RU2136479C1 - Материал матриц алмазного и абразивного инструментов и способ его изготовления - Google Patents

Материал матриц алмазного и абразивного инструментов и способ его изготовления Download PDF

Info

Publication number
RU2136479C1
RU2136479C1 RU98110410A RU98110410A RU2136479C1 RU 2136479 C1 RU2136479 C1 RU 2136479C1 RU 98110410 A RU98110410 A RU 98110410A RU 98110410 A RU98110410 A RU 98110410A RU 2136479 C1 RU2136479 C1 RU 2136479C1
Authority
RU
Russia
Prior art keywords
alloy
wear
impregnating
temperature
heating
Prior art date
Application number
RU98110410A
Other languages
English (en)
Inventor
Л.Л. Волков
Original Assignee
Тульское государственное научно-исследовательское геологическое предприятие
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тульское государственное научно-исследовательское геологическое предприятие filed Critical Тульское государственное научно-исследовательское геологическое предприятие
Priority to RU98110410A priority Critical patent/RU2136479C1/ru
Application granted granted Critical
Publication of RU2136479C1 publication Critical patent/RU2136479C1/ru

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Изобретение относится к производству алмазного и абразивного инструментов методами порошковой металлургии. Материал матриц алмазного и абразивного инструментов содержит релит при следующем соотношении компонентов, мас.%: карбид вольфрама 31-59, кобальт 1,5-8, релит 20, медь 37 - 41, никель 4. Способ включает смешивание компонентов, прессование смеси на гидравлических прессах в пресс-формах с удельным давлением от 30 до 80 МПа, нагрев прессовок совместно с пропиточным сплавом токами высокой частоты до температуры 500 - 600oС со скоростью 20 - 30oС/мин с последующим нагревом до температуры (1083 - 1140) + 20oС со скоростью 90 - 100oС мин и выдержкой для инфильтрации пропиточного сплава в жидкотекучем состоянии в прессовку материала в течение 120 - 240 с. Изобретение позволяет создать материал матриц с заданными физико-механическими свойствами. 2 с. п. ф-лы, 3 табл.

