RU2155307C2 - Эжекторный охладитель - Google Patents

Эжекторный охладитель Download PDF

Info

Publication number
RU2155307C2
RU2155307C2 RU98120961A RU98120961A RU2155307C2 RU 2155307 C2 RU2155307 C2 RU 2155307C2 RU 98120961 A RU98120961 A RU 98120961A RU 98120961 A RU98120961 A RU 98120961A RU 2155307 C2 RU2155307 C2 RU 2155307C2
Authority
RU
Russia
Prior art keywords
nozzles
ejector
housing
auxiliary
injectors
Prior art date
Application number
RU98120961A
Other languages
English (en)
Inventor
Г.П. Малышев
Ю.В. Пальмин
Г.А. Белозеров
Original Assignee
Всероссийский научно-исследовательский институт холодильной промышленности
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Всероссийский научно-исследовательский институт холодильной промышленности filed Critical Всероссийский научно-исследовательский институт холодильной промышленности
Priority to RU98120961A priority Critical patent/RU2155307C2/ru
Application granted granted Critical
Publication of RU2155307C2 publication Critical patent/RU2155307C2/ru

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

В эжекторном канале, образованном стенкой корпуса и наклонной перегородкой, размещены форсунки, обращенные выходными отверстиями вниз, и контактный тепло- массообменный элемент. Контактный тепло- массообменный элемент выполнен в виде решетки, установленной перпендикулярно к оси факела форсунок. Под решеткой на стенке корпуса размещены две вспомогательные форсунки, оси выходных отверстий которых ориентированы под углом к горизонту, а также - две ударные сетки, плоскости которых ориентированы перпендикулярно осям выходных отверстий вспомогательных форсунок. При этом вспомогательные форсунки могут быть размещены под углом к горизонту, лежащим в интервале 35 - 60°. Использование изобретения позволит интенсифицировать тепло- и массообмен между водой и воздухом за счет увеличения поверхности контакта воды и воздуха и повышения турбулентности. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к теплоэнергетике и холодильной технике, в частности к системам оборотного водоснабжения теплотехнических устройств и холодильных машин.
Известен распылительный тепломассообменный аппарат, включающий корпус с поддоном, воздухоподводящие и воздухоотводящие окна, эжекторный канал с размещенными в нем эжектирующими форсунками, обращенными выходными отверстиями вниз для распыла охлаждаемой воды, ороситель (контактный элемент), причем контактный элемент выполнен из эквидистантно установленных Г-образных перегородок, каждая из которых состоит из сплошных и сетчатых пластин [1].
Недостатком этого аппарата является то, что далеко не все крупные капли факела по всему сечению эжекторного канала дробятся сетчатыми пластинами. Часть капель проскакивает в отверстия пластин и взаимодействует с потоком воздуха, прошедшим через зазоры в пластинах, и попадает на поддон. Если этот зазор невелик, а угол наклона пластин близок к 90o относительно оси факела (эжекторного канала), то сопротивление потоку газа достаточно большое. Но с увеличением зазора влияние сетчатых пластин на эффективность процесса тепло-массообмена снижается. Кроме того, вертикальные сплошные пластины, ориентированные в сторону распылителя (форсунки), практически тормозят поток, заставляя его двигаться в ограниченных по ширине каналах.
Известен контактный теплообменник, содержащий вертикальный корпус с влагосборником, верхним и нижним газовыми патрубками, в зоне между которыми установлены с образованием верхнего, нижнего и среднего ярусов жидкостные форсунки, причем отверстия форсунок верхнего и нижнего ярусов направлены навстречу друг другу, средние ярусы форсунок, расположенных у противоположных стенок корпуса, смещены один относительно другого по высоте, а выходные отверстия их форсунок выполнены в виде горизонтальных щелей [2].
Недостатком контактного теплообменника является то, что горизонтальное расположение факелов щелевых жидкостных форсунок не учитывает эффект гравитации, в результате чего факелы "сваливаются" к центру корпуса аппарата и жидкость проваливается (падает) вниз. Кроме того, в данном устройстве не используется энергии струи (факела) жидкости, которую можно было бы направить таким образом, чтобы струя (факел) ударялась бы о противоположную стенку корпуса или о преграду и образовывала мелкодисперсные "облака" и интенсифицировала бы теплообмен.
Цель изобретения - интенсификация тепло- и массообмена между водой и воздухом за счет увеличения межфазной поверхности контакта воды и воздуха и повышения турбулентности.
