RU2153921C2 - Method of cleaning waste gases from biologically decomposed contaminants - Google Patents

Method of cleaning waste gases from biologically decomposed contaminants Download PDF

Info

Publication number
RU2153921C2
RU2153921C2 RU97111967A RU97111967A RU2153921C2 RU 2153921 C2 RU2153921 C2 RU 2153921C2 RU 97111967 A RU97111967 A RU 97111967A RU 97111967 A RU97111967 A RU 97111967A RU 2153921 C2 RU2153921 C2 RU 2153921C2
Authority
RU
Russia
Prior art keywords
waste gases
oxygen
activated sludge
cleaning
contaminants
Prior art date
Application number
RU97111967A
Other languages
Russian (ru)
Other versions
RU97111967A (en
Inventor
В.А. Майоров
Л.М. Хурнова
И.С. Будников
Д.В. Лагирев
С.В. Маркин
Т.В. Лысакова
А.Ф. Тыщенко
Original Assignee
Пензенская государственная архитектурно-строительная академия
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пензенская государственная архитектурно-строительная академия filed Critical Пензенская государственная архитектурно-строительная академия
Priority to RU97111967A priority Critical patent/RU2153921C2/en
Publication of RU97111967A publication Critical patent/RU97111967A/en
Application granted granted Critical
Publication of RU2153921C2 publication Critical patent/RU2153921C2/en

Links

Abstract

FIELD: cleaning of waste gases. SUBSTANCE: method is used in production processes ejecting into atmosphere of oxygen-free waste gases for cleaning the latter. Oxygen-free waste gases are cleaned from biologically decomposed contaminants by washing of flow of waste gases to be cleaned with aqueous suspension of activated sludge under strict anaerobic conditions. Invention provides for reduction of power consumption and working expenditures in cleaning of oxygen-free waste gases from biologically decomposed contaminants. EFFECT: higher efficiency.

Description

Изобретение относится к технологии очистки не содержащих кислорода газовых выбросов. The invention relates to a technology for the purification of oxygen-free gas emissions.

В некоторых случаях промышленные загрязненные газовые выбросы не содержат кислорода (воздуха). Например, в производстве антибиотиков на последней стадии порошок лекарства промывают ацетоном и во избежание получения взрывоопасной смеси сушат нагретым инертным газом - азотом. Получаемая газовая смесь азота с парами ацетона выбрасывается в атмосферу. In some cases, industrial polluted gas emissions do not contain oxygen (air). For example, in the production of antibiotics at the last stage, the drug powder is washed with acetone and, in order to avoid obtaining an explosive mixture, it is dried with a heated inert gas - nitrogen. The resulting gas mixture of nitrogen with acetone vapor is released into the atmosphere.

Очистку не содержащих кислорода газовых выбросов от различных примесей проводят поглощением примеси твердыми пористыми (адсорбция) или жидкостными (абсорбция) поглотителями. Оба эти способа включают последующие стадии десорбции и поэтому отличаются чрезвычайной сложностью технологических схем и значительными энергозатратами (Родионов А.И. и др. Техника защиты окружающей среды, М., Химия, 1989, с. 65 - 155). Purification of oxygen-free gas emissions from various impurities is carried out by absorption of the impurity with solid porous (adsorption) or liquid (absorption) absorbers. Both of these methods include the subsequent stages of desorption and therefore are characterized by the extreme complexity of technological schemes and significant energy costs (Rodionov A.I. et al. Environmental protection engineering, M., Chemistry, 1989, pp. 65 - 155).

Снижение энергозатрат достигается при использовании биологической очистки. Биологические методы удаления загрязнений общепризнано считаются наиболее экономически эффективными и экологически чистыми. Reducing energy costs is achieved by using biological treatment. Biological methods of removing contaminants are widely recognized as the most cost-effective and environmentally friendly.