Description

Изобретение относится к производству алмазно-абразивного инструмента методами порошковой металлургии, в частности, к получению материала с заданными физико-механическими свойствами для матриц алмазного и абразивного инструментов.
Известен износостойкий композиционный материал на основе карбида вольфрама, меди и никеля и способ получения комбинированных деталей (М.В.Голуб "Износостойкие композиционные материалы на основе карбида вольфрама, меди и никеля". Сборник "Долговечность трущихся деталей машин" под общей редакцией Д. Н. Гаркунова. М. Машиностроение, 1986, выпуск 1). Износостойкая часть комбинированных деталей выполнена из такого материала, а остальная часть - из стали. Сущность способа изготовления заключается в том, что в стальной заготовке с необходимыми допусками на окончательную обработку делают кольцевую торцевую канавку, обеспечивающую размеры контактной поверхности. Для лучшего сцепления износостойкого материала со стальной заготовкой основание канавки делают рифленым. В канавку равномерным слоем засыпают шихту, состоящую из порошков карбидов металлов, которую затем прессуют пуансоном. На поверхность напрессованного слоя равномерно укладывают пропиточный материал и заготовку помещают в печь, где в восстановительной среде или нейтральной среде происходит спекание, пропитка и припаивание спрессованного слоя.
Содержание в материале компонента релита более 50% по массе резко ухудшает структуру пропитанного материала и снижает его предел прочности при сжатии. Учитывая, что породоразрушающий инструмент, в основном, работает в режиме сжатия, это является недостатком прототипа. Кроме того, при давлениях прессования более 100 МПа в прессовках такого материала после снятия давления появляются расслойные трещины. Трещины возникают в связи с упругим последействием материала, когда последний, максимально уплотнившись, начинает работать как абсолютно жесткое тело, передающее давление на оснастку (стальную или графитовую пресс-формы). Появление в прессовках из такого материала даже микротрещин, считается снижением выхода годного продукта (браком) и не достижением заданных свойств.
Наиболее близкой по техническою сущности и достигаемому результату к заявляемому является металлическая связка, содержащая, масс.%: карбид вольфрама 24-59, кобальт 4-10, медь 30-57, олово 7-13 (а.с. 709350, кл. B 24 D 3/06 авторы: Г. Ф. Голуб. , Ф. М. Весерман и др. "Металлическая связка", опубл. 15.01.80 г. Б.И. 2). При этом каркас содержит указанные компоненты в количестве, масс. % : карбид вольфрама 24-59, кобальт 4-10, медь 4-22; а пропиточный сплав: медь 26 - 35 и олово 7-13. При варьировании процентным содержанием компонентов получают твердость связки: 15-25 HRB, 20-30 HRC, 30-40 HRC. Сущность способа изготовления прототипа заключается в том, что все компоненты каркаса связки тщательно смешивают, затем их прессуют при давлении 400-500 МПа кг/см2. Спрессованный каркас пропитывают расплавом из меди и олова при температуре от 850 до 890oC в среде водорода, выдержка при температуре пропитки составляет 30 минут.
Необходимо отметить, что недостатком данной связки является присутствие в пропиточном сплаве олова для снижения температуры пропитки твердосплавного каркаса. Известно, что олово и медь плохо смачивают твердосплавный каркас. Это обстоятельство отрицательно сказывается на способе изготовления - удлиняя время пропитки до 30 минут после достижения сплавом жидкотекучего состояния. Процесс пропитки и цементации спрессованного твердосплавного каркаса определяется поверхностными явлениями, протекающими на границе твердое тело-жидкость. Чтобы пропиточный сплав мог проникнуть в поры между зернами карбида вольфрама, он должен иметь минимальный угол с смачивания. Отсюда возникновение слабых атомарных связей в материале и ухудшение его физико-механических и эксплуатационных свойств.
Заявляемое изобретение позволяет создать материал матриц алмазного и абразивного инструментов с заданными физико-механическими свойствами:
плотностью ( γ ) от 7,7 до 10,15•10-3 кг/м3,
пористостью (П) от 48 до 34,6%,
твердостью (Т) от 17 до 51 HRC,
износом (Q) от 1,29 мм до 0,61 мм на см2 площади торца.
Для достижения в материале физико-механических свойств материал матриц содержит следующие компоненты, масс.%:
карбид вольфрама - 31-59
медь - 37-41
кобальт - 1,5-8
никель - 4
релит - 20
При этом материал матриц состоит из каркаса, содержащего указанные компоненты в количестве, масс.%:
карбид вольфрама - 31-59
кобальт - 1,5-8
релит - 20
и пропиточного сплава, содержащего компоненты, масс.%:
медь - 37-41
никель - 4
Материал матриц получают путем прессования его механических смесей на гидравлических прессах в пресс-формах при давлении 30 - 80 МПа, а затем спрессованный материал вместе с пропиточным сплавом подвергают нагреву ТВЧ до температуры 500-600oC со скоростью 20-30oC в минуту, последующий нагрев до температуры 1083-1140 + 20oC - со скоростью 90-100oC в минуту, а процесс инфильтрации пропиточного сплава в жидкотекучем состоянии в прессовку длится от 120 до 240 секунд.
Отличительным признаком является количественный и весовой состав компонентов материала (табл. 1), при котором материал после холодного прессования получает заданные свойства (табл. 2): плотность ( γ ) от 7,7 до 10,15-3 кг/м3 и пористость (П) от 48 до 34,6% до пропитки. Полученные экспериментальные значения плотности и пористости материала очень близко сходятся с расчетными данными (табл. 2), определяемыми по формулам регресс:
Figure 00000001

где: P - экспериментальные значения плотности и пористости (табл. 2) при давлении прессования от 30 до 80 МПа,
X1 - экспериментальные значения плотности и пористости материала на основе карбида вольфрама (табл. 2),
X2 - экспериментальные значения плотности и пористости материала на основе вольфрама-кобальтовой смеси (табл. 2).
Как видно из данных, приведенных в табл. 2, ошибка в вычислении не превышает 5%, что вполне допустимо при технических вычислениях. При обработке экспериментальных данных коэффициенты, соответственно, составили: корелляции-0,998-0,989, детерминации- 0,995-0,979, критерий Фишера - 1202-353. Таким образом, состав и процентное соотношение компонентов позволяет получить заданные свойства в части плотности и пористости материала матрицы.
Известно, что плотность и пористость, являясь структурными свойствами материала, при дальнейшей его термообработке значительно влияют на его механические и эксплуатационные свойства. В табл. 3 приведены экспериментальные и расчетные данные полученных свойств, в части твердости и износа материала матриц. Из данных, приведенных в табл. 3, следует, что снижение пористости и увеличение плотности материала, в заданных пределах, дает возможность регулировать, после инфильтрации в спрессованный материал пропиточных сплавов, твердость и износ материала. Полученные экспериментальные данные твердости (Т) и износа (Q) обработаны методами математической статистики и имеют близкую сходимость с результатами расчетных значений, выполненных по формулам регресс:
Т = 48,813 + 0,01292P + 0,2089X2 - 0,00356X42,
Figure 00000002

