RU2128081C1 - Коталитический элемент для конверсии аммиака - Google Patents

Коталитический элемент для конверсии аммиака Download PDF

Info

Publication number
RU2128081C1
RU2128081C1 RU97119770/25A RU97119770A RU2128081C1 RU 2128081 C1 RU2128081 C1 RU 2128081C1 RU 97119770/25 A RU97119770/25 A RU 97119770/25A RU 97119770 A RU97119770 A RU 97119770A RU 2128081 C1 RU2128081 C1 RU 2128081C1
Authority
RU
Russia
Prior art keywords
honeycomb
catalyst
prism
catalytic element
base
Prior art date
Application number
RU97119770/25A
Other languages
English (en)
Inventor
В.И. Чернышев
Е.А. Бруштейн
А.Г. Тарарыкин
Original Assignee
Чернышев Валерий Иванович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чернышев Валерий Иванович filed Critical Чернышев Валерий Иванович
Priority to RU97119770/25A priority Critical patent/RU2128081C1/ru
Priority to PCT/RU1998/000398 priority patent/WO1999029425A1/ru
Application granted granted Critical
Publication of RU2128081C1 publication Critical patent/RU2128081C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • C01B21/26Preparation by catalytic or non-catalytic oxidation of ammonia
    • C01B21/265Preparation by catalytic or non-catalytic oxidation of ammonia characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/3023Triangle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/3023Triangle
    • B01J2219/30234Hexagon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30238Tetrahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30416Ceramic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к сотовым каталитическим элементам для конверсии аммиака и может быть использовано в производствах азотной, синильной кислот, гидроксиламинсульфата в качестве катализатора второй ступени. Сущность изобретения заключается в том, что каталитический элемент выполнен в виде слоя из отдельных призм, соединенных боковыми гранями без зазоров, имеющий сотовые каналы. Новым является то, что диаметр основания призмы и ее высота составляют соответственно 4 - 100 и 2 - 75 эквивалентных диаметров сотового канала. Дополнительные отличия заключаются в том, что основание призмы имеет форму трех-, или четырех-, или шестиугольника, а также в том, что элемент выполнен из материала состава, %: Fe2O3 92; Cr2O3 8 или Fe2O3 89,5; ZrO2 5; MgO 5; ZrBaO 0,5 или Fe2O3 79; Al2O3 20; MgO 1 или Fe2O3 79,7; Al2O3 20; V2O5 0,3 или перовскит (СаO•1LaO•9MnO3) 90; Al2O3 8; SiO2 2. Технический результат состоит в увеличении термической прочности и срока службы катализатора. 2 з.п.ф-лы, 8 ил.

