RU2157846C1 - СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННОГО ЖИВОТНОГО, ЭКСПРЕССИРУЮЩЕГО В МОЛОЧНОЙ ЖЕЛЕЗЕ ГРАНУЛОЦИТАРНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР ЧЕЛОВЕКА И ГИБРИДНЫЙ ГЕН h-GM-1 ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА - Google Patents

СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННОГО ЖИВОТНОГО, ЭКСПРЕССИРУЮЩЕГО В МОЛОЧНОЙ ЖЕЛЕЗЕ ГРАНУЛОЦИТАРНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР ЧЕЛОВЕКА И ГИБРИДНЫЙ ГЕН h-GM-1 ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА Download PDF

Info

Publication number
RU2157846C1
RU2157846C1 RU99124719A RU99124719A RU2157846C1 RU 2157846 C1 RU2157846 C1 RU 2157846C1 RU 99124719 A RU99124719 A RU 99124719A RU 99124719 A RU99124719 A RU 99124719A RU 2157846 C1 RU2157846 C1 RU 2157846C1
Authority
RU
Russia
Prior art keywords
granulocyte colony
stimulating factor
gene
human granulocyte
mammary gland
Prior art date
Application number
RU99124719A
Other languages
English (en)
Inventor
М.И. Прокофьев
С.И. Городецкий
В.Я. Черных
М.Н. Мезина
И.С. Лагутина
В.С. Косоруков
Н.И. Шепель
Original Assignee
Прокофьев Михаил Иванович
Городецкий Станислав Иванович
Черных Венадий Яковлевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Прокофьев Михаил Иванович, Городецкий Станислав Иванович, Черных Венадий Яковлевич filed Critical Прокофьев Михаил Иванович
Priority to RU99124719A priority Critical patent/RU2157846C1/ru
Application granted granted Critical
Publication of RU2157846C1 publication Critical patent/RU2157846C1/ru

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Человеческий гранулоцитарный колониестимулирующий фактор (Г-КСФ) получают путем экспрессии рекомбинантных белков в молочной железе трансгенных животных. Для получения белка Г-КСФ человека используют молоко трансгенных животных. Созданы оригинальные генные конструкции Г-КСФ человека на основе имеющейся геномной копии ДНК и регуляторных участков генов белков молока, обеспечивающие эффективную секрецию Г-КСФ с молоком трансгенных животных. Изобретение может быть использовано в иммунологии. 2 c.п. ф-лы, 3 ил.

