RU2148750C1 - Способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания - Google Patents

Способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания Download PDF

Info

Publication number
RU2148750C1
RU2148750C1 RU98123272A RU98123272A RU2148750C1 RU 2148750 C1 RU2148750 C1 RU 2148750C1 RU 98123272 A RU98123272 A RU 98123272A RU 98123272 A RU98123272 A RU 98123272A RU 2148750 C1 RU2148750 C1 RU 2148750C1
Authority
RU
Russia
Prior art keywords
piston
zones
hardening
ring groove
molten
Prior art date
Application number
RU98123272A
Other languages
English (en)
Inventor
М.В. Радченко
Н.И. Батырев
К.С. Кровяков
Ю.О. Шевцов
Original Assignee
Алтайский государственный технический университет им. И.И. Ползунова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алтайский государственный технический университет им. И.И. Ползунова filed Critical Алтайский государственный технический университет им. И.И. Ползунова
Priority to RU98123272A priority Critical patent/RU2148750C1/ru
Application granted granted Critical
Publication of RU2148750C1 publication Critical patent/RU2148750C1/ru

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Способ может быть использован в двигателестроении при упрочнении зон кольцевых канавок поршня путем электронно-лучевой наплавки в вакууме. На упрочняемой зоне кольцевой канавки заготовки поршня производят расплавление электронным лучом в вакууме материала поршня с одновременным добавлением в расплавленный материал поршня присадочного материала. В качестве присадочного материала используют медь в количестве 1,5 - 2,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, или нихром в количестве 3,5 - 4,0% от указанного объема. Поршень при этом выполнен из заэвтектического силумина. Увеличение твердости материала в зонах стенок кольцевых канавок в результате электронно-лучевой наплавки с предлагаемым присадочным материалом позволяет повысить моторесурс и эксплуатационную надежность поршней. Использование в качестве присадочного материала одно- или двухкомпонентных составов снижает трудоемкость способа. 1 табл.