Description

Настоящее предлагаемое изобретение относится к сотовым каталитическим элементам для конверсии аммиака и может использоваться преимущественно в производствах азотной и синильной кислот, а также гидроксиламинсульфата, например, в качестве катализатора второй ступени.
Известны двухступенчатые каталитические системы, в которых первая ступень представляет собой слой платиноидных сеток, а вторая ступень - слой неплатиноидного оксидного катализатора, изготовленного из материала различных составов. Слой неплатиноидного оксидного катализатора может выполняться в виде нерегулярно уложенных гранул (таблеток), или в виде слоев сотовой структуры. Недостатки известных каталитических систем заключаются в том, что неплатиноидные оксидные катализаторы имеют невысокие механическую и термическую прочности, либо пониженную активность, либо повышенное гидравлическое сопротивление (SU 300057, 1973 SU 771958, 1995, US 4812300, 1989, GB 1236819, 1971, GB 1364001, 1974).
Наиболее близким по сущности и достигаемому результату к предлагаемому техническому решению является каталитический элемент для конверсии аммиака на основе неплатиноидного оксидного катализатора, выполненного в виде слоя из отдельных призм, соединенных боковыми гранями без зазоров, и имеющего сотовые каналы (EP 0260704, 1988). (Призма - многогранник, две грани которого (основания) - равные многоугольники, расположенные в параллельных плоскостях, а другие грани (боковые) - параллелограммы (см. фиг.3a-в в настоящем описании) - Советский энциклопедический словарь, М.: Советская энциклопедия, 1987, с. 1059).
Главный недостаток устройства-прототипа заключается в малых термической прочности и сроке службы сотового, каталитического элемента.
Технический результат, на решение которого направлено настоящее предполагаемое изобретение, состоит в значительном увеличении термической прочности и сроке службы сотового каталитического элемента для конверсии аммиака.
Технический результат достигается тем, что в каталитическом элементе для конверсии аммиака на основе неплатиноидного оксидного катализатора, выполненном в виде слоя из отдельных призм, соединенных боковыми гранями без зазоров, имеющем сотовые каналы, согласно изобретению эквивалентный диаметр основания призмы и ее высота составляют соответственно 4 - 100 и 2 - 75 -эквивалентных диаметров сотового канала (Эквивалентный диаметр - давно известное понятие в гидродинамике, он равен четырем площадям (основания, канала), деленным на периметр этой площади - см. учебник А.Г.Касаткин "Основные процессы и аппараты химической, технологии", М.: Химия, 1973, с. 37).
Дополнительные отличия состоят в том, что основание призмы имеют форму трех-, или четырех-, или шестиугольника. Каталитический элемент выполнен из материала, имеющего один из следующих составов, %: Fe2O3 92; Cr2O3 8 или Fe2O3 89,5; ZrO2 5; MgO 5; ZrBaO 0,5 или Fe2O3 79; Al2O3 20; MgO 1 или Fe2O3 79,7; Al2O3 20; V2O5 0,3 или перовскит (CaO•1LaO•9MnO3) 90; Al2O3 8; SiO2 2.
На фиг. 1 изображен размещенный в корпусе реактора предлагаемый сотовый каталитический элемент для конверсии аммиака, вид сбоку в продольном разрезе; на фиг. 2 a-в изображены виды сверху на данный каталитический элемент, выполненный из призм, имеющих в основании соответственно трех-, или четырех-, или шестиугольник; на фиг.3 a-b изображены в аксонометрии три отдельные призмы, имеющие в основании трех-, или четырех-, или шестиугольник; на фиг.4 практически повторяется фиг.1 с тем отличием, что на сотовом каталитическом элементе изображен слой платиноидных каталитических сеток, являющийся катализатором первой ступени.
Предлагаемый сотовый каталитический элемент размещен в корпусе реактора 1 на поддерживающем устройстве 2 и выполнен в виде слоя 3 из отдельных призм либо 4, либо 5, либо 6, состыкованных боковыми гранями 7 без зазоров. Призмы снабжены сквозными сотовыми каналами 8 и могут иметь в основании либо треугольник - призма 4, либо четырехугольник - призма 5, либо шестиугольник - призма 6. Эквивалентный диаметр призмы равен, как уже указывалось выше, четырем площадям ее основания, деленным на периметр этого основания. Для призм, имеющих в основании правильные трех-, четырех- и шестиугольник, эти диаметры соответственно равны D3 = 0,577А, D4 = 1A и D6 = 1,732А, где А - длина стороны правильного трех-, или четырех- или шестиугольника в основании призмы (см. фиг. 3 a-в). Эквивалентный диаметр основания призмы Di (где i = 3, 4, 6) и ее высота H составляют соответственно 4 - 100 и 2 - 75 эквивалентных диаметров сотового канала 8, который вычисляется аналогичным образом, а именно: d = 4S/P, где S и P площадь и периметр поперечного сечения сотового канала. Каталитический элемент выполнен из материала, имеющего один из следующих составов, %: Fe2O3 92; Cr2O3 8 или Fe2O3 89,5; ZrO2 5; MgO 5; ZrBaO 0,5 или Fe2O3 79; Al2O3 20; MgO 1 или Fe2O3 79,7; Al2O3 20; V2O5 0,3 или перовскит (CaO•1LaO39MnO2) 90; Al2O3 8; SiO2 2.
В случае использования предлагаемого сотового каталитического элемента в качестве катализатора для конверсии аммиака второй ступени на нем сверху располагается слой платиноидных сеток 9 (см. фиг.4), - являющийся катализатором первой ступени.