где: P - экспериментальные значения твердости и износа материала при давлениях прессования 30-80 МПа (табл. З),
X1 - экспериментальные значения твердости и износа материала на основе карбида вольфрама (табл. 3),
X2 - экспериментальные значения твердости и износа материала на основе вольфрамо-кобальтовой смеси (табл. 3),
X3 - экспериментальные значения твердости и износа материала с включением в состав релита (табл. 3),
X4 - экспериментальные значения твердости и износа материала с включением в состав меди (табл. 3).
При обработке экспериментальных данных твердости и износа материалы матриц методами математической статистики коэффициенты, соответственно, составили: корелляции - 0,959-0,785, детерминации - 0,921-0,53, критерия Фишера - 207-14,6. Таким образом, состав и процентное соотношение компонентов состава позволяет получать заданные свойства в части твердости и износа материала матриц.
Данные табл. 2 и 3 показывают, что введение в состав материала релита (20%) позволяет регулировать и получать свойства материала в заданных пределах, определяемых заявляемым. Отсутствие релита в материале резко повышает износ материала более 1,29 мм на см2 площади торца матрицы, что ухудшает работоспособность (износостойкость) матриц породоразрушающего и абразивного инструментов. Повышенный износ материала приводит к быстрому обнажению и выпадению режущих элементов из материала матриц, например, однослойного алмазного инструмента. Введение в состав материала релита более 20 масс.% резко повышает износостойкость материала (величина обратная износу), более 0,61 мм на см2 площади торца, что также снижает работоспособность матриц, особенно импрегнированных алмазами мелких фракций. Снижение работоспособности проявляется в том, что материал матрицы, импрегнированный алмазами мелких фракций и горная порода работают в режиме микрорезания (истирания). При этом материал матрицы истирается о горную породу и в матрице обнажается новый слой материала с алмазами, осуществляющий режим микрорезания. Если этого не происходит, то режим разрушения горной породы приостанавливается по причине зашлифования материала матрицы и прекращения обнажения новых слоев материала с режущими микрокристаллами алмазов. Указанное существенно отличает заявляемое от прототипа.
Введение в состав компонентов материала никеля (4% по массе) увеличивает твердость и предел прочности материала при сжатии. Кроме этого, присутствие никеля в пропиточном сплаве улучшает инфильтрационные свойства сплава в жидкотекучем состоянии. Улучшение пропиточных свойств сплава меди с никелем объясняется кристаллическими, химическими и энергетическими характеристиками электронного строения решетки этих материалов, их способностью образовывать растворы в жидкой и твердой фазах. Одна медь слабо контактирует с карбидом вольфрама и кобальтом и не имеет химической связи с последними даже в присутствии жидкой фазы. При этом введение в материал никеля менее 4% снижает твердость ниже 17 HRC и увеличивает износ выше 1,28 мм на см2 площади торца матрицы. Введение в состав материала никеля более 4 масс.% не улучшает смачивание пропиточного сплава, а приводит к дополнительному его расходу. Изложенное также существенно отличает заявляемое от прототипа.
Снижение давления прессования ниже 30 МПа приводит к увеличению пористости более 48%, снижению плотности ниже 7,7•10-3 кг/м3, уменьшению твердости ниже 17 HRC и увеличению износа выше 1,29 мм на см2 площади торца (табл. 2 и 3), что ухудшает работоспособность материала матриц породоразрушающего и абразивного инструментов и в целом ухудшает заданные свойства. Увеличение давления прессования выше 80 МПа приводит к некондиционному выходу прессовок материала из-за наличия в прессовках расслойных трещин. Трещины образуются из-за упругого последействия, возникающего в материале, после того как он, максимально уплотнившись, начинает работать как абсолютно жесткое тело, передающее давление на оснастку. Это является также отличительным признаком заявляемого.
Экспериментальными работами, выполненными в ТулНИГП, установлено, что применение ТВЧ при нагреве матричных композиций по сравнению с объемным нагревом, позволяют улучшить механические и эксплуатационные свойства (твердость, износ) материала матриц и сократить длительность инфильтрации пропиточного сплава в материал. Это объясняется тем, что при пересечении прессовок материала из порошковых металлических материалов магнитными силовыми линиями в пористой прессовке матричного материала наводится электроток. При прохождении электротока по прессовке в местах наилучшего контакта между частицами порошка (где наименьшее сопротивление) возникает эффект нагрева с высокими температурами. Этот эффект создает условия для лучшего уплотнения частиц входящих компонентов в материале за счет увеличения поверхности контакта, улучшения условий для площадей скольжения (при дуффузном перемещении частиц) и растворения ингредиентов (кобальт, никель). Но в связи с тем, что материал получают методом инфильтрации пропиточных сплавов в прессовку, которую нагревают под действием ТВЧ, а пропиточный сплав до температуры 500-700oC нагревается за счет температуры, создаваемой в объеме, в котором происходит пропитка (объемный нагрев), так как основная масса сплава состоит из меди. Поэтому существенным признаком в заявляемом является также регулирование скорости нагрева материала совместно с пропиточным сплавом. Первая фаза нагрева со скоростью 20-30oC в мин объясняется созданием равномерных условия нагрева материала и пропиточного сплава для выравнивания температурного поля. При этом прессовка материала из металлических порошков нагревается до 500-600oC за счет ТВЧ, а пропиточный сплав - за счет объемного нагрева, т.е. за счет температуры, созданной в объеме, в котором происходит изготовление материала. Последующий нагрев материала и сплава до температуры 1083-1140+20oC плавления сплава осуществляют со скоростью 90-100oC в мин, в связи с тем, что после температуры 600-700oC пропиточный сплав становится подверженным действию ТВЧ в части нагрева. В связи с этим последующий нагрев прессовки и сплава производят с одинаковой скоростью, т.е. температуры расплавления сплава и нагрева прессовки достигают за 5-6 мин, что также отличает заявляемое от прототипа.
