RU2129273C1 - Способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов - Google Patents

Способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов Download PDF

Info

Publication number
RU2129273C1
RU2129273C1 RU97119786A RU97119786A RU2129273C1 RU 2129273 C1 RU2129273 C1 RU 2129273C1 RU 97119786 A RU97119786 A RU 97119786A RU 97119786 A RU97119786 A RU 97119786A RU 2129273 C1 RU2129273 C1 RU 2129273C1
Authority
RU
Russia
Prior art keywords
fluorescence
endogenous
photosensitizer
endoscopic
examination
Prior art date
Application number
RU97119786A
Other languages
English (en)
Inventor
В.В. Соколов
Н.Н. Жаркова
Е.В. Филоненко
Original Assignee
Московский научно-исследовательский онкологический институт им.П.А.Герцена
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский научно-исследовательский онкологический институт им.П.А.Герцена filed Critical Московский научно-исследовательский онкологический институт им.П.А.Герцена
Priority to RU97119786A priority Critical patent/RU2129273C1/ru
Application granted granted Critical
Publication of RU2129273C1 publication Critical patent/RU2129273C1/ru

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Способ может быть использован в медицине, а именно в онкологии. Определяют соотношения между интегральной интенсивностью флюоресценции тканей в спектральном диапазоне 625-645 нм (cуперпозиция спектров собственной (эндогенной) флюоресценции и экзогенной флюоресценции фотосенсибилизатора) и интегральной интенсивностью флюоресценции в спектральном диапазоне 550-570 нм (собственная флюоресценция тканей). Способ позволяет повысить достоверность диагностики и снизить число ложноположительных сигналов.