Поставленная цель достигается тем, что в эжекторном охладителе, содержащем корпус с поддоном, воздухоподводящее окно, эжекторный канал и сепарационную зону, образованные передней, задней и торцевыми стенками и продольной наклонной перегородкой, при этом в эжекторном канале размещены форсунки, обращенные выходными отверстиями вниз, и контактный тепломассообменный элемент выполнен в виде решетки, установленной перпендикулярно к оси факела основных форсунок, а под решеткой у торцевых стенок корпуса размещены две вспомогательные форсунки, оси выходных отверстий которых ориентированы под углом к горизонту, а также закреплены две ударные сетки, плоскости которых ориентированы перпендикулярно осям выходных отверстий вспомогательных форсунок, при этом вспомогательные форсунки размещены под углом к горизонту, лежащим в интервале 35 - 60.
Предлагаемое устройство представлено на фиг. 1, 2, 3. На фиг.1 изображено вертикальное сечение эжекторного охладителя. На фиг.2 - вид по А-А (с разворотом). На фиг. 3 - вид по В-В. Эжекторный охладитель по фиг. 1 содержит корпус 1 прямоугольного сечения с наклонной перегородкой 2, разделяющей корпус 1 на эжекторный канал 3 и сепарационную зону 4, окно 5 для ввода воздуха, эжектируемого основными форсунками 6, решетка 7 установлена перпендикулярно оси факела основных форсунок 6, ниже решетки 7, у торцевых стенок корпуса 1 размещены под углом α к горизонту вспомогательные форсунки 8, выходные отверстия которых направлены к центру эжекторного канала 3, а по центру эжекторного канала 3, на равном удалении от торцевых стенок корпуса 1, установлены ударные сетки 9, под которыми размещена направляющая сетка 10 с отверстием в центре, а у выхода сепарационной зоны 4 размещен каплеуловитель 11 над поддоном 12 для сбора охлажденной воды, имеющий патрубок-фильтр 13 для слива воды.
Работа эжекторного охладителя состоит в следующем. Охлаждаемую воду подают на основные форсунки 6, которые образуют в эжекторном канале 3 факел распыла, эжектирующий воздух из окна 5. Газожидкостный поток движется вниз, при этом происходит теплообмен через развитую поверхность капель. Крупные капли воды, ударяясь о наклонную перегородку 2, коэффициент перфорации которой Кп составляет 0.1 - 0.15, дробятся на мелкие капли, в результате чего резко обновляется поверхность контакта. Далее жидкостной поток, пройдя через отверстия решетки 7, попадает в пространство, где действуют вспомогательные форсунки 8, установленные под углом α = 35 - 60o к горизонту. При этом охлаждаемая вода подается на вспомогательные форсунки 8 в количестве, не превышающем 5% от объема воды, подаваемой на эжекторный охладитель. Образуемые вспомогательными форсунками 8 факелы распыла ударяются в ударные сетки 9, в результате этого взаимодействия возникает "облако" мелкодисперсных брызг, которые взаимодействуют с основным газожидкостным потоком, замедляя падение капель воды и заставляя их "зависать". В результате увеличивается время взаимодействия воды и воздуха, поток турбулизируется, что способствует улучшению теплообмена. Далее поток проходит через центральное большое отверстие в направляющей сетке 10 и частично через мелкие отверстия в направляющей сетке 10, где снова происходит дробление капель. Поток продолжает двигаться вниз и, пройдя проход между зеркалом воды в поддоне 12 и нижней кромкой наклонной перегородки 2, выводится в сепарационную зону 4. Достигнув поддона 12, большая часть капель сепарируется при повороте потока воздуха на выходе из эжекторного канала 3. В сепарационной зоне 4 происходит выпадение самых мелких унесенных капель, так как скорость воздуха резко уменьшается и его несущая способность снижается. Капли воды поступают в поддон 12, из которого охлажденная вода удаляется через патрубок-фильтр 13. Поток увлажненного воздуха по сепарационной зоне 4 поднимается вверх и удаляется из эжекторного охладителя через каплеуловитель 11.
Эффективность охлаждения горячей воды в данном техническом решении обеспечивается прежде всего за счет применения в эжекторном канале 3 вспомогательных форсунок 8 и тепломассообменного блока, состоящего из решетки 7, ударных сеток 9 и направляющей сетки 10, причем площадь живого сечения решетки 7 - Fp и направляющей сетки 10 - Fc имеет соотношение Fp:Fc=1:3, а расстояние H между решеткой 7 и направляющей сеткой 10 может изменяться в интервале 150-350 мм. В результате обеспечивается сохранение гидродинамического напора и увеличивается время контакта фаз. Дополнительное охлаждение воды происходит более интенсивно за счет установленных наклонно ударных сеток 9. При ударе струй воды из вспомогательных форсунок 8 об ударные сетки 9 образуются мелкодисперсные "облака", которые способствуют увеличению времени контакта взаимодействующих фаз, турбулизируют газожидкостной поток и способствуют увеличению и обновлению поверхности контакта.
Предлагаемое изобретение по сравнению с прототипом обладает преимуществом в повышенной глубине охлаждения воды, более высокой плотности орошения, компактности. Как показали расчетные оценки и экспериментальные исследования, в предлагаемом изобретении снижение расхода электроэнергии на 1 м3 охлаждаемой воды составляет 10-15%.