Экспериментальными исследованиями, проведенными в ТулНИГП, установлено, что длительность инфильтрации сплава в материал без ухудшения его физико-механических свойств составляет 120-240 секунд. Жидкая фаза сплава в избыточном количестве, получаемая материалом за счет увеличения длительности более 240 секунд процесса инфильтрации, ухудшает механические и эксплуатационные свойства (твердость ниже 17 HRC, износ более 1,29 мм) в связи с изменением структуры материала матрицы, за счет разобщенности и вкрапления зерен твердосплавных порошков в материале матрицы. При меньшей длительности (менее 120 секунд) процесса инфильтрации, за счет поступления недостаточного количества расплава пропиточного сплава, в прессовке начинается первая фаза спекания зерен карбидов, их уплотнение и "захлопывание" пор и прекращение процесса инфильтрации сплава в прессовку материала, что приводит к некондиционному выходу материала, к повышению брака и невозможности получить заданные свойства. Вышеизложенное является также существенным признаком, отличающим заявляемое от прототипа.
Все компоненты каркаса тщательно смешивают без алмазов, или с алмазами (при импрегнированном исполнении инструмента), смесь помещают в металлическую или графитовую формы с алмазами, устанавливают металлический корпус будущего инструмента, в зависимости от назначения инструмента и заданных физико-механических свойств, материм матрицы прессуют с удельный давлением 30-80 МПа, прессовку материала вместе с корпусом помещают в индуктор высокочастотной установки (УВЧ), внутрь корпуса инструмента помещают пропиточный сплав, сборку нагревают сначала со скоростью 20-30oC в мин до температуры 500-600oC, а затем со скоростью 90-100oC в мин до расплавления пропиточного сплава 1083-1140+20oC, температуру расплавления выдерживают 120-240 секунд для инфильтрации, затем выключают нагрев и сборка остывает до температуры окружающей среды.
Пример 1. Необходимо изготовить однослойный породоразрушащий инструмент с природными алмазами с материалом матрицы, износ которого не превышал бы 0,6-0,65 мм на см2 площади рабочего торца инструмента с твердостью и пределах 30-35 HRC. Таким требованиям соответствует состав материала под номером 12 (табл. 1 и 3), состоящий из компонентов, мacc.%:
карбид вольфрама - 37,5
кобальт - 1,5
релит - 20
медь - 37
никель - 4
Компоненты каркаса материала тщательно перемешивают, помещают в пресс-форму с алмазами, прессуют корпусом с удельным давлением 80 МПа, помещают сборку совместно с пропиточным сплавом в индуктор УВЧ, накрывают сборку графитовым тиглем и нагревают до температуры 600oC со скоростью 30oC в мин, а затем со скоростью 100oC в мин до температуря 1140+20oC. После расплавления пропиточного сплава дают выдержку в течение 240 секунд для инфильтрации сплава в матрицу. Выключают нагрев и сборка остывает до температуры окружающей среды. После механической обработки изготовленный инструмент используют для бурения горных пород средней твердости VIII-IX категории по буримости.
Пример 2. Необходимо изготовить импрегнированный инструмент с материалом матрицы, импрегнированной природными алмазами мелкой зернистости, износ материала которой не превышал бы 0,7-0,75 мм на см2 площади торца инструмента, а твердость составляла бы 43-45 HRC. Такими свойствами обладает состав материала под номером 6 (табл. 1 и 3), состоящий из компонентов, масс.%:
карбид вольфрама - 31
кобальт - 8
релит - 20
медь - 37
никель - 4
Компоненты каркаса материала тщательно смешивают между собой и с природными алмазами мелкой зернистости в заданной процентной концентрации, помещают в пресс-форму, прессуют корпусом с удельным давлением 50 МПа, помещают сборку с пропиточным сплавом в индуктор УВЧ, накрывают графитовым тиглем и нагревают со скоростью 25oC в мин до температуры 600oC, а затем со скоростью 100oC в мин до температуры расплавления связки. После расплавления пропиточного сплава дают выдержку для инфильтрации сплава в матрицу в течение 180 секунд. Выключают нагрев и сборку охлаждают до температуры +20oC. После механической обработки инструмент применяют для бурения горных пород средней абразивности X-XI категорий по буримости.
Пример 3. Требуется изготовить правящий карандаш с природными алмазами, расположенными в матрице в четыре слоя. Материал матрицы карандаша должен изнашиваться в пределах 1,25-1,29 мм на см2 площади торца и иметь твердость в пределах 15-20 HRC. Такие требования к инструменту предъявляются с целью возможности обнажения последующих слоев алмазов по мере отработки предыдущего слоя алмазных резцов. Этим требованиям соответствует состав материала под номером 3 (табл. 1 и 3), состоящий из компонентов, масс.%:
карбид вольфрама - 59
медь - 41
Алмазы послойно укладывают в корпусе карандаша, чередуя слой материала (карбида вольфрама), слой алмазов и т.д. Прессуют материал совместно с алмазами пуансоном с удельным давлением 30 МПа, помещают сборку с пропиточным сплавом в индуктор УВЧ, накрывают тиглем, нагревают со скоростью 20oC в мин до температуры 500oC, а затем со скоростью 90oC в мин до температуры 1083+20oC. После расплавления меди дают выдержку в течение 120 секунд для инфильтрации меди в матрицу. Выключают нагрев и сборку охлаждают до температуры окружающей среды. Изготовленный карандаш используют для правки абразивных шлифовальных кругов.
Технико-экономическая эффективность заключается в том, что расширяется возможность получения материала матриц инструмента с заданными свойствами, соответствующими физико-механическим свойствам горных пород. Это обстоятельство позволяет повысить ресурс стойкости и работоспособности инструментов, а также снизить себестоимость процессов бурения и шлифования, и правки. Кроме этого, расширяется возможность применения целого ряда режущих элементов: природных и синтетических алмазов, резцов на основе модификаций бора и сверхтвердых материалов. А также использование материалов для изготовления матриц правящего и абразивного инструментов (карандашей, отрезных кругов, роликов, брусков и т.п.).