Сотовый каталитический элемент для конверсии аммиака на основе неплатиноидного оксидного катализатора работает следующим образом.
Газовая смесь, включающая аммиак и кислородсодержащий газ, поступает в корпус реактора 1 и, двигаясь в нем сверху вниз (см. стрелки на фиг.1), проходит сквозь сотовые каналы 8 призм либо 4, либо 5, либо 6 сотового каталитического элемента 3. На внутренних поверхностях сотовых каналов 8 происходит каталитическая конверсия аммиака до целевого продукта. Целевыми продуктами являются:
- в производстве азотной кислоты и гидроксиламинсульфата - NO;
- в производстве синильной кислоты - HCN.
Образовавшаяся в результате конверсии аммиака газовая смесь, содержащая целевой продукт, сквозь поддерживающее устройство 2 выходит из корпуса реактора 1. Если предлагаемый сотовый каталитический элемент используют в качестве катализатора для конверсии аммиака второй ступени т.е. в случае, когда первой ступенью по ходу газовой смеси является слой платиноидных каталитических сеток, сотовый каталитический элемент работает так, как описано выше, но с тем отличием, что исходная газовая смесь предварительно проходит сквозь платиноидных сеток 9 (см. фиг.4).
Пример. Для доказательства наибольшей выгодности предлагаемых вышеуказанных интервалов эквивалентного диаметра основания призмы и ее высоты авторами были проведены испытания различных сотовых каталитических элементов в производствах азотной и синильной кислот, а также гидроксиламинсульфата. В производстве азотной кислоты использовали реактор с рабочим диаметром 1650 мм, работающий под абсолютным давлением 0,6 МПа. Исходная аммиачно-воздушная смесь с концентрацией NH3 10% проходила сквозь двухступенчатый каталитический элемент, работающий при температуре 900oC, со средней рабочей скоростью, рассчитанной на сечение реактора, 5 м/с. В качестве катализатора первой ступени использовали слой сеток состава Pt - 81, Pd - 15, Rh - 3,5, Ru - 0,5%. В качестве катализатора второй ступени применяли сотовые каталитические элементы в виде слоя из призм с основанием в виде треугольника, изготовленных из материала состава Fe2O3 - 92 и Cr2O3 - 8%. Эквивалентный диаметр основания призмы составлял 10 эквивалентных диаметров сотового канала, а высота призмы - 8 эквивалентных диаметров сотового канала. После катализатора смесь содержала NO, H2O, O2 и N2 в широко известных для этого производства концентрациях.
В производстве синильной кислоты применяли реактор с рабочим диаметром 1200 мм, работающий под атмосферным давлением. В качестве исходной газовой смеси использовали смесь следующего состава: NH3 - 11, CH4 - 10, O2 - 16% и N2 - остальное. Состав газа после каталитической системы HCN - 6,5, NH3 - 2,5, CO - 4,0, CO2 - 0,3, CH4 - 0,5, H2 -7,6, H2O - 23,1, O2 - 0,1% и N2 - остальное; температура каталитической системы - 1030oC. Газовая смесь проходила сквозь двухступенчатый каталитический элемент со средней рабочей скоростью, рассчитанной на сечение реактора, 9 м/с. В качестве первой ступени применяли слой сеток из сплава Pt - 92,5 и Rh - 7,5%, в качестве второй ступени использовали слой призм с основанием в виде четырехугольника, изготовленных из материала состава Fe2O3 - 79,7, Al2O3 - 20 и V2O5 - 0,3%. Эквивалентный диаметр основания призмы составлял 50 эквивалентных диаметров сотового канала, а высота призмы - 15 эквивалентных диаметров сотового канала.
В производстве гидроксиламинсульфата использовали реактор с рабочим диаметром 2800 мм, работающий под абсолютным давлением 0,14 МПа. В качестве исходной газовой смеси использовали смесь следующего состава: NH3 - 14,2, H2O - 66,2, O2 - 19,1% и N2 0,5 об.%. Состав газа после каталитической системы NH3 - 0,6, NO - 13, H2O - 83,2, O2 - 2,7 и N2 - 0,5 об.%; температура каталитической системы - 925oC. Газовая смесь проходила сквозь двухступенчатый каталитический элемент со средней рабочей скоростью, рассчитанной на сечение реактора, 0,8 м/с. В качестве катализатора первой ступени применяли катализатор такого же состава, как и в вышеописанных испытаниях в производстве синильной кислоты. В качестве катализатора второй ступени применяли сотовый каталитический элемент в виде слоя из призм с основанием в виде шестиугольника, изготовленный из материала состава Fe2O3 79, Al2O3 20 и MgO - 1%. Эквивалентный диаметр основания призмы составлял 88 эквивалентных диаметров сотового канала, а высота призмы - 18 эквивалентных диаметров сотового канала.
В результате испытаний установлено, что сотовые каталитические элементы для конверсии аммиака, выполненные из призм, имеющих предложенные относительные геометрические параметры, имеют срок службы не менее 2,5 - 3 лет и могут выдержать 40 - 45 теплосмен (от температуры окружающей среды при остановленном реакторе до рабочих температур в реакторах в производствах азотной, синильной кислот и гидроксиламинсульфата, равных соответственно 900, 1030 и 925oC). Сотовые каталитические элементы для конверсии аммиака, выполненные из призм, имеющих относительные геометрические параметры за предложенными в формуле изобретения интервалами, имеют срок службы меньше в 1,27 - 1,59 раза и выдерживают не более 30 теплосмен.

