RU2171429C1 - Вихревая горелка - Google Patents

Вихревая горелка Download PDF

Info

Publication number
RU2171429C1
RU2171429C1 RU2000128946A RU2000128946A RU2171429C1 RU 2171429 C1 RU2171429 C1 RU 2171429C1 RU 2000128946 A RU2000128946 A RU 2000128946A RU 2000128946 A RU2000128946 A RU 2000128946A RU 2171429 C1 RU2171429 C1 RU 2171429C1
Authority
RU
Russia
Prior art keywords
mixture
muffle
pipe
length
air mixture
Prior art date
Application number
RU2000128946A
Other languages
English (en)
Inventor
С.Л. Буянтуев
Д.Б. Цыдыпов
С.М. Легостаев
А.В. Елисафенко
М.Н. Беспрозванных
А.Ц. Доржиев
Original Assignee
Общество с ограниченной ответственностью "ПлазмотехБайкал"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ПлазмотехБайкал" filed Critical Общество с ограниченной ответственностью "ПлазмотехБайкал"
Priority to RU2000128946A priority Critical patent/RU2171429C1/ru
Application granted granted Critical
Publication of RU2171429C1 publication Critical patent/RU2171429C1/ru

Links

Abstract

Изобретение относится к энергетике и может быть использовано для растопки и стабилизации горения пылеугольного факела на энергетических и водогрейных котлах с вихревыми горелками. Технический результат изобретения - повышение эффективности топливоиспользования, исключение использования мазута, снижение энергозатрат. Вихревая горелка содержит коаксиально расположенные трубу (Т) 3 вторичного воздуха Т4 аэросмеси муфель 5, длина которого составляет 0,4 - 0,6 длины Т4. В торце муфеля 5 встроен плазмотрон. Оконечная часть Т4 на 0,7 - 0,8 ее длины изнутри ошипована и обмурована огнеупорным и износостойким материалом. 1 ил.

