RU2133999C1 - Способ определения напряжения плоских зон полупроводника в мдп-структурах - Google Patents

Способ определения напряжения плоских зон полупроводника в мдп-структурах Download PDF

Info

Publication number
RU2133999C1
RU2133999C1 RU97113820A RU97113820A RU2133999C1 RU 2133999 C1 RU2133999 C1 RU 2133999C1 RU 97113820 A RU97113820 A RU 97113820A RU 97113820 A RU97113820 A RU 97113820A RU 2133999 C1 RU2133999 C1 RU 2133999C1
Authority
RU
Russia
Prior art keywords
semiconductor
pulse
voltage
mis
bias
Prior art date
Application number
RU97113820A
Other languages
English (en)
Other versions
RU97113820A (ru
Inventor
В.Ф. Бородзюля
Original Assignee
Санкт-Петербургский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Санкт-Петербургский государственный технический университет filed Critical Санкт-Петербургский государственный технический университет
Priority to RU97113820A priority Critical patent/RU2133999C1/ru
Publication of RU97113820A publication Critical patent/RU97113820A/ru
Application granted granted Critical
Publication of RU2133999C1 publication Critical patent/RU2133999C1/ru

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

Изобретение относится к измерению и контролю электрофизических параметров полупроводников и может быть использовано для оценки качества технологического процесса при производстве твердотельных микросхем и приборов на основе МДП-структур. Способ заключается в том, что на МДП-структуру подают напряжение смещения Uсм и обедняющие импульсы напряжения U1 и U2 ≥ 2U1, совмещают по времени импульсы U1 и U2 и из разности их амплитуд получают третий импульс U3, измеряют на них интегральные емкости C1, C2 и C3 соответственно, а напряжение плоских зон МДП-структур определяют по Uсм при выполнении условия: 1/С1 + 1/C2 = 1/С3. Технический результат, обеспечиваемый изобретением, - получение возможности просто при непосредственной регистрации Uсм = UFB, без сложных расчетов определять UFB с высокой точностью (до 1,0%) в широком диапазоне концентраций легирующей примеси в полупроводнике (N ~ 1011 - 1018 см-3), толщин диэлектрика МДП-структуры (d ~ 0,01 - 1 мкм), плотности поверхностных состояний на границе раздела диэлектрик - полупроводник (N ~ 1011 эВ-1 см-2). Способ может быть выполнен на стандартной радиоизмерительной аппаратуре. Измерение емкости области пространственного заряда полупроводника в режиме плоских зон дает возможность по известному соотношению определить уровень легирования полупроводника. 2 ил., 2 табл.

