RU2147775C1 - Способ контроля зазора между технологическим каналом и графитовой кладкой реакторов рбмк - Google Patents

Способ контроля зазора между технологическим каналом и графитовой кладкой реакторов рбмк Download PDF

Info

Publication number
RU2147775C1
RU2147775C1 RU98109697A RU98109697A RU2147775C1 RU 2147775 C1 RU2147775 C1 RU 2147775C1 RU 98109697 A RU98109697 A RU 98109697A RU 98109697 A RU98109697 A RU 98109697A RU 2147775 C1 RU2147775 C1 RU 2147775C1
Authority
RU
Russia
Prior art keywords
channel
graphite
reference points
wall
temperature
Prior art date
Application number
RU98109697A
Other languages
English (en)
Other versions
RU98109697A (ru
Inventor
Е.С. Иванов
Ю.И. Слепоконь
В.М. Ряхин
С.А. Кушковой
А.И. Трофимов
С.А. Виноградов
Original Assignee
Иванов Евгений Сергеевич
Слепоконь Юрий Иванович
Ряхин Вячеслав Михайлович
Кушковой Сергей Антонович
Трофимов Адольф Иванович
Виноградов Сергей Александрович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Иванов Евгений Сергеевич, Слепоконь Юрий Иванович, Ряхин Вячеслав Михайлович, Кушковой Сергей Антонович, Трофимов Адольф Иванович, Виноградов Сергей Александрович filed Critical Иванов Евгений Сергеевич
Priority to RU98109697A priority Critical patent/RU2147775C1/ru
Publication of RU98109697A publication Critical patent/RU98109697A/ru
Application granted granted Critical
Publication of RU2147775C1 publication Critical patent/RU2147775C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Использование: для повышения качества, скорости и достоверности диагностики зазора в системе ТК-ГК РБМК, что позволит точно прогнозировать сроки ремонта или замены оборудования активной зоны реактора. Сущность изобретения: в канал вставляют термосканирующее устройство, заполняют канал водой с температурой, ниже температуры стенки канала, фиксируют скорость охлаждения стенки канала в реперных точках, затем сливают воду и фиксируют скорость разогрева стенки канала в реперных точках, при этом расстояние между реперными точками равно расстоянию между большим и малым графитовыми кольцами, а число точек контроля температуры в сечении канала составляет не менее четырех и они распложены попарно на линиях максимального диаметра канала. 2 ил.