Description

Изобретение относится к энергетике и может быть использовано для растопки и стабилизации горения пылеугольного факела на энергетических и водогрейных котлах с вихревыми горелками.
Известно устройство для безмазутной растопки пылеугольного котла, в котором осуществляется смешение потока аэросмеси с низкотемпературной плазмой на выходе из прямоточной горелки. В этом устройстве плазма генерируется высоковольтным многоэлектродным плазмотроном переменного тока. При взаимодействии токонесущей плазмы с контактирующей с ней аэросмесью последняя воспламеняется и процесс горения распространяется на остальную аэросмесь (см. Ибраев Ш. Ш. и др. Плазменная горелка с источником питания для розжига и стабилизации Донецкого А. Ш. (Плазменное воспламенение и сжигание топлив). Тезисы докладов межвузовской научно-технической конференции НКИ им. С.О. Макарова. Николаев, 1989, стр. 172).
Недостатком этой установки является то, что к электродам плазмотрона подводится высокое напряжение промышленной частоты, равное 10 кВ. Рабочий ток - десятки ампер. Использование такого напряжения в зоне присутствия обслуживающего персонала требует принятия особых мер безопасности. Кроме того, такая схема установки требует больших энергозатрат и не позволяет создать условия для снижения эмиссии оксидов азота.
Известна установка для безмазутной растопки пылеугольного котла, в которой нагрев аэросмеси, поступающей в прямоточную пылеугольную горелку, производится струйным плазмотроном, расположенным на ее боковой поверхности. Причем угол α между осью плазмотрона и осью камеры варьируется в пределах 30-150o, в зависимости от качества используемого угля. Меньший угол соответствует использованию угля с более высоким содержанием летучих. Увеличение угла позволяет увеличить интенсивность смешения плазмы с аэросмесью (см. патент N 2128408, МПК H 05 B 7/18, опубл. 27.03.99, БИ N 9).
Для данной установки характерно то, что процесс взаимодействия плазмы с топливом производится во всем объеме горелки. Поэтому не удается сосредоточить подводимую энергию в малом объеме и воздействовать лишь на часть топливной смеси, что необходимо для более эффективной термохимической подготовки.
Наиболее близким по технической сущности устройством к предлагаемому изобретению является вихревая горелка для пылеугольного топлива, включающая в себя: улитку вторичного воздуха, улитку аэросмеси, коаксиально расположенные трубы: вторичного воздуха, аэросмеси и внутреннюю трубу аэросмеси с мазутной форсункой. В процессе растопки через форсунку подают мазут, при горении которого выделяется значительное количество тепла, которое нагревает топочный объем котла. После достижения заданных параметров производится подача аэросмеси. В результате нагрева в топочном объеме угольных частиц выделяются летучие компоненты и повышается температура твердого топлива. При этом происходит возгорание угольных частиц и осуществляется интенсивный розжиг и стабилизация горения пылеугольного факела (см. Котельные и турбинные установки энергоблоков мощностью 500 и 800 МВт. /Под ред. В.Е. Дорощука и В.Б. Рубана. М. : Энергия, 1979, с. 16-18). Для интенсификации процесса горения потоки аэросмеси и вторичного воздуха завихряются в улитках аэросмеси и вторичного воздуха.
Однако использование дорогого, по сравнению с углем, мазута, а также сложность эксплуатации мазутного хозяйства, особенно в зимнее время, не является экономически выгодным. Кроме того, при совместном сжигании угля и мазута в топке повышается мехнедожог, увеличиваются выбросы окислов азота и серы, усиливается коррозия поверхностей нагрева и снижается надежность энергетического оборудования (см. Жуков М.Ф. и др. Низкотемпературная плазма. Т 16, Плазменная безмазутная растопка котлов и стабилизация горения пылеугольного факела. Новосибирск: Наука, 1995).
Технический результат изобретения исключение использования мазута для розжига и стабилизации горения пылеугольного факела на котлах с вихревыми горелками с одновременным повышением эффективности топливоиспользования.
Технический результат достигается тем, что в вихревой горелке, включающей улитку вторичного воздуха, улитку аэросмеси и коаксиально расположенные трубы вторичного воздуха, аэросмеси и внутреннюю трубу аэросмеси, согласно изобретению внутренняя труба аэросмеси выполнена в виде муфеля, длина которого составляет 0,4-0,6 от длины трубы аэросмеси, со встроенным в торце плазмотроном и имеющим напротив зоны горения плазменного факела отверстие, перекрываемое шибером, при этом оконечная часть трубы аэросмеси на 0,7-0,8 длины изнутри ошипована и обмурована огнеупорным и износостойким материалом.
