | Metal and alloy powders and powder fabrication |
RU2237616C2 (ru) * | 2002-09-17 | 2004-10-10 | Карабанов Сергей Михайлович | Способ получения кремния солнечного качества |
Non-Patent Citations (1)
Title |
---|
РАКОВ Э.Г., ХАУСТОВ С.В. Процессы и аппараты производств радиоактивных и редких металлов. - М.: Металлургия, 1993, с.352-356. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2562717C1 (ru) * | 2014-02-20 | 2015-09-10 | Ашот Александрович Навасардян | Способ получения кремния из оксида кремния |
Also Published As
Publication number | Publication date |
---|---|
RU2006119281A (ru) | 2007-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240410070A1 (en) | System and method for extraction and refining of titanium | |
Fray et al. | Reduction of titanium and other metal oxides using electrodeoxidation | |
AU758931C (en) | Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt | |
KR101370007B1 (ko) | 금속 제조를 위한 열적 및 전기화학적 방법 | |
US3729397A (en) | Method for the recovery of rare earth metal alloys | |
EP1445350A1 (en) | Method and apparatus for smelting titanium metal | |
Kartal et al. | Direct electrochemical reduction of copper sulfide in molten borax | |
Ono et al. | Design, test and theoretical assessments for reduction of titanium oxide to produce titanium in molten salt | |
RU2339710C2 (ru) | Способ получения металла или кремния | |
RU2401875C2 (ru) | Способ производства химически активных металлов и восстановления шлаков и устройство для его осуществления | |
US4992096A (en) | Metallothermic reduction or rare earth metals | |
RU2401874C2 (ru) | Способ волкова для производства химически активных металлов и устройство для его осуществления | |
JPH0559199B2 (ru) | ||
EA014138B1 (ru) | Электрохимическое восстановление оксидов металлов | |
AU2003206430B2 (en) | Removal of substances from metal and semi-metal compounds | |
Mishra et al. | Applications of molten salts in reactive metals processing | |
Fray | Reduction of titanium dioxide and other metal oxides by electro-deoxidation | |
Mishra et al. | Colorado School of Mines, Golden, Colorado 80401 | |
AU2006203344A1 (en) | Removal of substances from metal and semi-metal compounds | |
MXPA00011878A (es) | Eliminacion de oxigeno de oxidos de metal y soluciones solidas por electrolisis en una sal fusionada |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20110602 |