RU2127935C1 - Способ и устройство для генерации лазерного гамма-излучения - Google Patents

Способ и устройство для генерации лазерного гамма-излучения Download PDF

Info

Publication number
RU2127935C1
RU2127935C1 RU95120007A RU95120007A RU2127935C1 RU 2127935 C1 RU2127935 C1 RU 2127935C1 RU 95120007 A RU95120007 A RU 95120007A RU 95120007 A RU95120007 A RU 95120007A RU 2127935 C1 RU2127935 C1 RU 2127935C1
Authority
RU
Russia
Prior art keywords
positron
electron
laser
radiation
gamma radiation
Prior art date
Application number
RU95120007A
Other languages
English (en)
Other versions
RU95120007A (ru
Inventor
Икегами Хидетсагу
Original Assignee
Рисерч Дивелопмент Корпорейшн оф Джапэн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Рисерч Дивелопмент Корпорейшн оф Джапэн filed Critical Рисерч Дивелопмент Корпорейшн оф Джапэн
Publication of RU95120007A publication Critical patent/RU95120007A/ru
Application granted granted Critical
Publication of RU2127935C1 publication Critical patent/RU2127935C1/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S4/00Devices using stimulated emission of electromagnetic radiation in wave ranges other than those covered by groups H01S1/00, H01S3/00 or H01S5/00, e.g. phonon masers, X-ray lasers or gamma-ray lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Particle Accelerators (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к лазерной технике. В процессе генерирования лазерного гамма-излучения осуществляют слияние пучков электронов и позитронов в одном и том же направлении и образуют на оси слияния молекулы позитрония или парапазитрония в форме пучка одной и той же фазы, охлажденного до температуры переходной конденсации Бозе-Эйштейна. В результате этого одновременно генерируют лазерное гамма-излучение двух длин волн, сопровождающих аннигиляцию молекул, вызываемую самоиндуцированным излучением. Устройство для генерирования лазерного гамма-излучения содержит средство для направления пучка электронов и пучка позитронов в сходящийся поток в одном и том же направлении и фокусирующий элемент на участке слияния электронов и позитронов. Изобретение позволяет генерировать лазерное излучение высокой энергии, превосходящей энергию луча синхронного излучения, при высокой монохроматичности и низкой степени шума. 2 с. и 4 з.п. ф-лы, 1 ил.