Description

Изобретение относится к области медицины, а именно к онкологии, и может быть использовано при уточняющей диагностике, поиске новых очагов и определении границ опухолевых поражений полых органов.
Флюоресцентная диагностика рака основана на возможности распознавания злокачественных тканей по индуцированной световым излучением характерной флюоресценции экзогенных или эндогенных флюорохромов.
Избирательность накопления фотосенсибилизатора в злокачественных тканях и возможность его обнаружения по спектрам экзогенной флюоресценции из освещаемой лазерным излучением области составляют основу фотодинамической или флюоресцентной диагностики опухолей.
Существуют работы по флюоресцентной диагностике рака с фотосенсибилизаторами порфиринового ряда Фотофрин (1, 2), Фотогем, где показана принципиальная возможность диагностики рака по экзогенной флюоресценции фотосенсибилизатора, предварительно введенного в организм пациента и обладающего способностью к повышенному удержанию в тканях злокачественных новообразований (опухолетропностью).
Для разделения спектров используется специально разработанная программа вычитания усредненного спектра фоновой флюоресценции и выделения экзогенного вклада флюоресценции Фотогема в регистрируемый спектр. Величина отношения интегральных интенсивностей экзогенной флюоресценции в опухоли и в нормальной ткани является критерием оптической селективности накопления препарата - флюоресцентной контрастностью опухолевой ткани на фоне окружающей нормальной.
Однако анализ результатов по флюоресцентной диагностике рака с данными фотосенсибилизаторами показывает, что возможности флюоресцентного обнаружения опухолей существенно ограничены низким квантовым выходом флюоресценции и существенными потерями возбуждающего излучения за счет его поглощения гемоглобином и другими тканевыми молекулами (меланин, флавины, порфирины и т.д. ). Кроме того, накопление фотосенсибилизаторов и, как следствие, повышение уровня флюоресценции имеет место в очагах воспаления ткани, т.е. при флюоресцентной диагностике с экзогенными флюорохромами имеют место ложноположительные сигналы (артефакты).
Существуют работы, где показана возможность диагностики злокачественных опухолей по собственной (ауто) флюоресценции биотканей в диапазоне 450-700 нм. При этом обнаружено, что при возбуждении флюоресценции от 360 до 510 нм интенсивность эндогенной флюоресценции в опухолях in vivo ниже, чем в окружающих нормальных тканях.
Так, в работе показано, что интегральная интенсивность флюоресценции индуцированных опухолей мочевого пузыря и почек у грызунов в красной части спектра ниже, чем в окружающей непораженной ткани. В работе было показано, что интенсивность собственной флюоресценции в очагах патологии (тяжелая дисплазия, рак) бронхов in vivo значительно меньше, чем интенсивность флюоресценции в неизмененной слизистой оболочке, при этом различия в форме спектров выражены слабо.
В качестве прототипа использовалась работа, где изучались экзогенная флюоресценция фотосенсибилизатора Фотогем и эндогенная (собственная) флюоресценция биотканей в диапазоне 550-750 нм при возбуждении излучением лазера на парах меди с длиной волны 510 нм.
Сравнительный анализ спектров эндогенной флюоресценции нормальной кожи, слизистой оболочки полости рта, желудка и пищевода, а также злокачественных опухолей кожи, легкого, пищевода и желудка показывает, что при возбуждении лазером с длиной волны 510 нм спектры флюоресценции указанных тканей можно считать идентичными по форме. Однако интенсивность эндогенной флюоресценции в участках патологии была в 2 - 5 раз ниже, чем в окружающей неизмененной ткани.
К недостаткам прототипа следует отнести то, что, во-первых, при эндоскопическом исследовании оценка интегральной интенсивности флюоресценции может быть искажена за счет неадекватных условий возбуждения флюоресценции биотканей в той или иной точке вследствие дыхательной подвижности, различной геометрии расположения конца волоконно-оптического катетера и поверхности ткани, а также мощности возбуждающего лазерного излучения. Во-вторых, вычитание экзогенного вклада флюоресценции опухолетропного фотосенсибилизатора Фотогем требует проведения дополнительного эндоскопического обследования с целью регистрации эндогенной флюоресценции биотканей до введения фотосенсибилизатора.
Целью предлагаемого способа является повышение точности флюоресцентной диагностики злокачественных опухолей полых органов за счет оптимизации выбора диагностически значимых спектральных параметров и уменьшения возможных ложноположительных сигналов.
Методика проведения эндоскопической флюоресцентной диагностики включает внутривенное введение препарата Фотогем в дозе 1,5-3 мг/кг в.т. Через 24 - 72 часов осуществляется сеанс флюоресцентной диагностики с использованием стандартного эндоскопа и волоконно-оптического катетера. При этом последний вводится в биопсийный канал эндоскопа и устанавливается в просвет органа в контакте с тканью. Для возбуждения флюоресценции биотканей используется излучение лазера на парах меди с длиной волны 510 нм либо аргонового лазера с длиной волны 512 нм. Чтобы не вызывать необратимых фотодинамических повреждений слизистой оболочки при диагностических обследованиях, плотность энергии локального лазерного облучения на поверхности ткани в процессе одного обследования должна быть не более 1 Дж/см2, а средняя мощность лазерного излучения на выходе волоконно-оптического катетера не должна превышать 4 мВт. Следует также учитывать, что при более высоких плотностях мощности лазерного излучения возникает обесцвечивание красителя, что может приводить к ошибкам флюоресцентной диагностики.
После введения фотосенсибилизатора (через 48-72 часа) перед сеансом ФДТ с помощью спектрально-флюоресцентной системы "Спектр" для локальной спектрофлюориметрии биотканей в диапазоне 550-700 нм регистрируется флюоресценция опухоли, подозрительных на опухоль участков и окружающей неизмененной слизистой оболочки.