В SU 287904 A, 03.12.1970 описан способ очистки газовых выбросов, содержащих кислород, от биоразлагаемых загрязнений путем их окисления при аэрации водной суспензии активного ила потоком очищаемого газа. В этом способе биоразлагаемые примеси, а также кислород из потока очищаемого газа абсорбируются водной суспензией активного ила и затем окисляются до диоксида углерода и воды аэробным биоценозом активного ила в результате его жизнедеятельности. SU 287904 A, 03/03/1970 describes a method for purifying oxygen-containing gas emissions from biodegradable contaminants by oxidizing them by aeration of an aqueous suspension of activated sludge with a stream of purified gas. In this method, biodegradable impurities, as well as oxygen from the stream of gas to be purified, are absorbed by an aqueous suspension of activated sludge and then oxidized to carbon dioxide and water by the aerobic biocenosis of activated sludge as a result of its vital activity.

Для использования описанного способа для очистки не содержащих кислорода газовых выбросов потребуются значительные энергозатраты на прокачку сквозь водную суспензию активного ила дополнительного потока воздуха (аэрация), необходимого для обеспечения кислородом активного ила. Кроме того, для этого способа характерны существенные эксплуатационные расходы, связанные с необходимостью постоянного отбора и утилизации нарастающей биомассы избыточного активного ила. В процессе аэробной очистки образуется от 1 до 1,5 кг биомассы активного ила на каждый удаленный килограмм биологического потребления кислорода (условная единица массы загрязнений), утилизация которого затруднена вследствие высокой влажности ила и его низких водоотдающих свойств. To use the described method for the purification of oxygen-free gas emissions, significant energy consumption will be required to pump an additional air stream (aeration) through the aqueous suspension of activated sludge, which is necessary to provide activated sludge with oxygen. In addition, this method is characterized by significant operating costs associated with the need for continuous selection and disposal of increasing biomass of excess activated sludge. In the process of aerobic treatment, from 1 to 1.5 kg of activated sludge biomass is formed for each removed kilogram of biological oxygen consumption (conventional unit for the mass of contaminants), the disposal of which is difficult due to the high moisture content of the sludge and its low water removal properties.

Изобретение направлено на снижение энергозатрат, уменьшение эксплуатационных расходов при отборе и утилизации нарастающей биомассы активного ила при очистке не содержащих кислорода газовых выбросов от биоразлагаемых загрязнений. The invention is aimed at reducing energy consumption, reducing operating costs in the selection and disposal of increasing biomass of activated sludge when cleaning oxygen-free gas emissions from biodegradable contaminants.

Это достигается тем, что промывку проводят в строго анаэробных условиях. This is achieved by the fact that washing is carried out under strictly anaerobic conditions.

Пример 1. Example 1

В стеклянную колонку внутренним диаметром 150 мм и высотой 1000 мм загружали взятый из городских очистных сооружений активный ил объемом 15 л с концентрацией по сухому веществу 5,3 г/л. Снизу в колонку подавался газообразный азот с парами ацетона. Расход азота 6,7 л/мин, концентрация ацетона во время опыта изменялась в диапазоне 3 - 5,5 г/м3. Для аэрации активного ила снизу в колонку дополнительно подавался воздух расходом 7,5 л/мин. Установка в непрерывном режиме аэробной очистки функционировала в течение 64 суток. Степень очистки от ацетона составляла 88 - 97%.Activated sludge taken from urban wastewater treatment plants with a volume of 15 l with a dry matter concentration of 5.3 g / l was loaded into a glass column with an inner diameter of 150 mm and a height of 1000 mm. Nitrogen gas with acetone vapor was fed into the column below. The nitrogen flow rate of 6.7 l / min, the concentration of acetone during the experiment varied in the range of 3 - 5.5 g / m 3 . For aeration of activated sludge, air was additionally supplied from below to the column with a flow rate of 7.5 l / min. Installation in continuous aerobic treatment functioned for 64 days. The degree of purification from acetone was 88 - 97%.

При этом концентрация активного ила по сухому веществу монотонно увеличивалась от 5,3 до 20 г/л, причем активный ил приобрел клееобразную консистенцию со значительным содержанием полисахаридов. At the same time, the concentration of activated sludge in dry matter monotonically increased from 5.3 to 20 g / l, and activated sludge acquired a gummy consistency with a significant content of polysaccharides.