Description

Изобретение относится к биотехнологии.
Известен метод получения гранулоцитарного колониестимулирующего фактора (Г-КСФ) из таких источников, как кровь, где он в норме присутствует. Этот метод трудоемок и дорог в связи с низкой концентрацией биологически активных веществ и ограниченным количеством исходного сырья (Werner RG, Berthold W; Purification of proteins produced by biotechnological process. Arzneimittelforschung 1988 Mar; 38(3):422-8). Другой опасностью этого метода является возможность присутствия в конечной продукции инфекционных для человека агентов.
Другим источником полезных биологически активных веществ являются получение их с использованием рекомбинантных организмов в биоферментерах (Am J Hosp Pharm 1989 Sep; 46(9): 1834-44). Получение белков таким методом сопряжено с определенными проблемами. Система синтеза прокариот не может правильно провести посттрансляционный процессинг белков - фолдинг, модификации белков, такие как гликозилирование, силиконирование и т.д. Показано, что для функциональной активности Г-КСФ важно гликозилирование. Гликозилированная форма Г-КСФ в 2 раза превосходит по способности стимулировать рост колоний гранулоцитов и в 20 раз быстрее приводит к положительному эффекту по сравнению с существующим коммерческим негликозилированным рекомбинантным препаратом Filgrastim (Nissen с. Glycosilation of recombinant human granulocyte colony stimulating factor for stability and potency. Eur. J. Cancer, 1994, 30A, Suppl 3: S12-4). Используя некоторые процессы, можно для отдельных веществ увеличить выход биологически активного белка, например, инсулин, проурокиназа. Однако для большинства веществ этот способ неприменим. Лучшими результатами отличается наработка белка в культуре клеток млекопитающих. Все необходимые модификации нормально происходят, но концентрация искомого белка низка, а сам процесс культивирования дорогостоящ и требует высокого технологического обеспечения.
Известен метод получения биологически активных веществ с использованием трансгенных млекопитающих животных, таких как кролики, овцы, крупный рогатый скот, с секрецией этих веществ в кровяное русло. Этим достигается практически полная идентичность получаемых веществ нативным. Ограничением метода является значительная стоимость исходного сырья и невысокая концентрация в нем продуцируемых веществ, а также возможность неблагоприятного влияния получаемого белка на организм трансгенного животного (И.Л. Гольдман с соавт. Трансгенные сельскохозяйственные животные: экспрессия чужеродных генов. Биотехнология, 1996, N 9, с. 3-23).
Известен метод получения трансгенных животных, экспрессирующих альфа-1-антитрипсин, фактор IX (Э.Д. Кларк, Р. Лейз, ППЛ Терапьютикс Лтд., "Способ получения трансгенной овцы", патент РФ Ru #2085587 C1, 1986) и гамма-интерферон человека (Лагутин О. В. с сотр, "Гибридный ген BLG-HIFN-G для экспрессии гамма-интерферона человека в молочной железе трансгенного животного", патент РФ N 2084525 C1, 1997) в молочной железе лактирующей самки.
Авторами данного изобретения предложен способ получения трансгенных животных, предусматривающий конструирование генетической конструкции на основе плазмидной ДНК, кодирующей слитный белок hG-CSF под контролем промоторов генов белков молока, обеспечивающих секрецию рекомбинантного белка в молочной железе лактирующих самок, микроинъекцию фрагмента в пронуклеус оплодотворенной яйцеклетки и пересадки яйцеклетки в половые пути псевдобеременной самки. Этот метод обеспечивает высокую идентичность получаемого белка нативному, а также высокую концентрацию вещества в исходном сырье.
Человеческий гранулоцитарный колониестимулирующий фактор (Г-КСФ) вызывает стимуляцию образования нейтрофилов и широко применяется в комбинации с химиотерапией при лечении онкологических больных, больных нейтрофилией и анемией.