Claims (1)

1. Материал матриц алмазного и абразивного инструментов, состоящий из порошка твердого сплава, содержащего карбид вольфрама и кобальт, износостойкой составляющей и пропиточного сплава, содержащего медь и никель, отличающийся тем, что в качестве износостойкой составляющей он содержит релит при следующем соотношении компонентов, мас.%:
Карбид вольфрама - 31 - 59
Кобальт - 1,5 - 8
Релит - 20
Медь - 37 - 41
Никель - 4
2. Способ изготовления материала матриц алмазного и абразивного инструментов, включающий смешивание компонентов, прессование смеси на гидравлических прессах в пресс-формах, нагрев прессовов токами высокой частоты до температуры плавления пропиточного сплава, выдержку для инфильтрации пропиточного сплава и охлаждение, отличающийся тем, что смесь прессуют с удельным давлением от 30 до 80 МПа, нагрев токами высокой частоты производят до температуры 500 - 600oС со скоростью 20 - 30oС/мин с последующим нагревом до температуры 1083 - 1140 + 20oС со скоростью 90 - 100oС/мин и выдержкой для инфильтрации пропиточного сплава в жидкотекучем состоянии в прессовку материала в течение 120 - 240 с.
RU98110410A 1998-06-01 1998-06-01 Материал матриц алмазного и абразивного инструментов и способ его изготовления RU2136479C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98110410A RU2136479C1 (ru) 1998-06-01 1998-06-01 Материал матриц алмазного и абразивного инструментов и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98110410A RU2136479C1 (ru) 1998-06-01 1998-06-01 Материал матриц алмазного и абразивного инструментов и способ его изготовления

