RU2164549C2 - Способ испарения и конденсации токопроводящих материалов - Google Patents
Способ испарения и конденсации токопроводящих материалов Download PDFInfo
- Publication number
- RU2164549C2 RU2164549C2 RU99111127/02A RU99111127A RU2164549C2 RU 2164549 C2 RU2164549 C2 RU 2164549C2 RU 99111127/02 A RU99111127/02 A RU 99111127/02A RU 99111127 A RU99111127 A RU 99111127A RU 2164549 C2 RU2164549 C2 RU 2164549C2
- Authority
- RU
- Russia
- Prior art keywords
- conductive material
- evaporation
- substrate
- condensation
- temperature
- Prior art date
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Изобретение может быть использовано в авиационном и энергетическом газотурбиностроении. Способ включает вакуумно-дуговое испарение токопроводящего материала при наложении на поверхность испарения магнитного поля и при радиационном охлаждении испаряемого материала при температуре его нагрева на уровне от 0,3 температуры его плавления до температуры его разупрочнения путем регулирования температуры токопроводящего материала изменением тока вакуумной дуги и площади поверхности излучения испаряемого материала, генерацию плазмы токопроводящего материала вакуумной дугой и конденсацию этой плазмы с образованием покрытия на подложке. Изобретение позволяет повысить точность переноса состава многокомпонентных материалов при их конденсации при одновременном увеличении производительности. 1 табл.
Description
Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом газотурбиностроении, а также машиностроении для испарения многокомпонентных токопроводящих материалов с целью нанесения защитных покрытий преимущественно на лопатки турбин.
В промышленности широко известен способ испарения поверхности металлических материалов вакуумной дугой, горящей в парах материала с образованием плазмы этого материала, при наложении на поверхность магнитного поля, описанный, например, в статье [1]. Способ в основном используется для испарения токопроводящих материалов и нанесения упрочняющих покрытий на режущий инструмент и детали машин из плазмы испаряемого материала.
Недостатками известного способа является низкая его производительность, что ограничивает возможность получения толстых (свыше 40-50 мкм) покрытий и низкая точность переноса состава многокомпонентных сплавов при конденсации плазмы испаряемого материала из-за больших начальных энергий частиц в плазме вакуумной дуги (~ 100 эВ), приводящих к выборочному ионному травлению (катодному распылению) осаждающегося конденсата.
Наиболее близким по технической сущности к изобретению является способ, описанный в заявке [2], включающий размещение в зону испарения токопроводящего материала и подложки, создание вакуума в зоне испарения, подачу отрицательного потенциала на токопроводящий материал и отдельно на подложку, наложение на поверхность испарения токопроводящего материала, обращенную к подложке магнитного поля, возбуждение на поверхности испарения токопроводящего материала вакуумной дуги, горящей в парах этого материала с образованием плазмы токопроводящего материала при сохранении его в твердом состоянии, очистку поверхности подложки ионной бомбардировкой и конденсацию этой плазмы с образованием покрытия на подложке.
Недостатком известного способа является несоответствие состава покрытия составу испаряемого токопроводящего материала, то есть низкая точность переноса состава многокомпонентных сплавов при конденсации плазмы испаряемого материала из-за больших начальных энергий частиц в плазме вакуумной дуги (~ 10 эВ) и относительно низкая его производительность.
Технической задачей изобретения является повышение качества покрытия за счет увеличения точности переноса состава многокомпонентных токопроводящих материалов при их конденсации при одновременном увеличении производительности.
Предложен способ испарения и конденсации токопроводящих материалов, включающий размещение в зоне испарения токопроводящего материала и подложки, создание вакуума в зоне испарения, подачу отрицательного потенциала на токопроводящий материал и отдельно на подложку, наложение на поверхность испарения токопроводящего материала, обращенную к подложке, тангенциально магнитного поля, возбуждение на поверхности испарения токопроводящего материала вакуумной дуги, горящей в парах этого материала с образованием плазмы токопроводящего материала при сохранении его в твердом состоянии, очистку поверхности подложки ионной бомбардировкой и конденсацию этой плазмы с образованием покрытия на подложке, причем процесс испарения ведут при радиационном охлаждении токопроводящего материала и температуре нагрева токопроводящего материала на уровне от 0,3 температуры его плавления до температуры его разупрочнения, приводящей к потере им геометрической формы, а температуру нагрева токопроводящего материала регулируют изменением тока вакуумной дуги и площади поверхности излучения токопроводящего материала.