Claims (2)

1. Эжекторный охладитель, содержащий корпус с поддоном, воздухоподводящее окно, сепарационную зону, контактный тепломассообменный элемент и форсунки, отличающийся тем, что корпус снабжен двумя вспомогательными форсунками, двумя ударными сетками, а также наклонной перегородкой с образованием эжекторного канала, в котором перпендикулярно к оси факела форсунок, обращенных выходными отверстиями вниз, установлен контактный тепло- массообменный элемент, выполненный в виде решетки, а под решеткой на стенке корпуса размещены две вспомогательные форсунки, оси выходных отверстий которых ориентированы под углом к горизонту, а также закреплены две ударные сетки, плоскости которых ориентированы перпендикулярно осям выходных отверстий вспомогательных форсунок.
2. Эжекторный охладитель по п.1, отличающийся тем, что вспомогательные форсунки размещены под углом к горизонту, лежащим в интервале 35 - 60o.
RU98120961A 1998-11-17 1998-11-17 Эжекторный охладитель RU2155307C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98120961A RU2155307C2 (ru) 1998-11-17 1998-11-17 Эжекторный охладитель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98120961A RU2155307C2 (ru) 1998-11-17 1998-11-17 Эжекторный охладитель

Publications (1)

Publication Number Publication Date
RU2155307C2 true RU2155307C2 (ru) 2000-08-27

Family

ID=20212497

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98120961A RU2155307C2 (ru) 1998-11-17 1998-11-17 Эжекторный охладитель

Country Status (1)

Country Link
RU (1) RU2155307C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534432A (zh) * 2022-01-18 2022-05-27 浙江机电职业技术学院 一种用于碳/碳复合材料化学气相沉积的尾气处理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534432A (zh) * 2022-01-18 2022-05-27 浙江机电职业技术学院 一种用于碳/碳复合材料化学气相沉积的尾气处理装置
CN114534432B (zh) * 2022-01-18 2023-04-11 浙江机电职业技术学院 一种用于碳/碳复合材料化学气相沉积的尾气处理装置

Similar Documents

Publication Publication Date Title
US3807145A (en) Injector type cooling tower
US4067707A (en) Spray type wet scrubber
CA1064392A (en) Gas scrubbing apparatus
RU2462675C1 (ru) Конструкция эжекционной градирни и способ организации процесса тепломассообмена
WO2012154085A1 (ru) Многоконтурная эжекционная градирня
US4405533A (en) Supply device for use with evaporative contact bodies
RU2155307C2 (ru) Эжекторный охладитель
US5639286A (en) Vertical fluid dynamic cooling tower
US2608398A (en) Cooling tower
RU2096714C1 (ru) Эжекторная градирня
RU2058003C1 (ru) Охладитель воды
RU218628U1 (ru) Эжекционная градирня
KR0148545B1 (ko) 음이온 발생장치
RU2037117C1 (ru) Градирня
SU1702144A1 (ru) Градирн
JPS6131514A (ja) 霧を消散する方法及びその装置
RU2212603C1 (ru) Вентиляторная градирня а.д. корнеева
RU106737U1 (ru) Эжекционная градирня
JPH0384345A (ja) 破片状氷の貯蔵システム
RU2055293C1 (ru) Контактный теплообменник
RU2166163C2 (ru) Эжекционная градирня
RU15220U1 (ru) Градирня
RU2294790C1 (ru) Пенный массообменный аппарат
DK149517B (da) Vaeskeafkoelingsenhed af indsproejtningstypen
SU1165441A1 (ru) Распылительный тепломассообменный аппарат

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20071118