Claims (3)

1. Каталитический элемент для конверсии аммиака на основе неплатиноидного оксидного катализатора, выполненный в виде слоя из отдельных призм, соединенных боковыми гранями без зазоров, и имеющий сотовые каналы, отличающийся тем, что эквивалентный диаметр основания призмы и ее высота составляют соответственно 4 - 100 и 2 - 75 эквивалентных диаметров сотового канала.
2. Элемент по п.1, отличающийся тем, что основание призмы имеет форму трех-, или четырех-, или шестиугольника.
3. Элемент по любому из пп.1 и 2, отличающийся тем, что он выполнен из материала, имеющего один из следующих составов, %: Fe2O3 92; Cr2O3 8% или Fe2O3 89,5; ZrO2 5; MgO 5; ZrBaO 0,5 или Fe2O3 79; Al2O3 20; MgO 1 или Fe2O3 79,7; Al2O3 20; V2O5 0,3 или перовскит (CaO•1LaO•9MnO3) 90; Al2O3 8; SiO2 2.
RU97119770/25A 1997-12-05 1997-12-05 Коталитический элемент для конверсии аммиака RU2128081C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU97119770/25A RU2128081C1 (ru) 1997-12-05 1997-12-05 Коталитический элемент для конверсии аммиака
PCT/RU1998/000398 WO1999029425A1 (fr) 1997-12-05 1998-11-25 Element catalytique servant a la transformation de l'ammoniac

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97119770/25A RU2128081C1 (ru) 1997-12-05 1997-12-05 Коталитический элемент для конверсии аммиака

Publications (1)

Publication Number Publication Date
RU2128081C1 true RU2128081C1 (ru) 1999-03-27

Family

ID=20199465

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97119770/25A RU2128081C1 (ru) 1997-12-05 1997-12-05 Коталитический элемент для конверсии аммиака

Country Status (2)

Country Link
RU (1) RU2128081C1 (ru)
WO (1) WO1999029425A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451278B1 (en) 1999-08-11 2002-09-17 Institut Kataliza Imeni Boreskogo Sibirskogo Otdelenia Rossiiskoi Akademin Nauk Method of converting ammonia
RU2756660C1 (ru) * 2021-01-25 2021-10-04 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Каталитический элемент регулярной сотовой структуры для гетерогенных реакций