Поставленная диагностическая цель достигается не разделением вкладов экзогенной флюоресценции из суммарного спектра ткани, а определением соотношения между интегральной интенсивностью флюоресценции тканей (1) в спектральном диапазоне 625-645 нм (суперпозиция спектров собственной (эндогенной) флюоресценции и экзогенной флюоресценции фотосенсибилизатора) и интегральной интенсивностью флюоресценции тканей (1) в спектральном диапазоне 550-570 нм (собственная флюоресценция тканей). Данное соотношение - спектральный, диагностически эффективный параметр Ф, равный
Ф = 1(625-645 нм)/1(550-570 нм),
учитывает оба наблюдаемых ранее эффекта: падение интенсивности эндогенной флюоресценции на поверхности злокачественных новообразований и повышение в них же уровня экзогенной флюоресценции за счет избирательного накопления фотосенсибилизатора и не зависит от условий возбуждения флюоресценции ткани.
Пример 1. Пациент К. , 78 лет, диагноз: рак мочевого пузыря 1 ст., T1NxMo, продолженный рост остаточной опухоли после трансуретральной электрорезекции.
Флюоресцентное обследование было проведено через 48 часов после внутривенного введения фотосенсибилизатора Фотогем из расчета 2 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки мочевого пузыря (3 точки) и в зоне опухолевого поражения (4 точки). Получены следующие результаты:
Ф (нормальная слизистая оболочка мочевого пузыря) - 0.8
Ф (переходноклеточный рак мочевого пузыря) - 5.6
Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф в 7 раз выше, чем в нормальной слизистой оболочке мочевого пузыря.
Пример 2. Пациент В., 71 г., диагноз: рак пищевода 1 ст., T1NxMo, остаточная опухоль после сочетанной лучевой терапии.
Флюоресцентное обследование было проведено через 48 часов после внутривенного введения фотосенсибилизатора Фотогем из расчета 2.5 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки пищевода (в 3-х точках) и в зоне опухолевого поражения (7 точек). Получены следующие результаты:
Ф (нормальная слизистая оболочка пищевода) - 0.9
Ф (плоскоклеточный рак пищевода) - 5.5
Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф в 6 раз выше, чем в нормальной слизистой оболочке пищевода.
Пример 3. Пациент Ш., 66 лет, диагноз: рак гортани 1 ст., второй рецидив после дистанционной лучевой терапии и фронтолатеральной резекции гортани.
Флюоресцентное обследование было проведено через 72 часа после внутривенного введения фотосенсибилизатора Фотогем из расчета 3 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки в зоне левой вестибулярной складки (в 4-х точках) и в зоне опухолевого поражения в правой половине гортани (5 точек). Получены следующие результаты:
Ф (нормальная слизистая оболочка гортани) - 1.1
Ф (рецидив плоскоклеточного рака гортани) - 5.7
Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф в 5.2 раза выше, чем в нормальной слизистой оболочке гортани.
Пример 4. Пациент А., 86 лет, диагноз: рак желудка 1 ст., T1NxMo, мультиентрической формы роста, рецидив после субтотальной резекции желудка.
Флюоресцентное обследование было проведено через 72 часа после внутривенного введения фотосенсибилизатора Фотогем из расчета 2 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки задней стенки (в 3-х точках), большой кривизны (в 3-х точках) тела желудка и в зоне опухолевого поражения (5 точек). Получены следующие результаты:
Ф (нормальная слизистая оболочка средней трети желудка, задняя стенка) - 0.7
Ф (нормальная слизистая оболочка средней трети желудка, большая крив.) - 0.9
Ф (рецидив высокодифференцированной аденокарциномы желудка) - 4.2
Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф был в 5.3 раза выше, чем в нормальной слизистой оболочке желудка.
Пример 5. Пациент Ф., 71 г., диагноз: центральный рак нижней доли правого легкого 3 ст., остаточная опухоль после лучевой терапии.
Флюоресцентное обследование было проведено через 48 часов после внутривенного введения фотосенсибилизатора Фотогем из расчета 2 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки правого главного бронха (в 6-х точках) и в зоне опухолевого поражения правого нижнего долевого бронха (в 5-ти точках). Получены следующие результаты:
Ф (нормальная слизистая оболочка бронха) - 0.9
Ф (плоскоклеточный рак прав. нижнедолевого бронха) - 3.0
Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф был в 3,3 раза выше чем в нормальной слизистой легкого.
Показания к эндоскопической флюоресцентной диагностике злокачественных опухолей по способу:
1/ уточнение границ поражения при местно-распространенном раке органов дыхания, желудочно-кишечного тракта и мочеполовой системы;
2/ выявление скрытых синхронных очагов рака полых органов как проявления первично множественного опухолевого поражения;
3/ выявление скрытых очагов метахронного рака полых органов у больных 3-й клинической группы, перенесших радикальное хирургическое лечение.
Преимущества предлагаемого способа
Использование предложенной методики позволяет:
1/ не проводить предварительного эндоскопического исследования (до введения фотосенсибилизатора) для оценки фоновой (эндогенной) флюоресценции;
2/ не проводить многофакторного наукоемкого и сложного для клиницистов-практиков спектрально-флюоресцентного анализа с целью разделения вкладов эндогенной и экзогенной флюоресценции;
3/ используя эффективный диагностический параметр, повысить достоверность уточняющей флюоресцентной диагностики и вести поиск новых опухолевых очагов;
4/ снизить число ложноположительных сигналов.
Литература
1. Profio A. E. Review of fluorescence diagnosis using porphyrins. - Proc. SPIE, 1988, v.907, p. 150-156.
2. Monnier Ph. , Savary M., Fontolliet C.H. et.al. Photodetection and photodynamic therapy of "early" squamous cell carcinomas of the pharynx, oesophagus and tracheo-bronchial tree. - Lasers in Med.Science, 1990, v.5, No.2, p. 149-171.