Пример 2. Example 2

Условия проведения процесса очистки газообразного азота от паров ацетона аналогичны во всем условиям процесса в примере 1, за исключением того, что в колонку не подавался дополнительно воздух. Процесс очистки потока азота от паров ацетона и биодеградация ацетона биоценозом активного ила в колонке осуществлялись в строго анаэробных условиях. При изменении начальной концентрации ацетона в азоте в диапазоне 3 - 5,5 г/м3 степень очистки составила 85 - 96%. Концентрация активного ила в течение опыта практически не изменялась. В газовом потоке на выходе из колонки отмечалось наличие метана.The process conditions for purifying nitrogen gas from acetone vapor are similar in all process conditions in Example 1, except that no additional air was supplied to the column. The process of purifying the nitrogen stream from acetone vapor and biodegradation of acetone by the activated sludge biocenosis in the column were carried out under strictly anaerobic conditions. When changing the initial concentration of acetone in nitrogen in the range of 3 - 5.5 g / m 3, the degree of purification was 85 - 96%. The concentration of activated sludge during the experiment practically did not change. The presence of methane was noted in the gas stream at the outlet of the column.

При промывке потока очищаемых газовых выбросов водной суспензией активного ила загрязнения из газового потока абсорбируются суспензией активного ила. Затем в суспензии активного ила протекают те же процессы, что и при очистке загрязненных сточных вод. When washing the stream of cleaned gas emissions with an aqueous suspension of activated sludge, contaminants from the gas stream are absorbed by the suspension of activated sludge. Then, in the suspension of activated sludge, the same processes proceed as in the treatment of contaminated wastewater.

Для деградации загрязнений используют два типа биологических процессов: а) аэробные процессы, в которых микроорганизмы используют растворенный кислород, подводимый в суспензию активного ила за счет ее аэрации; б) анаэробные процессы, в которых микроорганизмы не имеют доступа к свободному растворенному кислороду. For the degradation of pollution, two types of biological processes are used: a) aerobic processes in which microorganisms use dissolved oxygen introduced into a suspension of activated sludge due to its aeration; b) anaerobic processes in which microorganisms do not have access to free dissolved oxygen.

В анаэробных процессах обмена веществ микроорганизмы используют углерод органических загрязнений одновременно как донор электронов, при этом происходит его окисление до диоксида углерода (одного из компонентов биогаза), и как акцептор электронов, что приводит в конечном счете к получению метана (основного компонента биогаза), как наиболее сильно восстановленного из существующих в природе углеродсодержащих соединений. In anaerobic metabolic processes, microorganisms use carbon from organic pollutants simultaneously as an electron donor, and they oxidize to carbon dioxide (one of the components of biogas), and as an electron acceptor, which ultimately leads to methane (the main component of biogas), as the most strongly reduced of carbon-containing compounds existing in nature.

При выборе между аэробным и анаэробными процессами биодеградации загрязнений обычно склоняются в пользу первых, так как в настоящее время они лучше изучены и более широко применяются. Однако анаэробные процессы биодеградации загрязнений имеют ряд существенных преимуществ. Во-первых, недостатком аэробных технологий являются значительные энергозатраты на аэрацию суспензии активного ила, т.е. на обеспечение его растворенным кислородом. Во-вторых, в анаэробных процессах образуется много меньше биомассы избыточного ила. В аэробных образуется от 1 до 1,5 кг биомассы ила, в то время как в анаэробных почти на порядок меньше - только 0,1 - 0,2 кг биомассы или на каждый удаленный килограмм биологического потребления кислорода (условная единица массы загрязнений). Получающийся в аэробных процессах избыточный активный ил обладает высокой влажностью (90 - 99,7%) и имеет очень низкую водоотдающую способность, что обусловливает высокую стоимость его переработки. Значительно более низкий в анаэробных процессах прирост биомассы активного ила, обладающей к тому же хорошими водоотдающими свойствами, сводит практически на нет проблемы обработки и утилизации избыточного ила. When choosing between aerobic and anaerobic processes, biodegradation of pollutants is usually in favor of the former, since at present they are better studied and more widely used. However, anaerobic biodegradation processes of pollution have a number of significant advantages. Firstly, the disadvantage of aerobic technologies is the significant energy consumption for aeration of a suspension of activated sludge, i.e. to provide it with dissolved oxygen. Secondly, much less biomass of excess sludge is formed in anaerobic processes. In aerobic forms from 1 to 1.5 kg of sludge biomass, while in anaerobic ones it is almost an order of magnitude less - only 0.1 - 0.2 kg of biomass or for each removed kilogram of biological oxygen consumption (conventional unit of pollution mass). Excess activated sludge obtained in aerobic processes has high humidity (90 - 99.7%) and has a very low water-giving capacity, which leads to the high cost of its processing. A significantly lower increase in activated sludge biomass in anaerobic processes, which also has good water-removing properties, practically eliminates the problems of processing and disposal of excess sludge.