Description

Предлагаемое изобретение относится к области измерительной техники и служит для определения ресурса работы ядерных реакторов типа РБМК по критерию исчерпания зазора в системе технологический канал (ТК) - графитовая кладка (ГК).
Известны способы определения ресурса работы ядерных реакторов РБМК, заключающиеся в экстраполяции данных краткосрочных экспериментальных исследований свойств и поведения материалов ТК и ГК в условиях радиационного облучения на длительные сроки -10-20 лет [1].
Недостатком указанных способов являются низкая точность вследствие невозможности точного воспроизведения режимов эксплуатации указанных изделий при экспериментальных исследованиях.
Наиболее близким к предлагаемому способу является способ, при котором производят прямое измерение зазора в системе ТК - ГК посредством различных датчиков, например вихретоковых [2].
Недостатком способа является низкая точность измерений по причине крайне слабого влияния величины зазора на показания таких датчиков.
Целью изобретения является повышение точности измерений.
Указанная цель достигается за счет того, что для определения зазора в канал вставляют термосканирующее устройство, заполняют канал водой с температурой, ниже температуры стенки канала, и фиксируют скорость охлаждения стенки канала в реперных точках, затем сливают воду и фиксируют скорость разогрева стенки канала в реперных точках, при этом расстояние между реперными точками равно расстоянию между большим и малым графитовыми кольцами, а число точек контроля температуры в сечении канала составляет не менее четырех, и они расположены попарно на линиях максимального диаметра канала.
Схема реализации способа и конструкция ТК показана на фиг. 1. В режиме остановленного реактора, в период планового ремонта, температура кладки за счет взаимодействия с остаточным радиоактивным излучением находится в пределах 100-150 градусов по Цельсию. Охлаждение кладки происходит за счет принудительной циркуляции инертного газа гелия или азота в зазоре 3 между ТК и ГК. Геометрия зазора между ТК и ГК задается графитовыми кольцами большего 4 и меньшего 5 диаметра так, что кольцо большего диаметра 4 касается графитовой кладки и образует зазор с наружной стенкой ТК 2 порядка 2 мм. Кольцо меньшего диаметра касается наружной стенки ТК и образует зазор с графитовой кладкой 1 также порядка 2 мм. Кольца 4 и 5 расположены по высоте ТК и ГК поочередно (участок АВ). Нарушение величины зазора происходит в результате радиационного распухания графитовой кладки, с одной стороны, и увеличения диаметра канала, с другой. В этом случае происходит сплошное касание колец 4 и 5 как графитовой кладки, так и наружной поверхности ТК (участок CD), фиг. 1. Кроме того, к нарушению величины зазора приводит искривления осей ТК и ГК. Нарушение величины зазора приводит к ухудшению охлаждения кладки, а при полном его исчерпании - к защемлению ТК.
Предлагаемый способ основан на использовании разницы температурных градиентов между графитовой кладкой 1 и стенкой ТК 2 в точках касания графитовых колец типа 4 и типа 5 соответственно. Указанная разница образуется за счет различия коэффициентов теплопроводности каналов передачи тепла SA, и SB, фиг. 1. Канал SA образован средами графит (кладка) - графит (кольцо 4) - графит (кольцо 5) - металл (ТК). Канал SB образован средами графит (кладка) - графит (кольцо 4) - зазор (гелий или азот) - металл (ТК). При наличии постоянного теплоотвода с внутренней поверхности ТК, который осуществляется за счет циркуляции теплоносителя 6 по тракту 7-8, формируются различные температурные градиенты в тепловых трактах SA и SB. Это приводит к адекватной градиентам разнице температур на внутренней поверхности ТК в точках А и В. В случае полного исчерпания зазора формируется канал передачи тепла третьего типа - графит (кладка) - графит (кольцо 4) - металл (ТК), см. участок CD, фиг. 1. Таким образом все три типа состояния зазора будут формировать характерное распределение температурного поля на наружной и внутренней поверхности ТК.
На фиг. 2 (кривая 1) показаны графики флуктуаций температурного поля по высоте ТК на его внутренней поверхности в зависимости от состояния зазора. Позиция 9 фиг. 2 соответствует температуре в точке B фиг. 1, позиция 10 соответствует температуре в точке А, а позиция 11 участку с нулевым зазором CD, фиг. 1. В случае станционарного режима разогрева стенки канала градиент температуры в каждом из вышеописанных каналов передачи тепла остается постоянным. Высокая степень теплопроводности циркония способствует существенному выравниванию температурных полей на внутренней стенке ТК, что затрудняет их фиксацию. Кроме того, в режиме стационарного разогрева существенный вклад в суперпозицию температурных полей вносят тепловые поля посторонних источников тепла, например топливных сборок в соседних ячейках. Оценка вклада таких источников в суммарное поле температур достаточно затруднен.
В предлагаемом способе, в качестве информативного параметра, соответствующего величине воздушного (заполненного гелием или азотом) зазора предлагается использовать время разогрева или охлаждения стенки ТК в режиме изменения градиента температуры. Заметное изменение градиента можно достигнуть, например, при наливании или удалении холодной воды из ТК или при ограничении доступа теплоносителя к локальной точке ТК на время произведения замеров (момент касания датчика температуры к стенке ТК). Для реализации способа измерительный зонд 12 оснащается разнесенными по высоте датчиками температуры или термосканерами R, К, F, фиг. 1, расположенные с шагом, равным расстоянию между большим и малым графитовыми кольцами. Термосканер погружается в канал и фиксируется, неподвижно охватывая датчиками выбранный объем реперных точек контроля. Очевидно, что скорость повышения температуры в таких точках после удаления теплоносителя будет зависеть от величины газового зазора, см. фиг. 2, кривая 2. Сравнение скоростей разогрева и охлаждения стенки ТК позволяют производить исключение случайных погрешностей измерения за счет сравнения кривых. Контроль температуры в двух противоположных точках на линии максимального диаметра позволит производить сверку градуировочных характеристик датчиков в функции от величины зазора по заранее известному значению прироста зазора в противоположных точках контроля на уровне большего кольца 4.
Так как предлагаемый способ диагностики реализуется в режиме нестанционарного разогрева, он практически нечувствителен к посторонним источникам тепла и максимально чувствителен к процессам теплопередачи, связанным именно с величиной зазора.
Способ позволит определять также зоны разрыва контакта между большим и малым графитовыми кольцами вследствие нарушения на этих участках регулярности колебаний температуры или скорости ее изменения на внутренней стенке ТК.
Реализация предлагаемого способа измерений возможна как с помощью различного рода датчиков температуры, например термопар, так и с использованием тепловизоров с фиксацией данных на видеокассете, или других систем бесконтактного измерения температуры поверхности - ультразвуковых или лазерных.
Использование предлагаемого способа существенно повысит качество, скорость и достоверность диагностики зазора в системе ТК-ГК РБМК. Это позволит точно прогнозировать сроки ремонта или замены оборудования активной зоны реактора.
Источники информации
1. Долежаль Н.А., Емельянов И.Я. "Канальный ядерный энергетический реактор" - М. Атомиздат, 1980.
2. Сборник трудов Кафедры "Автоматика, контроль и диагностика АЭС" - Обнинск, ИАТЭ, 1993, с. 15-18.