Publications (1)

Publication Number Publication Date
RU2136479C1 true RU2136479C1 (ru) 1999-09-10

Family

ID=20206694

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98110410A RU2136479C1 (ru) 1998-06-01 1998-06-01 Материал матриц алмазного и абразивного инструментов и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2136479C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472866C2 (ru) * 2011-04-26 2013-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") Порошковый износостойкий материал и способ его изготовления
RU2754825C1 (ru) * 2020-03-24 2021-09-07 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Якутский научный центр Сибирского отделения Российской академии наук" Матрица для алмазного инструмента на основе карбида вольфрама со связкой из эвтектического сплава Fe-C и способ её получения

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472866C2 (ru) * 2011-04-26 2013-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") Порошковый износостойкий материал и способ его изготовления
RU2754825C1 (ru) * 2020-03-24 2021-09-07 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Якутский научный центр Сибирского отделения Российской академии наук" Матрица для алмазного инструмента на основе карбида вольфрама со связкой из эвтектического сплава Fe-C и способ её получения

Similar Documents

Publication Publication Date Title
CN101048249B (zh) 高密度研磨压块
CN109822102B (zh) 一种细粒度金刚石锯片的制备方法
CN105538177B (zh) 复合结合剂砂轮及其制造方法
DE112008000901T5 (de) Konturiertes PKD und PKB für Spiralbohrerspitzen und Fräsen und Verfahren zu deren Formgebung
CN111558720B (zh) 金属粉末材料、青铜基金刚石砂轮及其制备方法
JP7188726B2 (ja) ホウ素系結合材を用いたダイヤモンド基複合材及びその製造方法、並びにこれを用いた工具要素
CN106625198B (zh) 含氧化锆的复合型超硬珩磨油石及其制备方法
US4097274A (en) Method of making superhard articles
CN111266573B (zh) 一种聚晶立方氮化硼复合片的制备方法
RU2136479C1 (ru) Материал матриц алмазного и абразивного инструментов и способ его изготовления
WO2009013717A2 (en) Encapsulated material
EP2550340B1 (en) Aggregate abrasives for abrading or cutting tools production
JPS6339381B2 (ru)
EP0445389B1 (de) Kobaltgebundene Diamantwerkzeuge, Verfahren zu ihrer Herstellung sowie deren Verwendung
JPS6311414B2 (ru)
RU2754825C1 (ru) Матрица для алмазного инструмента на основе карбида вольфрама со связкой из эвтектического сплава Fe-C и способ её получения
CN104148642A (zh) 稀土改性钨基结合剂金刚石超薄锯片及其制造方法
RU2073590C1 (ru) Способ изготовления алмазосодержащего композиционного материала
Dai et al. Effects of sintering parameters and WC addition on properties of Iron-nickel pre-alloy matrix diamond composites
US4661155A (en) Molded, boron carbide-containing, sintered articles and manufacturing method
JP7425872B2 (ja) 鉄含有バインダーを含む多結晶ダイヤモンド
JPS6137221B2 (ru)
DE3719966A1 (de) Metallische bindung auf der basis von kupfer fuer die herstellung der arbeitsschicht eines schleifwerkzeuges
US1737255A (en) Hard alloy and process of manufacturing the same
DE2454636C3 (de) Verfahren zur Herstellung überharter Sinterhartmetalle