Description

Изобретение относится к области двигателестроения, а именно, к технологии упрочнения зон кольцевых канавок поршня путем электронно-лучевой наплавки в вакууме, и может быть использовано для упрочнения зон кольцевых канавок силуминовых поршней форсированных дизельных двигателей внутреннего сгорания.
Известен способ упрочнения зон кольцевых канавок поршней, изготовленных из силуминов эвтектического состава, заключающийся в том, что в месте будущей кольцевой канавки заготовки поршня производят наплавку путем расплавления электронным лучом в вакууме материала поршня с одновременным добавлением в расплавленный металл присадочного материала. Затем в наплавленном металле протачивают канавку заданных геометрических размеров. Наплавку проводят сканирующим электронным лучом, поэтому наплавленный металл в поперечном сечении имеет W-образуню форму [1].
Известен способ электронно-лучевого упрочнения зон кольцевых канавок поршней, изготовленных из эвтектических силуминов, при котором проводят электронно-лучевую наплавку в вакууме присадочным материалом на боковые поверхности предварительно проточенных с припусками на последующую механическую обработку канавок. В качестве присадочного материала используют сплав, содержащий до 25% никеля или кобальта [2].
Вышеописанные способы упрочнения зон кольцевых канавок поршней обладают общим недостатком - узкой областью применения - только для поршней, изготовленных из сплавов эвтектического состава, т.к. эти сплавы непригодны для изготовления поршней, предназначенных для работы на форсированных дизельных двигателях. Для таких двигателей необходимо в качестве материала поршней использовать силумины заэвтектического состава, которые обладают более высокой жаропрочностью и имеют самый низкий коэффициент термического расширения.
Наиболее близким техническим решением, выбранным в качестве прототипа, является способ упрочнения зон кольцевых канавок двигателя внутреннего сгорания, при котором на упрочняемой зоне кольцевой канавки заготовки поршня производят расплавление электронным лучом в вакууме материала поршня с одновременным добавлением в расплавленный материал поршня присадочного материала. В качестве материала поршня используют до- и эвтектические силумины марки АК4 и АЛ25, а в качестве присадочного материала используют алюминиевую проволоку доэвтектического состава, содержащую медь, никель, магний, марганец [3] . Наплавленный материал имеет повышенные характеристики твердости, которая определяет ресурс работы кольцевой канавки, а следовательно, и всего поршня (см. таблицу).
Недостатками способа, выбранного в качестве прототипа, являются низкие моторесурс и эксплуатационная надежность упрочненных предложенным образом поршней, предназначенных для работы на форсированных дизельных двигателях внутреннего сгорания, т. к. , во-первых, в качестве материала поршней используют до- или эвтектические силумины, обладающие пониженной жаропрочностью и повышенным коэффициентом линейного расширения, которые непригодны для изготовления поршней, работающих на мощных дизельных двигателях, во-вторых, в качестве используемого для наплавки присадочного материала применяют проволоку доэвтектического состава, наличие легирующих добавок в которой позволяет получить повышенные значения твердости наплавленного материала кольцевых канавок, но эти значения твердости наплавленного материала, особенно при высоких температурах, недостаточны для обеспечения износостойкости поршней в условиях работы на мощных дизельных двигателях. Кроме того, использование сложного в изготовлении многокомпонентного присадочного материала приводит к повышенной трудоемкости осуществления этого способа.
Сущность изобретения заключается в том, что в способе упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания, при котором на упрочняемой зоне кольцевой канавки заготовки поршня производят расплавление электронным лучом в вакууме материала поршня с одновременным добавлением в расплавленный материал поршня присадочного материала, в качестве присадочного материала используют медь в количестве 1,5-2,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, или нихром в количестве 3,5-4,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне. В качестве материала поршня используют заэвтектический силумин.
Техническим результатом является повышение моторесурса и эксплуатационной надежности поршней, предназначенных для работы на форсированных дизельных двигателях, при упрочнении зон кольцевых канавок этих поршней предложенным образом, а также снижение трудоемкости осуществления способа.
Повышение моторесурса и эксплуатационной надежности поршней, предназначенных для работы на форсированных дизельных двигателях, достигается за счет увеличения твердости материала в зонах стенок кольцевых канавок в результате электронно-лучевой наплавки, т.е. процесса расплавления электронным лучом в вакууме материала поршня в месте будущей кольцевой канавки с одновременным добавлением в расплавленный материал присадочного материала - меди в количестве 1,5-2,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне поршня, или нихрома в количестве 3,5-4,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне поршня (см. таблицу), при использовании в качестве материала поршня заэвтектического силумина, обладающего повышенной жаропрочностью и пониженным коэффициентом термического расширения.
Снижение трудоемкости осуществления способа упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания обеспечивается путем уменьшения трудозатрат на упрочнение зон кольцевых канавок вследствие доступности используемых одно- или двухкомпонентных присадочных материалов - меди и нихрома.