Claims (1)

Способ очистки не содержащих кислорода газовых выбросов от биоразлагаемых загрязнений, заключающийся в промывке потока очищаемых газовых выбросов водной суспензией активного ила в строго анаэробных условиях. The method of purification of oxygen-free gas emissions from biodegradable contaminants, which consists in washing the stream of purified gas emissions with an aqueous suspension of activated sludge under strictly anaerobic conditions.
RU97111967A 1997-07-15 1997-07-15 Method of cleaning waste gases from biologically decomposed contaminants RU2153921C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97111967A RU2153921C2 (en) 1997-07-15 1997-07-15 Method of cleaning waste gases from biologically decomposed contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97111967A RU2153921C2 (en) 1997-07-15 1997-07-15 Method of cleaning waste gases from biologically decomposed contaminants

Publications (2)

Publication Number Publication Date
RU97111967A RU97111967A (en) 1999-06-27
RU2153921C2 true RU2153921C2 (en) 2000-08-10

Family

ID=20195272

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97111967A RU2153921C2 (en) 1997-07-15 1997-07-15 Method of cleaning waste gases from biologically decomposed contaminants

Country Status (1)

Country Link
RU (1) RU2153921C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2508157C2 (en) * 2008-12-03 2014-02-27 Дге Др.-Инж. Гюнтер Инжиниринг Гмбх Method and system of green gas cleaning, in particular, biogas for production of methane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2508157C2 (en) * 2008-12-03 2014-02-27 Дге Др.-Инж. Гюнтер Инжиниринг Гмбх Method and system of green gas cleaning, in particular, biogas for production of methane

Similar Documents

Publication Publication Date Title
JP3103027B2 (en) Exhaust gas treatment method and apparatus using ammonia in sewage
US5747331A (en) Process and apparatus for the purification of gases
ES8106680A1 (en) Process and apparatus for the biological treatment of aqueous waste in a pure oxygen-activated sludge/ozone system.
CN104923068A (en) Malodorous gas treatment method
CN103833189B (en) Equipment and process for deeply treating coal gas wastewater
KR101964759B1 (en) A treatment apparatus of high concentration organic wastewater using odor removal microorganism
JP2004097856A (en) Equipment and method for waste liquid treatment
RU2153921C2 (en) Method of cleaning waste gases from biologically decomposed contaminants
KR20050055649A (en) The process of hybrid system composed of photo-catalytic reactor and biofilter to eliminate vocs and malodor efficiently
JP3397304B2 (en) Sewage treatment method using sludge carbonization system
KR102221791B1 (en) Energy-saving recycling system and recycling method for by-products produced during sewage treatment
JPS586299A (en) Purification of water containing organic pollutants
KR100369710B1 (en) A biological treatment process of dye waste water using granulated active carbon as a support material
JPH0966231A (en) Activated carbon
CN213699426U (en) Low concentration waste gas treatment device of sewage factory
RU1787953C (en) Sewage water fine cleaning apparatus
KR830002326B1 (en) Wastewater Treatment Method
JPH091174A (en) Granular sludge coal, treatment of waste water using same and soil improving method
KR20020042883A (en) Biofilter and biofilter system employing the same
KR19990050101A (en) Zeolite-Containing Continuous Batch Reactor
KR101951633B1 (en) A treatment apparatus of high concentration organic wastewater using odor removal microorganism
CN115739066A (en) Biochar catalyst, preparation method thereof, and landfill leachate treatment system and method
KR100360843B1 (en) Thermal Regeneration Method of Spent Activated Carbon Using CO2 as Carrier Gas
CN1089029C (en) Method for removing sulfur series foul smell gas by using polyacrylonitrile active carbon fiber
CN116688948A (en) Preparation method and application of modified sludge-based low-temperature pyrolysis biochar