Description

Изобретение относится к области измерения и контроля электрофизических параметров полупроводников и может быть использовано для оценки качества технологического процесса при производстве твердотельных микросхем и приборов на основе МДП-структур.
Напряжение плоских зон UFB является одним из основных и широко используемых параметров МДП-структур, величина которого определяется суммарной плотностью зарядов (Qф) в диэлектрике и на границе раздела диэлектрик-полупроводник. В свою очередь величина Qф полностью определяется физическими свойствами диэлектрика и полупроводника и особенностями технологического процесса изготовления приборов.
В настоящее время для исследований свойств МДП-структур и, в частности, для определения UFB, широко используется метод вольтфарадных характеристик (ВФХ) [1]. Однако в этом случае для определения UFB необходимо сопоставление теоретических (расчетных) и экспериментальных ВФХ, что, во-первых, не обеспечивает экспрессности измерений, и, во вторых, не всегда возможно, так как для экспериментальных МДП-структур в ряде случаев не выполняются условия, необходимые для расчета теоретических ВФХ (например, наличие утечек в диэлектрике и большая плотность поверхностных состояний и ловушек на границе диэлектрик-полупроводник не позволяет с достаточной точностью вычислять концентрацию легирующей примести в полупроводнике и завышает величину емкости структуры в режиме плоских зон).
Известен способ определения UFB при освещении МДП-структуры импульсами света из области собственного поглощения полупроводника [2]. Сущность способа заключается в подаче и регистрации на МДП-структуре такого напряжения смещения Uсм, при котором сигнал фото-эдс при освещении МДП-структуры принимает минимальное значение.
Недостатками данного способа являются:
необходимость специальной оптической системы и источника света определенной длины волны излучения;
невозможность определения UFB для непрозрачных для света МДП-структур (образцы с непрозрачными электродами в закрытых корпусах);
искажение минимального сигнала фото-эдс за счет перезарядки поверхностных состояний (ПС) светом - это затрудняет определение UFB, особенно при концентрации ПС больших
N ~ 1011 эВ-1 см-2
За прототип выбран способ определения UFB, описанный в [3].
Для определения напряжения плоских зон используется простая мостовая схема измерения емкости, которая балансируется одновременно по двум сигналам - малому высокочастотному тестовому сигналу и большому сигналу обедняющего импульса U1 при подаче на структуру постоянного напряжения смещения Uсм, величина которого может изменяться. При этом определяется соответственно дифференциальная (Cn) и интегральная (C1) емкости МДП-структуры.
В режиме плоских зон, как показывают расчеты, должно выполняться соотношение:
C1 = 2Cn. Напряжение смещения, при котором выполняется это соотношение, и будет являться напряжением UFB.
Недостатком данного способа является необходимость измерения в нем дифференциальной емкости, которую измеряют на малом тестовом сигнале амплитудой порядка KT/q (30-50 мВ),
где K - постоянная Больцмана, T - температура МДП-стурктуры, q - заряд электрона). Это накладывает высокие требования к чувствительности применяемой измерительной техники. Кроме того, можно показать, что чувствительность дифференциальной и интегральной емкости по отношению к отклонению МДП-структуры от режима UFB различная. Так, например, при обедняющих импульсах напряжения, создающих изгиб зон
ψS ≃ 80 KT/q(~2,0 B)
и при отклонении начального изгиба зон
Figure 00000002
от состояния плоских зон на 2 KT/q (~50 мВ) C1 и Cn изменяются на 14,5% и 1,3% соответственно. При одном и том же Uсм ≠ UFB (вблизи ψS = 0) дифференциальная емкость изменяется в десять раз меньше, чем соответствующая интегральная. Это, в конечном счете, приводит к значительному уменьшению точности определения UFB (~10%), особенно для структур с высокой плотностью поверхностных состояний, которые делают вклад в измеряемую дифференциальную емкость.
В таблице 1 и 2 приведены величины относительного изменения (в процентах) интегральной и дифференциальной емкости. Расчеты сделаны для фиксированных начальных отклонений плоских зон: Uсм = UFB на величину
Figure 00000003
для обедняющих импульсов напряжения, создающих изгиб зон в полупроводнике ψS = (40, 80, 120, 160, 200) KT/q.
Технический результат, обеспечиваемый изобретением, увеличение точности определения UFB в широком диапазоне значений концентрации легирующей примеси в полупроводнике (N ~ 1011 - 1018 см-3) и при высокой плотности поверхностных состояний на границе раздела диэлектрик-полупроводник.
Nss ≥ 1011 эВ-1 см-2
Этот результат достигается тем, что в известном способе на МДП-структуру подают дополнительно второй обедняющий импульс напряжения с амплитудой U2 ≥ 2U1, совмещают во времени первый и второй импульсы, а из разности их амплитуд получают третий импульс U3, измеряют интегральные емкости C2 и C3 соответственно, и напряжение UFB МДП-структуры определяют по напряжению смещения Uсм при выполнении условия:
1/C1 + 1/C2 = 1/C3
Покажем, что условие (1) выполняется только в режиме плоских зон, т.е. при Uсм = UFB.
Интегральная емкость C, соответствующая приложению к структуре обедняющего импульса напряжения достаточно большой амплитуды (U >> KT/q), может быть определена как отношение приращения заряда Q ( ψS ) ОПЗ полупроводника к соответствующему приращению поверхностного изгиба зон ψS , т.е.
Figure 00000004

Используя известные соотношения для дифференциальной емкости Cn и заряда ОПЗ Q, имеем:
Cn = (qNεn/2ψS)1/2 (3)
Cn = εn/W Q = qNW (4)
И учитывая, что в точке плоских зон C = 2Cn получаем:
Figure 00000005