Использование в качестве присадочного материала меди в количестве 1,5-2,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, является оптимальным, поскольку при содержании меди менее 1,5% от указанного объема расплавленного материала поршня твердость наплавленного материала снижается до 1600 МПа, а при содержании меди большем, чем 2,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, первоначальная твердость наплавленного материала является достаточно высокой, но в процессе выдержки этого наплавленного материала при температуре 250oC происходит значительное снижение его твердости. Следовательно, при работе поршня произойдет разупрочнение наплавленного материала в зонах кольцевых канавок поршня, так как температура в зонах кольцевых канавок, особенно в зоне первой канавки под компрессионное кольцо, находится в пределах 230 - 250oC. Снижение твердости материала, наплавленного с добавлением меди в количестве более 2,0% от объема расплавленного материала поршня, происходит за счет структурных изменений, аналогичных процессу перестаривания, что ухудшает эффект дисперсионного твердения.
Использование в качестве присадочного материала нихрома в количестве 3,5-4,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, является оптимальным, поскольку при содержании нихрома менее 3,5% от указанного объема расплавленного материала поршня степень пересыщения твердого раствора алюминия, т.к. силумин является сплавом на основе алюминия, интерметаллидными фазами еще недостаточна, чтобы обеспечить стабильность свойств направленного материала, а именно, минимизировать снижение твердости при последующем перестаривании сплава, а при содержании нихрома большем, чем 4,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, снижается пластичность наплавленного материала, что приводит к его растрескиванию.
Кроме того, при использовании в качестве присадочного материала меди в количестве 1,5-2,0% от объема расплавленного материала поршня, наплавленный материал в упрочненной зоне кольцевой канавки поршня обладает более высокой твердостью, чем наплавленный материал с таким же содержанием нихрома (1,5-2,0%). Следовательно, для получения твердости зон кольцевых канавок поршня в пределах 1800 МПа целесообразно использовать в качестве присадочного материала медь, а для получения твердости зон кольцевых канавок поршня более 2200 МПа - нихром.
Предлагаемое изобретение поясняется таблицей, на которой представлены показатели твердости основного и наплавленного электронным лучом материалов поршня двигателя внутреннего сгорания при различных температурах с применением предложенного способа упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания и способа упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания, выбранного в качестве прототипа.
Способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания осуществляется следующим образом. На упрочняемой зоне кольцевой канавки заготовки поршня производят расплавление электронным лучом в вакууме материала поршня с одновременным добавлением в расплавленный материал поршня присадочного материала. В качестве присадочного материала используют медь в количестве 1,5-2,0% от объема расправленного поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, или нихром в количестве 3,5-4,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне. В качестве материала поршня используют заэвтектический силумин. После кристаллизации расплавленного материала на заготовке поршня образуется упрочненная зона, объем которой, т.е. форма и глубина проплавления, достаточен для выполнения в этой зоне кольцевой канавки.
Пример конкретного выполнения способа.
Упрочнение зон кольцевых канавок проводят на заготовке поршня диаметром 150 мм, в качестве материала которого используют заэвтектический силумин марки АК21М2, 5Н2,5 следующего химического состава,%: Si 20,0 - 22,0; Cu 2,2 - 3,0; Mg 0,20 - 0,50; Mn 0,2 - 0,4; Ni 2,2 - 2,8; Ti 0,1 - 0,3; Cr 0,2 - 0,4. В качестве присадочного материала используют проволоку из меди марки М1 или из нихрома марки Х20Н80.
Предлагаемый способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания реализуется с использованием электронно-лучевой аппаратуры на основе электронно-лучевой пушки с плазменным эмиттером. Электронно-лучевая пушка устанавливается на фланце вакуумной камеры, внутри которой размещаются вращатель с патроном, предназначенным для закрепления заготовки поршня, и механизм подачи присадочного материала.
Для осуществления процесса наплавки применяют следующие технологические параметры:
ускоряющее напряжение - 28 кВ;
ток луча - 140 мA;
скорость наплавки - 8 мм/с;
амплитуда сканирования луча - 7 мм;
частота сканирования луча - 50 Гц;
закон сканирования луча - окружность;
рабочее расстояние от среза электронно-лучевой пушки до изделия (поршня) - 170 мм;
остаточное давление в вакуумной камере - 10-2 Па;
диаметр присадочной проволоки - 1 мм;
скорость подачи присадочной проволоки:
медной - 1,8 - 2,2 м/ч;
нихромовой - 4 - 4,5 м/ч.
Сначала определяют необходимый объем расплавленного материала поршня, необходимый для последующего выполнения в нем кольцевой канавки, т.е. глубину и форму проплавления, которые зависят от технологических параметров режима электронно-лучевой наплавки, и в свою очередь определяются требуемыми геометрическими размерами кольцевой канавки. Количественное содержание присадочного материала в наплавленном материале зависит, кроме объема расплавленного материала, также от скорости наплавки, диаметра присадочной проволоки и скорости ее подачи в зону действия электронного луча, которые заданы технологическими параметрами режима. При дальнейшем определении количества присадочного материала - меди или нихрома - объем расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, принимают за 100%.