Description

Данное изобретение касается способа и устройства для генерации лазерного гамма-излучения. Более конкретно изобретение касается способа и устройства для одновременной генерации прямого лазерного гамма-излучения [F-GASER (Усиление гамма-лучей путем индуцированного излучения радиации)], в котором энергия фотона превышает 1 МэВ/МэВ: 1000000 эВ/, и обратного лазерного гамма-излучения (B-GA ЕР) вблизи области лазерного излучения, не превышающей 200 кэВ.
Из уровня техники известен способ генерирования лазерного, гамма-излучения (см. /1/ JP-3-225798 А, H 05 H 13/04, публикация 1991), включающий облучение мишени пучком электронов для генерации позитронов и воздействие на пучок электронов и пучок позитронов, ускоренных до одинаковых энергий.
Стандартные способы генерации луча когерентного монохроматического света ограничиваются областью видимого света, как в случае лазера и ближайшей с ней областью. Невозможно реализовать способ генерации как рентгеновского, так и когерентного монохроматического излучения достаточной интенсивности, т.е. когерентных монохроматических гамма-лучей более высокой энергии, т.е. с энергией фотона более 1 МэВ.
Известно также устройство для генерирования лазерного гамма-излучения (см. /1/), содержащее мишень для генерации позитронов, инжектор электронов и позитронов, кольцо циркуляции позитронов и средство для ускорения пучка электронов и пучка позитронов до соответствующих заданных энергий посредством инжектора и кольца циркуляции.
В основу настоящего изобретения поставлена задача создания способа и устройства для генерации лазерного гамма-излучения, в котором луч света высокой энергии, превосходящей энергию луча синхронного излучения ( Р) в отношении его монохроматичности и низкой степени шума, генерируется на основе принципа, полностью отличающегося от принципа, используемого в известном способе для генерации когерентного монохроматического излучения, т.е. путем создания пучка электронов и пучка позитронов, ускоренных до одинаковых энергий и сходящихся в один поток в одном и том же направлении, и образования на оси слияния молекул позитрония или парапозитроны в форме пучка одинаковой фазы, охлажденного до температуры переходной конденсации Бозе-Эйнштейна, посредством чего одновременно генерируется лазерное гамма-излучение с двумя длинами волн, которые сопровождают аннигиляцию, вызванную самоиндуцированным излучением.
Поставленная задача решается тем, что в способе генерирования лазерного гамма-излучения, включающем облучение мишени пучком электронов для генерации позитронов и воздействие на пучок электронов и пучок позитронов, ускоренных до одинаковых энергий, согласно изобретению осуществляют слияние пучков электронов и позитронов в одном и том же направлении и образуют на оси слияния молекулы позитрония или парапозитрония в форме пучка одной и той же фазы, охлажденного до температуры переходной конденсации Бозе-Энштейна, посредством чего одновременно генерируют лазерное гамма-излучение двух длин волн, сопровождающих аннигиляцию молекул, вызываемую самоиндуцированным излучением.
Поставленная задача решается также тем, что в устройстве для генерирования лазерного гамма-излучения, содержащем мишень для генерации позитронов, инжектор электронов и позитронов, кольцо циркуляции позитронов и средство для ускорения пучка электронов и пучка позитронов до соответствующих заданных энергий посредством инжектора и кольца циркуляции, согласно изобретению дополнительно содержится средство для направления пучка электронов и пучка позитронов в сходящийся поток в одном и том же направлении и фокусирующий элемент на участке слияния электронов и позитронов для генерации прямого лазерного гамма-излучения высокой энергии и обратного лазерного гамма-излучения низкой энергии в прямом и обратном направлениях соответственно.
В способе генерации лазерного гамма-излучения пучок позитронов накапливается по меньшей мере до заданной энергии и интенсивности.
В способе генерации лазерного гамма-излучения поляризованный или неполяризованный лазерный пучок фотонов проецируется на сходящиеся пучки электронов и позитронов для стимуляции избирательного образования молекул позитронов или охлажденных парапозитронов в форме пучка одной и той же фазы, генерируя тем самым лазерное гамма-излучение.
В способе генерации лазерного гамма-излучения, поляризованный или неполяризованный лазерный пучок фотонов направляют антипараллельно по отношению к направлению распространения сходящихся пучков электронов и позитронов.
Устройства для генерации лазерного гамма-излучения, содержащего электронную и позитронную инжекторную систему, кольцо циркулирования позитронов, фокусирующий элемент участка электронно-позитронного слияния и средство для ускорения электронного пучка и позитронного пучка до соответствующих заданных энергий инжекторной системой и при необходимости кольцом циркуляции для направления электронного пучка и позитронного пучка в сходящийся поток в одном и том же направлении фокусирующим элементом участка слияния, вследствие чего генерируется прямое лазерное гамма-излучение высокой энергии (F-GASER) и обратное лазерное гамма-излучение низкой энергии (B-GASER) в прямом и обратном направлении соответственно.