Испарение при температуре нагрева поверхности испарения токопроводящего материала на уровне от 0,3 температуры его плавления до температуры его разупрочнения, приводит к увеличению доли капельной фазы в продуктах испарения катодного пятна вакуумной дуги от 1 до 60% и более и в целом к росту скорости испарения (эрозии). При этом заметный рост капельной фазы и скорости испарения начинается при средней температуре нагрева токопроводящего материала, равной ~ 0,3 температуры его плавления. В свою очередь рост содержания капельной фазы в продуктах испарения материала покрытия приводит к формированию конденсата, содержащего 50-60% и более капельной фазы. Элементный состав конденсата, имеющего большое содержание капельной фазы ближе к составу испаряемого материала покрытия. Конденсат представляет собой матрицу, сформированную за счет конденсации ионов и нейтралов из плазмы испаряемого токопроводящего материала, содержащую капельную фазу. Причем элементный состав матрицы значительно отличается от состава испаряемого материала покрытия из-за больших энергий ионов плазмы вакуумной дуги, приводящих к выборочному ионному травлению конденсата.
Таким образом ведение процесса испарения при радиационном охлаждении токопроводящего материала и температуре нагрева токопроводящего материала на уровне от 0,3 температуры его плавления до температуры его разупрочнения позволяет повысить точность переноса состава многокомпонентных сплавов при их конденсации, а также обеспечивает рост скорости испарения. При этом ток вакуумной дуги и площадь поверхности излучения токопроводящего материала выбирают таким образом, чтобы обеспечить требуемую температуру нагрева токопроводящего материала.
Сущность изобретения поясняется на примерах.
Пример 1. Для испарения и конденсации токопроводящего материала на подложке, например на лопатке ротора турбины, проводят предварительную ее подготовку (очистку), после этого вводят в зону испарения токопроводящий материал (сплав на основе никеля следующего состава, мас.%: хром 20,2; алюминий 13,3; иттрий 0,36; никель остальное с температурой плавления tпл. ~ 1440oC) и подложку, создают в зоне испарения вакуум при давлении P≅10-3 Па, подают отрицательный потенциал на токопроводящий материал φ1 = -(30-100) В и отдельно на подложку φ2 = -(5-500) В, накладывают на поверхность испарения токопроводящего материала, обращенную к подложке, тангенциальное магнитное поле B = (0,015-0,025) Тл и включают воду для принудительного охлаждения токопроводящего материала. Затем путем разрыва токового контакта на токопроводящем материале возбуждают вакуумную дугу, горящую в парах токопроводящего материала с образованием плазмы токопроводящего материала и начинают процесс ионной очистки изделия при φ2 = -(300-500) В за счет бомбардировки поверхности подложки ионами токопроводящего материала и осуществляют ионный нагрев и термоактивацию поверхности подложки. Затем через 5-10 мин отрицательный потенциал на подложке повышают до φ2 = -(5-50) В и проводит процесс конденсации покрытия и испарения токопроводящего материала покрытия при токе вакуумной дуги 750 А. При принудительном охлаждении токопроводящего материала температура его поверхности испарения не превышает 100-120oC. При этом на подложке за 3 ч получали покрытие толщиной ~ 50 мкм со следующим элементным составом, мас. %: хром 23,2; алюминий 7,9; иттрий < 0,1. Таким образом испарения при принудительном охлаждении токопроводящего материала (прототип) приводит к росту в конденсате содержания Cr на ~ 3% и снижению содержания Al и Y на ~ 5,4% и более чем на 0,26% при скорости осаждения ~ 17 мкм/ч. При этом конденсат содержит не более 4-6% капельной фазы.
Пример 2. Испарение токопроводящего материала и конденсацию его на подложке ведут аналогично примеру 1. Разница в том, что охлаждение токопроводящего материала проводят радиационным способом. Нагрев испаряемого токопроводящего материала происходит за счет выделения мощности P на нем от горения вакуумной дуги (P = IU*, где I ток вакуумной дуги, U* - вольт-эквивалент тепловых потерь на токопроводящем материале - катоде вакуумной дуги). При радиационном охлаждении токопроводящего материала тепловая мощность P, выделяемая на нем, сбрасывается при температуре, величина которой определяется законом Стефана - Больцмана и зависит от площади поверхности излучения токопроводящего материала и степени его черноты. В рассматриваемом примере при токе вакуумной дуги 750 А (P ≈ 8000 Вт) и площади излучения катода (токопроводящего материала) F= 0,05 м2, последний нагревается до ~ 1100oC, что соответствует температуре разупрочнения этого материала. Это приводит к росту доли капельной фазы в продуктах испарения катодного пятна вакуумной дуги до ~ 70-75%. В результате на поверхности лопатки за 3 ч получали покрытие толщиной 65 мкм со следующим элементным составом, мас.%: хром 21,8; алюминий 11,6: иттрий 0,28. Таким образом испарение при температуре токопроводящего материала 1100oC приводит к росту в конденсате содержания Cr на ~ 1,6% и снижению содержания Al и Y на ~ 1,7% и на 0,08%, при скорости осаждения ~ 21 мкм/ч. Видно, что переход к радиационному охлаждению и испарению токопроводящего материала при 1100oC, приводящий к росту капельной фазы в конденсате с 4-6 до 70-75%, обеспечивает значительно более точное воспроизведение элементного состава токопроводящего материала в конденсате, чем в случае прототипа, и одновременное увеличение скорости осаждения с 17 до 22 мкм/ч, т.е. на ~ 25%.