Перед упрочнением зон кольцевых канавок заготовку поршня очищают от грязи, пыли, масла. Затем закрепляют заготовку поршня внутри вакуумной камеры в патроне вращателя и выверяют правильность установки механизма подачи присадочного материала, например присадочной проволоки; в качестве присадочного материала используют медь в количестве 1,5 - 2,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, или нихром в количестве 3,5 - 4,0% от объема расплавленного материала поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне. После этого проводят откачку вакуумной камеры до высокого вакуума - 10-2 Па, и на упрочняемой зоне кольцевой канавки заготовки поршня производят расплавление электронным лучом основного материала поршня с одновременным добавлением в расплавленный материал посредством механизма подачи присадочного материала легирующего элемента - меди или нихрома - в вышеназванном количестве. Зону кольцевой канавки поршня наплавляют с перекрытием начала наплавленного валика на 10-15 мм. Исходя из известных геометрических размеров расплавленного основного материала заготовки поршня можно изменять скорость подачи присадочной проволоки, в результате чего получать упрочненные зоны с различным содержанием легирующих элементов в оптимальных диапазонах, при постоянстве скорости наплавки и диаметра присадочной проволоки в соответствии с вышеприведенными технологическими параметрами.
Использование вышеприведенных технологических параметров способа обеспечивает получение глубины проплавления основного материала поршня 7-8 мм, ширину в верхней части наплавки 8-9 мм и форму проплавления - V-образную. При этом площадь поперечного сечения наплавленного материала зоны кольцевой канавки поршня составляет 37-43 мм2.
После упрочнения зоны кольцевой канавки поршня образуется зона упрочненного материала в теле поршня, геометрических размеров которой достаточно для того, чтобы после протачивания канавки в упрочненной зоне остался слой упрочненного материала от каждой боковой плоскости кольцевой канавки до основного неупрочненного материала поршня толщиной 1,5 - 2.5 мм.
Упрочненный наплавкой материал поршня имеет высокую твердость, значения которой при различных температурах для способа-прототипа и предложенного способа приведены в таблице. В таблице после значений твердости для наплавленных материалов по способу-прототипу и предложенному способу указаны коэффициенты упрочнения при разных температурах. Коэффициент упрочнения представляет собой отношение твердости наплавленного материала к твердости основного материала поршня. Как видно из данных таблицы, материал поршня, наплавленный с добавлением присадочных материалов в предложенном количестве, обеспечивает высокие значения твердости. При этом с повышением температуры коэффициент упрочнения увеличивается, следовательно, наплавленный материал в зонах кольцевых канавок обеспечивает меньшее разупрочнение по сравнению с основным материалом поршня. Для способа-прототипа коэффициент упрочнения при температуре 200oC превосходит коэффициент упрочнения предложенного способа, однако абсолютные значения твердости наплавленного материала в способе-прототипе низкие. С повышением температуры коэффициент упрочнения для способа-прототипа резко падает (рабочая температура в зоне наиболее напряженной первой кольцевой канавки поршня под компрессионное кольцо - около 250oC), а материал поршня, упрочненный по предложенной технологии, обеспечивает постоянное повышение коэффициента упрочнения с повышением температуры.
Затем после разгерметизации вакуумной камеры поршень с упрочненными зонами кольцевых канавок вынимают из патрона вращателя и передают на дальнейшую механическую обработку, включающую протачивание кольцевых канавок в упрочненных зонах поршня.
Геометрические размеры канавок для поршневых колец зависят от диаметра поршня и типа двигателя, на котором этот поршень будет работать. Поэтому приведенные технологические параметры процесса наплавки могут быть использованы для группы поршней, геометрические размеры кольцевых канавок которых позволяют выполнить операцию протачивания канавок в упрочненной зоне с сохранением слоя упрочненного материала между стенками кольцевой канавки поршня и основным материалом поршня не менее 1,5-2 мм на каждую сторону кольцевой канавки.
Предлагаемый способ упрочнения зон кольцевых канавок поршня может быть реализован с использованием серийно выпускаемой низковольтной электронно-лучевой аппаратуры, технические характеристики которой обеспечивают вышеприведенные технологические параметры режима упрочнения. Вакуумная система установки должна обеспечивать поддержание остаточного давления в вакуумной камере на уровне не ниже 10-2 Па, поскольку в процессе обработки газонасыщенного алюминиевого сплава происходит обильное выделение газов из расплавленного материала поршня.
Преимущества предлагаемого способа упрочнения зон кольцевых канавок поршня заключаются в повышении его моторесурса и эксплуатационной надежности в условиях работы на форсированных дизельных двигателях, что достигается повышением твердости материала в зонах стенок кольцевых канавок в результате электронно-лучевой наплавки с присадочным материалом, в качестве которого используют медь или нихром. Кроме этого, снижается трудоемкость осуществления предлагаемого способа и повышается его экономичность вследствие использования в качестве присадочного материала одно- или двухкомпонентных составов.
Источники информации
1. Schiller S. // Metal Progress. 1986. V. 129. N 5. P. 39-40.
2. Заявка 2201484 Великобритания, кл. F 02 F 3/10, F 16 J 9/22, 1988.
3. Электронно-лучевая сварка / Назаренко О.К., Кайдалов А.А., Ковбасенко С. Н. и др. ; Под ред. Б.Е. Патона. - Киев: Наук. думка, 1987. - с. 75-76. (прототип).