Claims (1)

  1. Способ контроля зазора между технологическим каналом и графитовой кладкой реакторов РБМК, заключающийся в фиксации зависимости параметров датчиков в функции от величины зазора, отличающийся тем, что в канал вставляют термосканирующее устройство, заполняют канал водой с температурой ниже температуры стенки канала и фиксируют скорость охлаждения стенки канала в реперных точках, затем сливают воду и фиксируют скорость разогрева стенки канала в реперных точках, при этом расстояние между реперными точками равно расстоянию между большим и малым графитовыми кольцами, а число точек контроля температуры в сечении канала составляет не менее четырех и они расположены попарно на линиях максимального диаметра канала.
RU98109697A 1998-05-21 1998-05-21 Способ контроля зазора между технологическим каналом и графитовой кладкой реакторов рбмк RU2147775C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98109697A RU2147775C1 (ru) 1998-05-21 1998-05-21 Способ контроля зазора между технологическим каналом и графитовой кладкой реакторов рбмк

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98109697A RU2147775C1 (ru) 1998-05-21 1998-05-21 Способ контроля зазора между технологическим каналом и графитовой кладкой реакторов рбмк

Publications (2)

Publication Number Publication Date
RU98109697A RU98109697A (ru) 2000-02-20
RU2147775C1 true RU2147775C1 (ru) 2000-04-20

Family

ID=20206310

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98109697A RU2147775C1 (ru) 1998-05-21 1998-05-21 Способ контроля зазора между технологическим каналом и графитовой кладкой реакторов рбмк

Country Status (1)

Country Link
RU (1) RU2147775C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Сборник трудов кафедры "Автоматика, контроль и диагностика АЭС". - Обнинск, ИАТЭ, 1993, с. 15-18. *

Similar Documents

Publication Publication Date Title
US7802916B2 (en) Differential scanning calorimeter
GB1587969A (en) Device for measuring local power within a nuclear reactor fuel assembly
Sinha Effects of surface roughness, oxidation level, and liquid subcooling on the minimum film boiling temperature
US5258929A (en) Method for measuring thermal conductivity
US4440716A (en) In-situ calibration of local power measuring devices for nuclear reactors
CN114791325A (zh) 一种用于空天飞机地面热强度舱体试验的热流标定方法
US7273316B2 (en) Device and method for thermogravimetrically testing the behavior of a solid material
JP4723963B2 (ja) 炉心冷却材温度測定装置、炉心冷却材温度測定方法および原子炉監視装置
RU2147775C1 (ru) Способ контроля зазора между технологическим каналом и графитовой кладкой реакторов рбмк
Dekusha et al. Information-measuring technologies in the metrological support of thermal conductivity determination by heat flow meter apparatus
Reynard-Carette et al. Review of nuclear heating measurement by calorimetry in France and USA
JPH1039083A (ja) 炉内情報監視装置
JP2001502801A (ja) 硼素濃度検出用測定装置
RU2138862C1 (ru) Способ контроля зазора между технологическим каналом и графитовой кладкой реактора типа рбмк
JPH03154856A (ja) 熱膨張測定装置
WO1994006000A1 (en) Differential scanning calorimeter
JP3953170B2 (ja) 比熱測定方法及び示差走査熱量計
US3620068A (en) Quench calorimeter
JPS6211317B2 (ru)
EP0325441A2 (en) A method for measuring thermal conductivity
JPH11101890A (ja) 原子炉内出力監視装置
US20210372957A1 (en) Optical fiber-based gamma calorimeter (ofbgc)
RU2160433C2 (ru) Способ определения погрешности измерения температуры
JP2002071472A (ja) 光ファイバ温度計測装置および熱媒体漏洩検出装置
Jirousek SKODA in-core calorimeters