Тогда выражение (1) можно переписать в виде:
Figure 00000006

т.к. Q2 =
Figure 00000007
Q1 =
Figure 00000008

Таким образом, выражение (1) доказано.
Для оценки чувствительности способа по сравнению с прототипом воспользуемся для интегральной емкости C' и дифференциальной емкости C'n при начальных изгибах зон
Figure 00000009
, от которых подаются обедняющие импульсы напряжения не равные нулю, т.е.
Figure 00000010
и Uсм ≠ UFB, где C, Cn - значения емкостей при Uсм = UFB.
Figure 00000011

Figure 00000012

Результаты расчетов приведены в таблицах 1 и 2. Из них видно, что при Uсм ≠ UFB интегральная емкость изменяется примерно в десять раз больше, чем дифференциальная емкость, и поэтому такое изменение можно регистрировать с большей точностью. На фиг. 1 приведены эпюры подаваемых на МДП-структуру обедняющих импульсов напряжения U1, U2 и U3. Из фиг. 1 видно, что импульс U3 получают от верхнего уровня значения величины амплитуды первого импульса, до верхнего уровня значения величины амплитуды второго импульса, т.е. по своей амплитуде импульс U3 равен разности амплитуд U2 - U1. Это сделано для того, чтобы выполнить условие жесткой связи между C1, C2 и C3, для Uсм = UFB. Для того, чтобы обеспечить условие интегральности измеряемой емкости C3, U2 выбирают исходя из выполнения условия U2 ≥ 2U1.
Так как соотношение (1) относится к ОПЗ полупроводника, то с учетом емкости диэлектрика C0 МДП-структуры можно записать следующие выражения для интегральной емкости Cк МДП-структуры:
Figure 00000013