Существенными отличительными признаками заявляемого устройства в отличие от прототипа является новая форма выполнения конструктивных элементов, а именно выполнение внутренней трубы аэросмеси в виде муфеля, длина которого составляет 0,4-0,6 от длины трубы аэросмеси, со встроенным в торце плазмотроном и имеющим напротив зоны горения плазменного факела отверстие, перекрываемое шибером. Кроме того, оконечная часть трубы аэросмеси на 0,7-0,8 ее длины изнутри ошипована и обмурована огнеупорным и износостойким материалом.
Выполнение внутренней трубы аэросмеси в виде муфеля со встроенным в его торце плазмотроном дает возможность производить эффективную термохимическую подготовку пылеугольного топлива к сжиганию до его вытекания в топочный объем, что в свою очередь позволило отказаться от использования для растопки и стабилизации горения пылеугольного факела мазута. Длина муфеля, составляющая 0,4-0,6 длины трубы аэросмеси, является оптимальной и обеспечивает необходимую степень термохимической подготовки топлива (ТХПТ). При уменьшении длины снижается эффективность ТХПТ, не возникает "муфельный " эффект. При увеличении длины муфеля ухудшаются условия смешения основного потока аэросмеси и аэросмеси, прошедшей через муфель, в результате чего не вся аэросмесь подвергается термохимической подготовке.
Обмуровка внутренней поверхности трубы аэросмеси на 0,7-0,8 ее длины огнеупорным и износостойким материалом выбрана таким образом, чтобы она перекрывала муфель на половину его длины, что достаточно для защиты трубы аэросмеси от воздействия высоких температур.
Наличие у муфеля отверстия, перекрываемого шибером, обеспечивает регулируемую подачу части аэросмеси в зону горения плазменного факела, где она нагревается и газифицируется.
Таким образом, именно благодаря наличию вышеуказанных существенных признаков при работе заявляемой вихревой горелки исключается использование мазута для растопки и подсветки пылеугольного факела, повышается эффективность топливоиспользования.
Сравнение заявляемого технического решения с прототипом позволило установить соответствие его критерию "Новизна".
При изучении других известных технических решений, признаки, отличающие заявляемое устройство от прототипа, не были выявлены. Таким образом, можно сделать вывод о соответствии предложенного технического решения критерию "Изобретательский уровень".
Предлагаемое устройство поясняется чертежом, где схематически изображен продольный разрез вихревой горелки.
Предлагаемая вихревая горелка содержит улитку 1 вторичного воздуха, улитку 2 аэросмеси и коаксиально расположенные трубу 3 вторичного воздуха, трубу 4 аэросмеси и муфель 5, длина которого составляет 0,4-0,6 длины трубы 4 аэросмеси. В торце муфеля 5 встроен плазмотрон 6. Оконечная часть трубы 4 аэросмеси на 0,7-0,8 ее длины изнутри также как и муфель 5, ошипована и обмурована огнеупорным и износостойким материалом. Муфель 5 имеет отверстие, перекрываемое шибером 7, расположенное напротив зоны горения плазменного факела и предназначенное для ввода части аэросмеси в муфель 5.
Предлагаемое устройство работает следующим образом.
Включают плазмотрон 6 и после прогрева струей плазмы муфеля 5 через улитки 1 и 2 производят подачу закрученных потоков вторичного воздуха и аэросмеси. Поток аэросмеси разделяется на две части. Одна часть через отверстие перекрываемое шибером 7, поступает в муфель 5, где при взаимодействии с плазмой происходит ее нагрев, газификация и воспламенение. При выходе из муфеля 5 аэросмесь прошедшая термохимическую подготовку смешивается внутри трубы 4 с основным потоком аэросмеси, который обтекает муфель 5 снаружи. В результате весь закрученный поток аэросмеси нагревается до температуры самовоспламенения и выше и только после этого поступает в топочное пространство, где при смешении со вторичным закрученным потомком воздуха, поступающим через трубу 3, происходит его интенсивное горение.
После определенного времени работы муфель 5 нагревается до температуры достаточной для самовоспламенения проходящей через него аэросмеси, что позволяет отключить плазмотрон 6, при этом наблюдается устойчивое горение факела. При необходимости плазмотрон может быть вновь включен.
Использование предлагаемого изобретения позволяет отказаться от применения мазута для растопки и подсветки пылеугольного факела на энергетических и водогрейных котлах с вихревыми горелками. Снижаются затраты производства, значительно улучшаются экологические показатели. Кроме того, плазменная система надежна, проста в эксплуатации, обладает малой инерционностью, легко согласуется с системой автоматизации работы котла.