В настоящее время за рубежом рекомбинантный Г-КСФ получают из бактериальных клеток в виде препарата Нейпоген и Filgrastim. Использование прокариотов для получения рекомбинантных белков, как известно, не обеспечивает ряд посттрансляционных модификаций, в частности, гликозилирование, фолдинг белка и отщепление лишнего метионина с N-конца белка, что приводит к снижению биологической активности получаемого препарата. К тому же его стоимость очень высокая. Рекомбинантные белки, получаемые из трансгенных эукариотических организмов, например, путем направленной экспрессии в молоко трансгенных животных, в частности кроликов, лишены этих недостатков. Использование трансгенных животных позволяет с минимальными затратами получать достаточное количество препарата в максимально сжатые сроки. Концентрация искомого белка в молоке может достигать 5-15 г/л, что составляет до 50% общего белка молока. С этой целью авторами патента созданы оригинальные генные конструкции Г-КСФ человека на основе имеющейся геномной копии ДНК, обеспечивающие эффективную секрецию Г-КСФ с молоком трансгенных животных. Получены трансгенные кролики на основе методов, разработанных в Научно-производственном биотехнологическом центре по животноводству РАСХН.
Созданный авторами гибридный ген для экспрессии Г-КСФ в молоко трансгенных животных характеризуются следующими признаками:
- обеспечивают экспрессию человеческого белка Г-КСФ в молочной железе трансгенных животных;
- состоят из:
- фрагмента Kpn 1 и Cla 1 размером 0,9 тыс. п.н. 5'-фланкирующей области гена бета-казеина быка, содержащей промотор гена BLG (бета-лактоглобулин быка);
- фрагмента размером 1,5 тыс.п.н., содержащего геномную копию гена Г-КСФ человека;
- фрагмента размером 0,35 тыс.п.н., содержащий 3'-фланкирующую область гена бета-казеина быка;
- участка полилинкера, содержащего уникальные сайты узнавания эндонуклеазами рестрикции EcoR I, Hind III, Sal I, BamH I, Xba I, Not 1. Схема вектора гибридного гена hGM-l приведена на фиг .1. Последовательность гибридного гена приведена на фиг. 3.
Создание гибридного гена Г-КСФ человека и получение трансгенных животных иллюстрируется следующими примерами:
ПРИМЕР 1.
Создание гибридного гена h-GM-1.
Схема конструкции приведена на фиг. 1.
Из вектора pbBLG-3, содержащего геномную копию гена бета-лактоглобулина быка с фланкирующими его 5' и 3' последовательностями, по уникальным сайтам рестриктаз Kpn 1 и Cla 1 выделяют фрагмент 5'-фланкирующей области, содержащей промотор гена BLG и его сигнальный пептид. Из этого же вектора методом полимеразной цепной реакции со специфическими праймерами был выделен 3'-фланкирующий участок гена BLG.
5'-фрагмент был переклонирован в сайт рестриктазы Cla 1 в вектор phGCSF2, содержащий геномную копию гена Г-КСФ человека, перед ATG сайтом гена Г-КСФ. Правильность клонирования и сохранность рамки считывания проверяли методом секвенирования фрагмента конструкции, амплифицированного по специфическим праймерам CCT GCA GAG CTC AGA AGC GTG и AGG CGG CTC TCC CAT CCT GGG. Полученную конструкцию назвали p5LG-GCSF.
3'-фрагмент был переклонирован в сайт рестриктазы Xho 1 в вектор p5LG-GCSF, после стоп кодона кодирующей части гена Г-КСФ. Полученный вектор был проверен на правильность кодирующей последовательности методом секвенирования ключевых участков гибридного гена. Полученный вектор был назван phGM-1.
При подготовке фрагмента к микроинъекции его вырезали из 20 мкг векторной ДНК phGM-1 эндонуклеазами Крп 1 и Not 1. Затем выделяли фрагмент из смеси методом фракционирования в агарозном геле и очищали фенол-хлороформным методом. Окончательную очистку проводили на наборе Genomic DNA Purification Kit (Promega). Окончательно растворяли фрагмент в буфере 0,1хТЕ (1 мМ Tris-CI, 0,1 мМ EDTA, pH 8,0).
ПРИМЕР 2.
Получение трансгенных кроликов
В качестве доноров зигот используют половозрелых самок кроликов породы шиншилла в возрасте 5-7 месяцев. Для вызывания суперовуляции у доноров применяют гонадотропин сыворотки жеребых кобыл (Сергон, Чехия). Каждому донору инъецируют 100 ME сергона, через 48-72 часа самку спаривают с самцом и индуцируют овуляцию внутривенным введением 200 ME хорионического гонадотропина (Московский эндокринный завод). Для извлечения зигот у самок-доноров используют оперативное промывание яйцеводов in vivo (Adams C.E. Egg transfer in the rabbit. Mammalian egg transfer. Веса Ration: CRC Press, 1982. P. 29-48). В качестве анестетиков используют кетамин 5%, ромпун 2%. Наркотизированное животное фиксируют на операционном столе и выбривают шерсть в области брюха. Репродуктивный тракт обнажают через разрез по белой линии живота. В воронку яйцевода вводят полиэтиленовый катетер, в стенке рога матки металлической канюлей со стилетом делают отверстие, затем в просвет матки вводят теплую манипуляционную среду и направляют ее ток через соединение матки с фаллопиевыми трубами в яйцевод.
Поиск оплодотворенных яйцеклеток (зигот) осуществляли на бинокулярной лупе Nikon при увеличении 40х.