Пример 3. Испарение токопроводящего материала и конденсацию его на подложке ведут аналогично примеру 2. Разница в том, что ток вакуумной дуги составляет 100 А и площадь поверхности излучения токопроводящего материала F = 0,1 м2. В этом случае температура нагрева токопроводящего материала достигает 425oC, что соответствует ~ 0,3 температуры его плавления и на поверхности лопатки получали покрытие со следующим элементным составом мас.%: хром 22,8; алюминий 9,2; иттрий 0,12 при содержании капельной фазы в конденсате ~ 15%. Видно, что по сравнению с прототипом увеличение капельной фазы в конденсате с 4-6% до ~ 14-15% приводит к заметному (≥10%) изменению элементного конденсата и приближению его к составу исходного испаряемого токопроводящего материала.
Пример 4. Испарение токопроводящего материала и конденсацию его на подложке ведут аналогично примеру 2. Разница в том, что площадь поверхности испарения токопроводящего материала F = 0,1 м2 и процесс испарения ведут при токе вакуумной дуги 500 А. В этом случае температура нагрева токопроводящего материала не превышает 770oC, что соответствует ~ 0,53 температуры его плавления, и на поверхности лопатки получали покрытие со следующим элементным составом, мас.%: хром 22,3; алюминий 10,3; иттрий ~ 0,18 при содержании капельной фазы в конденсате ~ 30-32%.
Как видно из примера, повышение температуры токопроводящего материала при испарении до 770oC приводит к значительному сближению элементного состава конденсата к составу токопроводящего материала. Это связано с увеличением доли капельной фазы в конденсате до 30-32%, состоящем в данном примере в основном из матрицы, элементный состав которой значительно отличается от состава испаряемого токопроводящего материала из-за больших энергий ионов плазмы вакуумной дуги, приводящих к выборочному ионному травлению конденсата.
Для наглядности полученные в примерах данные сведены в таблицу
Из таблицы видно, что увеличение температуры токопроводящего материала при его испарении приводит к росту содержания в нем капельной фазы, что, в свою очередь, приводит к повышению точности переноса состава многокомпонентных токопроводящих материалов при их конденсации. При этом с ростом температуры токопроводящего материала, при одинаковых токах вакуумной дуги, наблюдается увеличение до ~ 25% скорости роста конденсата, т.е. увеличение производительности процесса чем и достигается цель изобретения. Последнее связано также с наличием в продуктах испарения катодного пятна вакуумной дуги значительной доли капельной фазы.
Из таблицы видно, что увеличение температуры токопроводящего материала при его испарении приводит к росту содержания в нем капельной фазы, что, в свою очередь, приводит к повышению точности переноса состава многокомпонентных токопроводящих материалов при их конденсации. При этом с ростом температуры токопроводящего материала, при одинаковых токах вакуумной дуги, наблюдается увеличение до ~ 25% скорости роста конденсата, т.е. увеличение производительности процесса чем и достигается цель изобретения. Последнее связано также с наличием в продуктах испарения катодного пятна вакуумной дуги значительной доли капельной фазы.
Применение изобретения позволяет значительно повысить точность переноса состава многокомпонентных токопроводящих материалов при их конденсации, а также скорость испарения и конденсации токопроводящих материалов. Наличие значительного количества капельной фазы в конденсате (покрытии) не ухудшает качества защитных жаростойких покрытий на лопатках турбин, так как после обязательного вакуумного отжига лопаток с покрытием, проводимого при 1000-1050oC в течение 4-3 ч с целью снятия внутренних напряжений в покрытии и его термостабилизации, капельная фаза растворяется в матрице за счет диффузионных процессов с образованием субмелкозернистой пластичной структуры покрытия на основе фазы NiAl, которая необходима для обеспечения высокой работоспособности лопаток турбин. Отметим, что фаза NiAl образуется в покрытии при содержании алюминия в нем свыше 10%. Применение изобретения в промышленности для покрытия лопаток турбин даст значительный экономический эффект. По расчетам авторов эффект составит 25-40% стоимости лопаток турбин.
Литература
1. Саблев Л. П. Долотов Ю.И и др. Электродуговой испаритель металлов с магнитным удержанием катодного пятна - ПТЭ (ж. Приборы и техника эксперимента), 1976, N 4, с. 247-249.
1. Саблев Л. П. Долотов Ю.И и др. Электродуговой испаритель металлов с магнитным удержанием катодного пятна - ПТЭ (ж. Приборы и техника эксперимента), 1976, N 4, с. 247-249.