Figure 00000014

На фиг. 2 приведена схема простого устройства, позволяющего реализовать предлагаемый способ определения UFB.
Здесь:
1 - емкостная мостовая схема, состоящая из емкости МДП-структуры (CМДП), нагрузочных емкостей Cн1 = Cн2, магазинов емкостей M1, M2 - состоящего из M'2 и M''2. M1 и M2 состоят из набора эталонных емкостей Cэт.
2 - генератор прямоугольных импульсов типа Г5-56.
3 - источник постоянного напряжения смещения (например Б5-43)
4 - регистрирующее устройство - осциллограф типа C1-70.
5 - сдвоенный переключатель П5 для переключения магазинов емкостей M1, M'2 и M''2.
Из сопоставления выражений (9) и (10) видно, что реализацию соотношения (1) между емкостями C1, C2 и C3 легко осуществить, используя емкостную мостовую схему (фиг. 2), в одно из плеч которой включена МДП-структура с емкостью CМДП и нагрузочной емкостью Cн, а во второе плечо - два последовательно включенных магазина емкостей M1 и M2, и соответственно с нагрузочной емкостью Cн1 = Cн2. Магазин M1 служит для установки баланса емкости C0, а M2 состоит из двух независимых магазинов емкостей M'2 и M''2 для C1 и C2 соответственно. В режиме плоских зон мостовая схема будет уравновешена на импульсе U1 для емкости C1, на импульсе U2 для емкости C2 и на импульсе U3 для емкости C3, которую получают путем последовательного соединения магазинов емкостей M'2 и M''2. Переключатель П5 находится в положении 4 (см. фиг. 2).
Последовательно действий при определении UFB следующая:
Включают МДП-структуру в одно из плеч моста, а во второе плечо моста включают последовательно-включенные магазины M1 и M2. На магазине M1 устанавливают емкость Cэт, равную C0 (П5 в положении 1), а на магазине M2 устанавливают емкость Cэт = C1 (П5 в положении 3), при последовательном соединении магазинов M'2 и M''2, (П5 находится в положении 4), на магазине M2 устанавливают емкость, равную C3.
Подают напряжение смещения Uсм на МДП-структуру.
Падают на структуру обедняющие импульсы напряжения:
U1 > 100 KT/q ≃ 2,5 B, U2 ≃ 5B.
Отметим, что длительность Δtимп обедняющих импульсов U1 и U2, подаваемых на МДП-структуру, так же как и в прототипе, выбирают исходя из условия сохранения состояние обеднения в структуре после подачи обедняющего импульса. Постоянная времени релаксации tрел состояния обеднения для большинства исследуемых структур определяется генерационно-рекомбинационными параметрами полупроводника, и обычно находится в диапазоне 0,1 - 10 сек. Можно использовать соотношения для Δtимп ≤ tрел/20. Предлагается использовать Δtимп = = 1 - 10 мкс, при частоте следования:
f = 10 - 50 кГц. Поэтому tрел можно пренебречь.
Совмещаем во времени первый и второй импульсы напряжения и из разности их амплитуд получаем третий импульс U3.
Отметим, что интервал времени t между импульсами U1 и U2 задаем t < tф, где tф - длительность фронта импульса. Т.к. для стандартных генераторов типа Г5-56 tф < 10 нс, то этой величиной по сравнению с Δtимп можно пренебречь.
Изменяем значения емкостей в магазине M'2 и M''2 до получения условия баланса моста на импульсах U1 и U2 соответственно.
Находим такое Uсм, при котором при последовательном соединении M'2 и M''2 на импульсе U3 баланс моста не нарушается. Это будет выполняться при Uсм = UFB, так как в этом случае выполняется условие (1). Таким образом, изменяя напряжение Uсм регистрируют условие, при котором переключение магазинов емкостей из положений, соответствующих емкостям C1 и C2, на положение, соответствующее емкости C3, не нарушает баланса моста. При этом
UFB = Uсм.
Существенным достоинством предложенного способа является простота определения UFB, при регистрации Uсм = UFB непосредственно. Способ позволяет без всяких расчетов определять UFB с высокой точностью ( ~1%) в широком интервале концентрации легирующей примести в полупроводнике (N ~ 1011 - 1018 см-3), толщин диэлектрика МДП-структуры (d ~ 0,01 - 1 мкм), плотности поверхностных состояний границы раздела диэлектрик-полупроводник (N ~ 1011 эВ-1 см-2).
Способ не требует для своей реализации знания параметров полупроводника и диэлектрика, не требует специальных образцов для измерения. Способ может быть реализован на стандартной радио-измерительной аппаратуре. По сравнению с прототипом в нем отсутствует малосигнальный тестовый импульс, и это позволяет значительно повысить точность определения UFB (в 2 - 3 раза) и уменьшить требования к чувствительности измерительной регистрирующей аппаратуре.
Литература:
[1] Zaininger K.H., Heiman F.P. - The Technique as an Analytical Tool - Solid State Technology Vol. 13 (1973) N 6 p. 47-55.
[2] Yun B. H. - Direct measurement of flat-bend voltage in MOS by infrared exception.
Applied Physics letters Vol. 21 (1972) N 5 p. 194-195.
[3] Бородзюля В. Ф., Голубев В.В. - Методы электрического тестирования заряда в диэлектрике и на поверхностных состояниях в МДП-структурах. Тезисы докладов Российской научно-технической конференции по физике диэлектриков с международным участием. "Диэлектрики - 93" Часть 2, стр. 100.

Claims (1)

  1. Способ определения напряжения плоских зон полупроводника в МДП-структурах, включающий подачу и регулирование постоянного напряжения смещения, подачу на структуру обедняющего импульса напряжения, называемого первым, и измерение на нем интегральной емкости области пространственного заряда полупроводника, отличающийся тем, что на МДП-структуру дополнительно подают второй обедняющий импульс напряжения с амплитудой, равной или большей удвоенной амплитуды первого обедняющего импульса, совмещают во времени первый и второй обедняющие импульсы, дополнительно измеряют интегральные емкости на втором обедняющем импульсе и на разности первого и второго обедняющих импульсов, называемой третьим импульсом, а напряжение плоских зон МДП-структуры определяют по напряжению смещения при выполнении условия
    1/С1 + 1/С2 = 1/С3,
    где С1 - интегральная емкость на первом импульсе;
    С2 - интегральная емкость на втором импульсе;
    С3 - интегральная емкость на третьем импульсе.
RU97113820A 1997-08-07 1997-08-07 Способ определения напряжения плоских зон полупроводника в мдп-структурах RU2133999C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97113820A RU2133999C1 (ru) 1997-08-07 1997-08-07 Способ определения напряжения плоских зон полупроводника в мдп-структурах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97113820A RU2133999C1 (ru) 1997-08-07 1997-08-07 Способ определения напряжения плоских зон полупроводника в мдп-структурах