Зиготы с визуализированными пронуклеусами инъецировали 1-2 пл раствора ДНК в один пронуклеус (Brem G. et al. Production of transgenic, mice, rabbits and pigs by microinjection into pronuclei// Zuchthyg, 1985, v. 20, P. 251-252; Hammer R.E. et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 1985, V. 315, P. 680-683). Микроинъекции проводят в специальной камере, заполненной культуральной средой (PBS с добавлением 5% фетальной сыворотки). Камера состоит из двух параллельно расположенных силиконизированных покровных стекол, между которыми находится капля манипуляционной среды в виде столбика. Все остальное пространство заполняют минеральным маслом (Sigma, d=0,84 г/мл). Предназначенные для инъецирования зиготы помещают в столбик манипуляционной среды, удерживают на стеклянной пипетке и оценивают пронуклеусы с использованием инвертированного микроскопа Axiovert 35 при увеличении 400х. Раствор ДНК инъецируют с помощью микроинъекционной иглы, вытянутой из капиллярной трубочки с микрофиламентом (тонкостенное тугоплавкое стекло, диаметр 1 мм) на вертикальном пулере (НПО "Биоприбор" РАН).
Микроинъекционные иглы заполняли раствором ДНК, используя действие капиллярных сил, затем устанавливали в манипуляторе. Положение обоих микроинструментов (фиксирующей пипетки и микроинъекционной иглы) регулируют с помощью микроманипуляторов (НПО "Биоприбор" РАН). Микроинъекционную иглу с инъецируемым растворам ДНК соединяют силиконовой трубочкой с микроинъектором. Об успехе микроинъекции судили по увеличению объема пронуклеуса. Инъецированные зиготы инкубируют 30-60 мин, чтобы удалить поврежденные. К дегенерированным относили зиготы с фрагментированной цитоплазмой и с поврежденной цитоплазматической мембраной. Зиготы, имеющие нормальный внешний вид, пересаживают реципиентным крольчихам, у которых половой цикл синхронизирован с циклом доноров. Самок-реципиентов спаривали с вазоэктомированным самцом и вводили хорионический гонадотропин в то же время, когда спаривали донорную самку с полноценным самцом. Возможна подготовка реципиента непосредственно перед трансплантацией эмбрионов. Эмбрионы трансплантировали в яйцеводы самок-реципиентов хирургическим способом. Для пересадки зигот используют стерильные катетеры для пересадки эмбрионов (Биомедикол, Россия). Реципиенту через воронку яйцевода вводили катетер, содержащий манипуляционную среду с зиготами. Каждому реципиенту пересаживали 15-20 зигот, распределяя их поровну между яйцеводами.
После трансплантации эмбрионов, каждая крольчиха-реципиент находится в отдельной клетке на весь срок беременности. В течение 7-10 дней проводится санация операционного шва. На 14-16 дни после трансплантации эмбрионов методом пальпации устанавливают наличие плодов у реципиентов. Беременных реципиентов переводят на рацион кормления для сухральных и лактирующих самок. Окрол ожидают на 29-30 дни после трансплантации эмбрионов. В случае задержки окролов на следующий день после ожидаемой даты с целью стимуляции родов внутривенно инъецируют 3 ME окситоцина. Вели четкий учет числа родившихся крольчат. Через 5-7 дней всех крольчат метили и одновременно брали образцы ткани уха для анализа ДНК на интеграцию трансгена.
Наличие интеграции определяли методом полимеразной цепной реакции (ПЦР) со специфическими праймерами GCA CAG CCT GTA GGT GGC ACA и CCT GCA GAG CTC AGA AGC GTG. Положительные по ПЦР пробы подтверждали методом блот-гибридизации (фиг. 2).
В результате проведенных исследований было получено 2 живых трансгенных кролика (N 7 и N 25), а также 3 мертворожденных.
Список литературы.
И.Л. Гольдман с соавт. Трансгенные сельскохозяйственные животные: экспрессия чужеродных генов. Биотехнология, 1996, N 9, с. 3-23
Hammer R. E. et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 1985, V. 315, P.680-683.
Э.Д. Кларк, P. Лейз, ППЛ Терапьютикс Лтд., "Способ получения трансгенной овцы", патент России Ru #2085587 C1, 1986.
Nissen с. Glycosilation of recombinant human granulocyte colony stimulating factor for stability and potency. Eur. J. Cancer, 1994, 30A, Suppl 3: S12-4.
Adams C.E. Egg transfer in the rabbit. Mammalian egg transfer. Веса Ration: CRC Press, 1982. P.29-48.
Werner RG, Berthold W; Purification of proteins produced by biotechnological process. Arzneimittelforschung 1988 Mar; 38 (3):422-8.
Am J Hosp Pharm 1989 Sep; 46(9):1834-44.
Brem G. et al. Production of transgenic mice, rabbits and pigs by microinjection into pronuclei// Zuchthyg, 1985, v.20, P. 251-252.