Claims (1)

  1. Вихревая горелка, включающая улитку вторичного воздуха, улитку аэросмеси и коаксиально расположенные трубы вторичного воздуха, аэросмеси и внутреннюю трубу аэросмеси, отличающаяся тем, что внутренняя труба аэросмеси выполнена в виде муфеля, длина которого составляет 0,4 - 0,6 от длины трубы аэросмеси со встроенным в торце плазмотроном и имеющего напротив зоны горения плазменного факела отверстие, перекрываемое шибером, при этом оконечная часть трубы аэросмеси на 0,7 - 0,8 длины изнутри ошипована и обмурована огнеупорным и износостойким материалом.
RU2000128946A 2000-11-22 2000-11-22 Вихревая горелка RU2171429C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000128946A RU2171429C1 (ru) 2000-11-22 2000-11-22 Вихревая горелка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000128946A RU2171429C1 (ru) 2000-11-22 2000-11-22 Вихревая горелка

Publications (1)

Publication Number Publication Date
RU2171429C1 true RU2171429C1 (ru) 2001-07-27

Family

ID=20242328

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000128946A RU2171429C1 (ru) 2000-11-22 2000-11-22 Вихревая горелка

Country Status (1)

Country Link
RU (1) RU2171429C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033807A1 (en) * 2008-03-14 2011-02-10 Yupeng Wang Method for decreasing nitrogen oxides of a pulverized coal boiler using burners of internal combustion type
RU2543648C1 (ru) * 2014-01-10 2015-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Восточно-Сибирский государственный университет технологий и управления" Плазменная пылеугольная горелка

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Котельные и турбинные установки энергоблоков мощностью 500 и 800 Мвт. Под ред. ДОРОЩУКА В.Е. и РУБАНА В.Б. - М.: Энергия, 1979, с.16-18. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033807A1 (en) * 2008-03-14 2011-02-10 Yupeng Wang Method for decreasing nitrogen oxides of a pulverized coal boiler using burners of internal combustion type
US10364981B2 (en) * 2008-03-14 2019-07-30 Yantai Longyuan Power Technology Co., Ltd. Method for decreasing nitrogen oxides of a pulverized coal boiler using burners of internal combustion type
RU2543648C1 (ru) * 2014-01-10 2015-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Восточно-Сибирский государственный университет технологий и управления" Плазменная пылеугольная горелка

Similar Documents

Publication Publication Date Title
RU2442929C1 (ru) Способ снижения оксидов азота в котле, работающем на распыленном угле, в котором используются горелки типа внутреннего сгорания
FI85910B (fi) Foerfarande och anordning foer att starta pannan i ett kraftverk som utnyttjar fast braensle samt foer att saekerstaella foerbraenningen av braenslet.
US3804578A (en) Cyclonic combustion burner
RU2683052C1 (ru) Вихревая растопочная пылеугольная горелка
RU2466331C1 (ru) Растопочная угольная горелка
RU2294486C1 (ru) Пылеугольная горелка
RU2171429C1 (ru) Вихревая горелка
CN110360548B (zh) 基于等离子体激励分级强化燃烧的低NOx燃烧器
RU136131U1 (ru) Схема растопки пылеугольного котла посредством водоугольного топлива
RU65177U1 (ru) Горелка
RU2059926C1 (ru) Способ сжигания низкосортных углей и плазменная пылеугольная горелка для его осуществления
RU2731081C1 (ru) Способ факельного сжигания топливовоздушной смеси и устройство для реализации способа с использованием электроионизационного воспламенителя
CN102032563B (zh) 一种煤粉燃烧器及具有该煤粉燃烧器的锅炉
RU2766193C1 (ru) Способ ступенчатого сжигания пылеугольного топлива и устройство для реализации способа
RU2180077C1 (ru) Способ растопки котлоагрегата с вихревой горелкой и установка для его осуществления
RU2543648C1 (ru) Плазменная пылеугольная горелка
KR100460195B1 (ko) 대기오염물질 저감용 버너시스템
RU2779675C1 (ru) Способ факельного сжигания топливовоздушной смеси и устройство для реализации способа
RU2731139C1 (ru) Способ факельного сжигания топливовоздушной угольной смеси и устройство для реализации способа
RU2731087C1 (ru) Способ факельного сжигания топливовоздушной смеси и устройство для реализации способа
RU2778593C1 (ru) Способ воспламенения и факельного сжигания топливовоздушной смеси и устройство для реализации способа
RU2813936C1 (ru) Коаксиальная ступенчатая горелка факельного сжигания топливовоздушной смеси
RU2779343C1 (ru) Устройство электрического воспламенения и факельного сжигания топливовоздушной смеси
RU2742854C1 (ru) Способ экологически чистой растопки котлов на генераторном газе с применением муфельного предтопка
RU211642U1 (ru) Горелочное устройство для сжигания низкокалорийного газа