Publications (2)

Publication Number Publication Date
RU97113820A RU97113820A (ru) 1999-06-20
RU2133999C1 true RU2133999C1 (ru) 1999-07-27

Family

ID=20196254

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97113820A RU2133999C1 (ru) 1997-08-07 1997-08-07 Способ определения напряжения плоских зон полупроводника в мдп-структурах

Country Status (1)

Country Link
RU (1) RU2133999C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2480861C1 (ru) * 2011-08-31 2013-04-27 Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова" Способ определения коэффициента относительной эффективности и эквивалентной дозы источника рентгеновского излучения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Бородзюля В.Ф, Голубев В.В. Методы электрического тестирования заряда в диэлектрике и на поверхностных состояниях в МДП-структурах./Тезисы докладов Российской научно-технической конференции по физике диэлектриков с международным участием. "Диэлектрики - 93". - Санкт-Петербург, 22-24 июня 1993, часть 2, с.100. Yun B.H. Direct measurement of flat - bend voltage in MOS by infrared exception. Applied Physics letter v.21(1972), N5, p.194-195. Zaininger K.H., Heiman F.P. The Technique as an Analytical Tool. Solid state Technology v.13(1973), N6, p.47-55. Технология СБИС/Под ред. С. Зи, кн.2. - М.: Мир, 1986, с.102-103. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2480861C1 (ru) * 2011-08-31 2013-04-27 Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова" Способ определения коэффициента относительной эффективности и эквивалентной дозы источника рентгеновского излучения

Similar Documents

Publication Publication Date Title
US6037797A (en) Measurement of the interface trap charge in an oxide semiconductor layer interface
JPH0652750B2 (ja) 半導体ウエハの非接触試験方法
US4325025A (en) Automated channel doping measuring circuit
KR930011421B1 (ko) 용량소자의 용량-전압특성에 영향을주는 양을 측정하는회로 및 방법
Chiodini et al. A 400 kHz, fast-sweep Langmuir probe for measuring plasma fluctuations
US7339392B2 (en) Apparatus measuring substrate leakage current and surface voltage and related method
RU2133999C1 (ru) Способ определения напряжения плоских зон полупроводника в мдп-структурах
US3206674A (en) Method of measuring the electrical properties of a semiconductor crystal, viz. the specific resistance and the life span of the charge carriers of a highohmic crystal
US6249117B1 (en) Device for monitoring and calibrating oxide charge measurement equipment and method therefor
US6377067B1 (en) Testing method for buried strap and deep trench leakage current
US3448378A (en) Impedance measuring instrument having a voltage divider comprising a pair of amplifiers
RU2212078C2 (ru) Способ определения напряжения плоских зон полупроводника в металл-диэлектрик-полупроводник-структурах
US5444389A (en) Method and apparatus for measuring lifetime of minority carriers in semiconductor
Andreev et al. Programmable set to monitor charge state change of MIS devices under high-fields
Martens et al. Capacitance measurement with MSP430 microcontrollers
SU919486A1 (ru) Устройство дл определени генерационного времени жизни неосновных носителей зар да в МДП-конденсаторах
JP2584093B2 (ja) 絶縁膜の信頼性評価方法
Day et al. Deep level transient spectroscopy for diodes with large leakage currents
RU2117956C1 (ru) СПОСОБ ОПРЕДЕЛЕНИЯ ПОВЕРХНОСТНОГО ИЗГИБА ЗОН ПОЛУПРОВОДНИКА ψs В МДП-СТРУКТУРЕ
Lin et al. New methods for using the Q‐V technique to evaluate Si‐SiO2 interface states
SU813329A1 (ru) Способ измерени параметровглубОКиХ цЕНТРОВ B пОлупРОВОдНиКАХ
RU2028697C1 (ru) Способ определения параметров полупроводниковых материалов и гетероструктур
RU2022288C1 (ru) Устройство для испытания конденсаторов
Liu et al. Behavior and frequency dependence of AC-DC high voltage transfer standard under humidity step changes
SU1168871A1 (ru) Способ измерени поверхностного сопротивлени высокоомного покрыти на диэлектрической подложке