Claims (2)

1. Гибридный ген h-GM-1 для экспрессии гранулоцитарного колониестимулирующего фактора человека (Г-КСФ), состоящий из фрагмента размером 0,9 тыс. п.н. 5'-фланкирующей области гена бетаказеина быка, содержащий промотор гена бета-лактоглобулина быка (BLG); фрагмента размером 1,5 тыс. п.н., содержащего геномную копию гена гранулоцитарного колониестимулирующего фактора (Г-КСФ) человека; фрагмента размером 0,35 тыс. п.н., содержащий 3'-фланкирующую область гена бета-казеина быка; и приведенный на фиг.3, обеспечивающий эффективную секрецию гранулоцитарного колониестимулирующего фактора человека (Г-КСФ) в молочной железе трансгенного животного.
2. Способ получения трансгенного животного, экспрессирующего в молочной железе гранулоцитарный колониестимулирующий фактор человека, путем микроинъецирования гибридного гена h-GM-1, описанного в п.1, в пронуклеус оплодотворенной яйцеклетки и последующим переносом этой яйцеклетки в половые пути псевдобеременной самки.
RU99124719A 1999-11-25 1999-11-25 СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННОГО ЖИВОТНОГО, ЭКСПРЕССИРУЮЩЕГО В МОЛОЧНОЙ ЖЕЛЕЗЕ ГРАНУЛОЦИТАРНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР ЧЕЛОВЕКА И ГИБРИДНЫЙ ГЕН h-GM-1 ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА RU2157846C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99124719A RU2157846C1 (ru) 1999-11-25 1999-11-25 СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННОГО ЖИВОТНОГО, ЭКСПРЕССИРУЮЩЕГО В МОЛОЧНОЙ ЖЕЛЕЗЕ ГРАНУЛОЦИТАРНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР ЧЕЛОВЕКА И ГИБРИДНЫЙ ГЕН h-GM-1 ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99124719A RU2157846C1 (ru) 1999-11-25 1999-11-25 СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННОГО ЖИВОТНОГО, ЭКСПРЕССИРУЮЩЕГО В МОЛОЧНОЙ ЖЕЛЕЗЕ ГРАНУЛОЦИТАРНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР ЧЕЛОВЕКА И ГИБРИДНЫЙ ГЕН h-GM-1 ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА

Publications (1)

Publication Number Publication Date
RU2157846C1 true RU2157846C1 (ru) 2000-10-20

Family

ID=20227333

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99124719A RU2157846C1 (ru) 1999-11-25 1999-11-25 СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННОГО ЖИВОТНОГО, ЭКСПРЕССИРУЮЩЕГО В МОЛОЧНОЙ ЖЕЛЕЗЕ ГРАНУЛОЦИТАРНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР ЧЕЛОВЕКА И ГИБРИДНЫЙ ГЕН h-GM-1 ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА

Country Status (1)

Country Link
RU (1) RU2157846C1 (ru)

Similar Documents

Publication Publication Date Title
Ebert et al. Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression
AU605497B2 (en) Peptide production
EP0347431B1 (en) Expression of proteins in milk
US5917122A (en) Tetracycline repressor-mediated binary regulation system for control of gene expression in transgenic mice
Ebert et al. Transgenic farm animals: progress report
WO1994004672A9 (en) Tetracycline repressor-mediated binary regulation system for control of gene expression in transgenic animals
US6210736B1 (en) Transgenically produced prolactin
AU2001259465B2 (en) Transgenically produced decorin
AU2001259465A1 (en) Transgenically produced decorin
EP0771874B1 (en) Transgenic protein production
RU2157846C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ТРАНСГЕННОГО ЖИВОТНОГО, ЭКСПРЕССИРУЮЩЕГО В МОЛОЧНОЙ ЖЕЛЕЗЕ ГРАНУЛОЦИТАРНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР ЧЕЛОВЕКА И ГИБРИДНЫЙ ГЕН h-GM-1 ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА
WO1991003551A1 (en) Production of growth hormone in transgenic animal milk
Park et al. Production of transgenic recloned piglets harboring the human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene from porcine fetal fibroblasts by nuclear transfer
KR100790514B1 (ko) Csf를 유선에서 발현하는 형질전환 복제 돼지 및 그의제조 방법
John Clark Generation of transgenic livestock by pronuclear injection
KR100905709B1 (ko) hGM―CSF를 생산하는 형질전환된 복제 산양 및 이의제조방법
RU2360002C2 (ru) Способ продуцирования экзогенного белка в молоке трансгенных млекопитающих и способ очистки белков из молока
Montesino et al. The mammary gland: bioreactor for the production of recombinant proteins
US20050043530A1 (en) Seminal vesicle tissue-specific promoters and uses thereof
WO1998058051A1 (en) Transgenically produced prolactin
Grewal et al. Targeted expression of chemokines in vivo
JP2005211079A (ja) mC26遺伝子発現制御領域を用いてトランスジェニック動物乳腺において物質を生産する新規製造法
Michalska Production and characterization of transgenic mice and pigs carrying the porcine growth hormone gene
Brem Generation of recombinant antibody transgenic farm animals
JP2004298196A (ja) mC26遺伝子発現制御領域を用いてトランスジェニック動物乳腺において物質を生産する新規製造法