2. Заявка N 2568896 (Франция), МКИ C 23 C 14/34 (публикация 86. 02. 14, N. 7).
Claims (1)
- Способ испарения и конденсации токопроводящих материалов, включающий размещение в зоне испарения токопроводящего материала и подложки, создание вакуума в зоне испарения, подачу отрицательного потенциала на токопроводящий материал и отдельно на подложку, наложение на поверхность испарения токопроводящего материала, обращенную к подложке, магнитного поля, возбуждение на поверхности испарения токопроводящего материала вакуумной дуги, горящей в парах этого материала с образованием плазмы токопроводящего материала при сохранении его в твердом состоянии, очистку поверхности подложки ионной бомбардировкой и конденсацию этой плазмы с образованием покрытия на подложке, отличающийся тем, что процесс испарения ведут при радиационном охлаждении токопроводящего материала и температуре нагрева токопроводящего материала на уровне от 0,3 температуры его плавления до температуры его разупрочнения, приводящей к потере им геометрической формы, причем температуру нагрева токопроводящего материала регулируют изменением тока вакуумной дуги и площади поверхности излучения токопроводящего материала.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99111127/02A RU2164549C2 (ru) | 1999-05-27 | 1999-05-27 | Способ испарения и конденсации токопроводящих материалов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99111127/02A RU2164549C2 (ru) | 1999-05-27 | 1999-05-27 | Способ испарения и конденсации токопроводящих материалов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU99111127A RU99111127A (ru) | 2001-02-27 |
RU2164549C2 true RU2164549C2 (ru) | 2001-03-27 |
Family
ID=20220414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99111127/02A RU2164549C2 (ru) | 1999-05-27 | 1999-05-27 | Способ испарения и конденсации токопроводящих материалов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2164549C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2451770C2 (ru) * | 2010-05-21 | 2012-05-27 | Открытое акционерное общество "Научно-производственное объединение Энергомаш имени академика В.П. Глушко" | Способ вакуумного ионно-плазменного нанесения покрытий |
-
1999
- 1999-05-27 RU RU99111127/02A patent/RU2164549C2/ru active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2451770C2 (ru) * | 2010-05-21 | 2012-05-27 | Открытое акционерное общество "Научно-производственное объединение Энергомаш имени академика В.П. Глушко" | Способ вакуумного ионно-плазменного нанесения покрытий |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0916635B1 (en) | Ceramic coatings containing layered porosity | |
EP1111085B1 (en) | Method for producing ceramic coatings | |
US5834070A (en) | Method of producing protective coatings with chemical composition and structure gradient across the thickness | |
US20120308733A1 (en) | Method of manufacturing a thermal barrier coating structure | |
KR101052036B1 (ko) | 고온 내 부식성 향상을 위한 세라믹 코팅 및 이온빔 믹싱장치 및 이를 이용한 박막의 계면을 개질하는 방법 | |
WO2004011688A2 (en) | Method and apparatus for dispersion strengthened bond coats for thermal barrier coatings | |
US8343591B2 (en) | Method for use with a coating process | |
US5556713A (en) | Diffusion barrier for protective coatings | |
US3799862A (en) | Apparatus for sputtering | |
US6645572B2 (en) | Process for producing a ceramic evaporation boat having an improved initial wetting performance | |
TW202026442A (zh) | 一種濺射靶材的製備方法 | |
RU2164549C2 (ru) | Способ испарения и конденсации токопроводящих материалов | |
UA78487C2 (ru) | Способ нанесения керамического покрытия и устройство для его осуществления | |
CN115029669B (zh) | 一种采用液态金属高功率脉冲磁控溅射提高沉积效率的方法 | |
JPH01136962A (ja) | 被覆方法 | |
RU2165474C2 (ru) | Способ обработки поверхности металлических изделий | |
RU2415199C1 (ru) | Способ нанесения покрытия | |
CA1334155C (en) | Process for restoring locally damaged parts, particularly anticathodes | |
JP2000093788A (ja) | 改良された初期濡れ性能を有するセラミック蒸発ボ―ト及びその製造方法 | |
RU2192501C2 (ru) | Способ вакуумного ионно-плазменного нанесения покрытий на подложку | |
RU2676719C1 (ru) | Способ низкотемпературного нанесения нанокристаллического покрытия из альфа-оксида алюминия | |
RU2164550C2 (ru) | Способ обработки поверхности изделия | |
RU2033475C1 (ru) | Способ вакуумного конденсационного нанесения покрытий | |
RU2114209C1 (ru) | Способ нанесения покрытий в вакууме | |
EP3249072B1 (en) | Method for increasing the electrical conductivity of a composite part surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
QB4A | Licence on use of patent |
Effective date: 20051219 |