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699562B2 (en) 2002-02-28 2004-03-02 Saint-Gobain Corporation Ceramic packing element
TW592799B (en) * 2002-02-28 2004-06-21 Saint Gobain Norpro Corp Improved ceramic packing element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1236819A (en) * 1967-08-21 1971-06-23 Inst Nawozow Sztucznych Improvements in or relating to the production of nitrogen oxide
DE2145842A1 (de) * 1971-09-14 1973-03-29 Degussa Katalysator und katalysatoranordnung fuer die herstellung von salpetersaeure
RU1102183C (ru) * 1982-07-22 1994-12-30 Государственный научно-исследовательский и проектный институт азотной промышленности и продуктов органического синтеза Способ каталитического окисления аммиака
GB8514344D0 (en) * 1985-06-06 1985-07-10 Ici Plc Catalyst support
DE3632322A1 (de) * 1986-09-19 1988-03-24 Otto Feuerfest Gmbh Katalysatorformkoerper sowie verfahren und vorrichtung zu seiner herstellung
DE3737248A1 (de) * 1987-11-03 1989-05-18 Basf Ag Monolithischer katalysatorkoerper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451278B1 (en) 1999-08-11 2002-09-17 Institut Kataliza Imeni Boreskogo Sibirskogo Otdelenia Rossiiskoi Akademin Nauk Method of converting ammonia
RU2756660C1 (ru) * 2021-01-25 2021-10-04 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Каталитический элемент регулярной сотовой структуры для гетерогенных реакций

Also Published As

Publication number Publication date
WO1999029425A1 (fr) 1999-06-17
WO1999029425A8 (fr) 1999-07-15

Similar Documents

Publication Publication Date Title
US4101287A (en) Combined heat exchanger reactor
US4140654A (en) Catalyst composition with support comprising titanium oxide and clay mineral for vapor phase reduction of nitrogen oxides
JPH0525538B2 (ru)
RU2128081C1 (ru) Коталитический элемент для конверсии аммиака
US7032894B2 (en) Flow distributor for monolith reactors
US20190201843A1 (en) Catalyst modules and applications thereof
EP0667807B1 (en) Process for catalytically reacting a gas and a liquid
CA2396664A1 (en) Tube reactor based on a laminate
EP1460053A4 (en) METHOD FOR CATALYTIC STEAM PHASE OXIDATION AND METHOD FOR THE PRODUCTION OF (METH) ACROLEINE OR (METH) ACRYLIC ACID
ES2544839T3 (es) Procedimiento para la deshidrogenación oxidativa de metanol para dar formaldehído en géneros de punto que contienen plata
US4695559A (en) Catalyst for the selective reduction of nitrogen oxides in waste gases and process for the manufacture of such a catalyst
JP4454628B2 (ja) 硝酸の製造でn2oを除去する方法
CA2534830C (en) Ceramic packing element with enlarged fluid flow passages
EP1478457B1 (en) Ceramic packing element
US7297249B2 (en) Heterogeneously catalyzed reactions and apparatus therefor
JPS5932180B2 (ja) 窒素酸化物の還元用触媒
RU2318596C1 (ru) Каталитический элемент для гетерогенных высокотемпературных реакций
ZA200605837B (en) Ceramic packing element for mass transfer applications
RU2195366C1 (ru) Неплатиноидный оксидный каталитический элемент для конверсии аммиака
WO2006009453A1 (en) Catalyst packing, a structured fixed bed reactor and use
US11083996B2 (en) SCR catalyst modules and associated catalytic reactors
WO2018064363A1 (en) Surface textured structural catalyst and applications thereof
WO2007040348A1 (en) Ceramic catalyst support
RU2145935C1 (ru) Способ конверсии аммиака
RU2119889C1 (ru) Способ конверсии аммиака

Legal Events

Date Code Title Description
HE4A Change of address of a patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101206