Claims (1)

  1. Способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания, при котором на упрочняемой зоне кольцевой канавки заготовки поршня производят расплавление электронным лучом в вакууме металла поршня с одновременным добавлением в расплавленный металл поршня присадочного материала, отличающийся тем, что при упрочнении поршня из заэвтектического силумина в качестве присадочного материала используют медь в количестве 1,5 - 2,0% от объема расплавленного металла поршня, необходимого для выполнения кольцевой канавки в упрочненной зоне, или нихром в количестве 3,5 - 4,0% от указанного объема.
RU98123272A 1998-12-21 1998-12-21 Способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания RU2148750C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98123272A RU2148750C1 (ru) 1998-12-21 1998-12-21 Способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98123272A RU2148750C1 (ru) 1998-12-21 1998-12-21 Способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания

Publications (1)

Publication Number Publication Date
RU2148750C1 true RU2148750C1 (ru) 2000-05-10

Family

ID=20213771

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98123272A RU2148750C1 (ru) 1998-12-21 1998-12-21 Способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания

Country Status (1)

Country Link
RU (1) RU2148750C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636424C2 (ru) * 2012-07-20 2017-11-23 Федерал-Могул Нюрнберг Гмбх Способ изготовления поршня для двигателя внутреннего сгорания

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Назаренко О.К. и др. Электронно-лучевая сварка. - Киев: Наукова Думка, 1987, с.75 - 76. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636424C2 (ru) * 2012-07-20 2017-11-23 Федерал-Могул Нюрнберг Гмбх Способ изготовления поршня для двигателя внутреннего сгорания
US10252366B2 (en) 2012-07-20 2019-04-09 Federal-Mogul Nurnberg Gmbh Method for producing a piston for an internal combustion engine

Similar Documents

Publication Publication Date Title
EP0095604B1 (en) Aluminum base material with hard facing deposit
US6337459B1 (en) Multi-layered anti-coking heat resisting metal tube and the method for manufacturing thereof
US10086462B2 (en) Hardfacing with low carbon steel electrode
US20090045586A1 (en) Method For Producing Rotary and/or Stationary Seal Rings of a Mechanical Face Seal by Means of Laser Hardening
JP2018532880A (ja) 非クロム及び低クロム耐摩耗性合金
WO2012130455A2 (en) Slide component and method for production of cladding on a substrate
WO2018157159A1 (en) Aluminum alloy compositions, products and methods of making the same
RU2148750C1 (ru) Способ упрочнения зон кольцевых канавок поршня двигателя внутреннего сгорания
CN111531278A (zh) 将钢激光焊接到延性铁上
GB2344549A (en) Welding method for two different types of steel
JP5431426B2 (ja) Ni基合金大型部材及びNi基合金大型部材を使用したNi基合金溶接構造物とその製造方法
Omprakasam et al. Statistical modelling and optimization of TIG welding process parameters using Taguchi’s method
Gajvoronsky et al. Influence of deposited metal composition on structure and mechanical properties of reconditioned railway wheels
JPH06218521A (ja) 内燃機関のピストン
JP6357465B2 (ja) アルミニウムピストンの製造方法及びそれを用いたアルミニウムピストン
CN111975205B (zh) 重度磨损截齿修补方法
Wang et al. Interface characteristics and mechanical behavior of metal inert-gas arc welded Mg–steel joints
Kang et al. Plasma diode electron beam heat treatment of cast iron: effect of direct preheating
Fuhaid et al. Manufacturin g and friction welding of aluminium matrix composites–review of current status an d future directions
Sekiguchi et al. Mechanical properties of electron beam welded spheroidal graphite cast iron and mild steel welded joints
JP2001012202A (ja) 異種材料溶接型タービンロータ及びその製造方法
JPS63318365A (ja) ピストン
Mohanasundaram et al. Synthesis and Characterisation of B4C Reinforced Al6061 Friction Stir Processed Surface Composites
JP2010539322A (ja) シリンダジャケットおよびその製造法
Okada et al. Development of New Tool for FSW of Aluminum and Steel with Enhanced Wear Resistance