Claims (1)

  1. Способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов с использованием экзогенной флюоресценции фотосенсибилизатора фотогема и эндогенной флюоресценции биотканей, отличающийся тем, что в процессе флюоресцентно-диагностического обследования определяют спектральный параметр, являющийся отношением интегральной интенсивности флюоресценции в красном диапазоне спектра (суперпозиции эндогенной и экзогенной флюоресценции биоткани) и интегральной интенсивности эндогенной флюоресценции в желто-зеленой области спектра, и при его значении 3 отн.ед. и выше диагностируют злокачественную опухоль.
RU97119786A 1997-11-26 1997-11-26 Способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов RU2129273C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97119786A RU2129273C1 (ru) 1997-11-26 1997-11-26 Способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97119786A RU2129273C1 (ru) 1997-11-26 1997-11-26 Способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов

Publications (1)

Publication Number Publication Date
RU2129273C1 true RU2129273C1 (ru) 1999-04-20

Family

ID=20199476

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97119786A RU2129273C1 (ru) 1997-11-26 1997-11-26 Способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов

Country Status (1)

Country Link
RU (1) RU2129273C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649783C2 (ru) * 2012-10-19 2018-04-04 Космо Текнолоджиз Лтд. Твердая пероральная композиция, содержащая красители, для применения в эндоскопической диагностике
RU2729503C1 (ru) * 2020-03-19 2020-08-07 Федеральное Государственное Бюджетное Учреждение "Национальный Медицинский Исследовательский Центр Оториноларингологии Федерального Медико-Биологического Агентства" (Фгбу Нмицо Фмба России) Способ проведения биопсии у больных с подозрением на рак гортани

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Чиссов В.И. и др. Клиническая флюоресцентная диагностика при фотодинамической терапии опухолей с фотосенсибилизатором Фотогерм.- Ж.Хирургия, 1985, N 5, с.20. 2. Шестаков В.А., Шерстнев М.П. Применение биохемилюминесценции в медицине. - М.: ВНИИМИ МЗ СССР, с.40-50, 1977. 3. V.V.Sokolov at al, Clinical fluorescence diagnostics in the course of photodynamic therapy of cancer with photosensitizer photogem - SPIE Vol/2325, Photodynamic Therapy of Cancer 11 (1994), pp.375-379. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649783C2 (ru) * 2012-10-19 2018-04-04 Космо Текнолоджиз Лтд. Твердая пероральная композиция, содержащая красители, для применения в эндоскопической диагностике
RU2729503C1 (ru) * 2020-03-19 2020-08-07 Федеральное Государственное Бюджетное Учреждение "Национальный Медицинский Исследовательский Центр Оториноларингологии Федерального Медико-Биологического Агентства" (Фгбу Нмицо Фмба России) Способ проведения биопсии у больных с подозрением на рак гортани

Similar Documents

Publication Publication Date Title
Leunig et al. Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the dectection of neoplastic lesions in the oral cavity
Kato et al. Photodynamic diagnosis in respiratory tract malignancy using an excimer dye laser system
US20150088001A1 (en) Illumination System for Endoscopic Applications
EP2888988A1 (en) Photodynamic diagnosis apparatus provided with collimator
NO328630B1 (no) Naer infrarodt, fluorescerende kontrastmiddel og fluorescensavbildning
Messmann 5-Amin Ole Vulinic Acid-Induced Protoporphyrin IX for the Detection of Gastrointestinal Dysplasia
Andersson-Engels et al. Laser spectroscopy in medical diagnostics
Orth et al. Fluorescence detection of small gastrointestinal tumours: principles, technique, first clinical experience
Andersson-Engels et al. Laser-induced fluorescence in medical diagnostics
RU2376044C1 (ru) Способ определения оптимальных режимов флуоресцентной диагностики и фотодинамической терапии
RU2129273C1 (ru) Способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов
D'hallewin et al. In vivo fluorescence detection of human bladder carcinoma without sensitizing agents
Filonenko et al. Fluorescent diagnostics of non-melanoma skin cancer
Dets et al. Laser-induced fluorescence detection of stomach cancer using hypericin
Tajiri et al. Fluorescence Endoscopy in the Gastrointestinal Tract.
Moriyama et al. A ratiometric fluorescence imaging system for surgical guidance
Baumgartner et al. Delta-ALA-assisted fluorescence detection of cancer in the urinary bladder
Sokolov et al. Endoscopic fluorescent diagnostics and PDT of early malignancies of lung and esophagus
Vincent et al. Hematoporphyrin derivative in the diagnosis and treatment of lung cancer
Braichotte et al. Clinical comparison of the pharmacokinetics of m-THPC and Photofrin II as observed by light-induced fluorescence
Domka et al. FLUORESCENCE DIAGNOSTICS AND PHOTODYNAMIC THERAPY IN CANCER.
Borisova et al. ALA/PpIX photodiagnosis of stress-induced gastrointestinal primary tumors and metastases in experimental animals
Rustamovich et al. MODERN TRENDS IN THE TREATMENT OF MALIGNANT TUMORS OF THE ORAL MUCOSA USING PHOTODYNAMIC THERAPY
Kałużyński et al. Luminescence spectroscopy measurements for skin cancer research
Spinelli Endoscopic laser-fluorescence and photochemotherapy of cancer

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101127