Кроме того, в устройстве для генерации гамма-лазера предусматривается приспособление для выпуска лазерного или мазерного излучения в направлении, антипараллельном по отношению к соединенным пучкам электронов и позитронов, чтобы избирательно стимулировать образование положительно заряженных молекул или охлажденных парапозитрониев в форме пучка одной и той же фазы.
Согласно изобретению, электронный пучок и позитронный пучок ускоряют до заданных энергий, эти пучки накапливают, если это необходимо, и направляют в сходящийся поток в одном и том же направлении. При облучении стимулирующим лазерным или мазерным излучением молекул позитрония или охлажденные или конденсированные парапозитронии образуются в форме пучка в одной и той же фазе. F - GASER высокой энергии (прямой GASER: прямое лазерное гамма-излучение, соответствующий по существу всей энергии электронов и позитронов) и B-GASER (обратный GASER: обратное лазерное гамма-излучение оставшейся энергии) могут генерироваться на оси сходящегося пучка посредством стимулируемой аннигиляции молекул позитрония или охлажденных парапозитрониев.
В дальнейшем изобретение поясняется конкретным вариантом его воплощения со ссылками на сопровождающий чертеж, на котором фиг. 1 изображает схему устройства, генерирующего лазерное гамма-излучение, согласно изобретению. Как показано на фиг. 1, устройство содержит источник и ускоритель 1 электронов, систему 1' торможения и сбора электронов и ускоритель 2 малого размера для генерации медленных позитронов. На практике пригоден малый циклотрон или микротрон. Кроме того, устройство содержит термоэлектрический генератор 3 позитронов, который содержит множество вольфрамовых мишеней, генерирующих позитроны при облучении электронами высокой энергии, систему 4 ускорения позитронов, инжекционный магнит 5 для инжекции пучка позитронов в циркуляционное (охлаждающее) кольцо R, соленоид 6, фокусирующий пучок для участка слияния электронов и позитронов, зеркало 7 инжекции лазерных фотонов для индуцированного образования молекул позитрония и парапозитрониев, а также соединяющий и разделяющий магниты 8, 9 соответственно. Позитроны охлаждаются электронным пучком во время прохождения участка слияния.
В случае позитронов, имеющих энергию ускорения порядка нескольких сотен КэВ, как в данном варианте, позитроны охлаждаются до температуры, одинаковой с температурой электронного пучка, т.е. импульс установлен однородным - в несколько миллисекунд времени повторного прохождения пути. Кроме того, устройство дополнительно содержит генератор 10 лазерного или мазерного луча, F-GASER 11, B-GASER 12, элемент 13 фокусировки пучка позитронов, магнит 14, отклоняющий пучок позитронов и соленоид 15.
Работа устройства, генерирующего лазерное гамма-излучение, осуществляется следующим образом.
Пучок электронов однородного импульса, излучаемый источником 1 электронов, направляют в один поток с пучком позитронов при помощи соединяющего магнита 8, и охлаждают позитроны вследствие кулоновского взаимодействия во время их прохождения через фокусирующий пучок соленоид 6. После этого электроны покидают участок слияния через разделяющий магнит 9 и собираются системой 1' торможения и собирания электронов.
Тепловые позитроны, образованные ускорителем 2, генерирующим медленные позитроны, и генератором 3 позитронов, ускоряются системой 4 ускорения позитронов до заданной энергии γm0c2, равной энергии пучка электронов источника 1 электронов и их ускорения. Эти ускоренные тепловые позитроны хранятся в циркуляционном кольце R через инжекторный магнит 5. Позитроны в циркуляционном кольце R охлаждаются электронами во время прохождения через фокусирующий пучок соленоид 6 на участке слияния. Здесь moc2 представляет собой энергию массы покоя электронов, т.е. 511 кэВ, а γ является релятивистким энергетическим коэффициентом электронов, который выражается следующей формулой;
γ ≡ (1 - β2)-1/2 (1)
β ≡ v/c (2)
где V, с представляют собой скорость электрона и скорость света соответственно.
Часть электронов и часть позитронов на участке слияния соединяются таким образом, что их соответственные спины (квантово-механическая кинетическая степень свободы, соответствующая вращению электронов) антипараллельны друг другу и тем самым образуют двухэлектронные атомы, называемые парапозитрониями. Паpaпозитроний подвергается двухфотонной аннигиляции при среднем времени жизни 1,2 х 10-10 с и преобразуется в два гамма-луча. Однако, поскольку эти гамма-лучи являются некогерентными и обладают низкой интенсивностью, практических проблем не возникает.
Кроме парапозитрониев на участке слияния также образуются ортопозитронии, в которых спины электронов и позитронов соединяются параллельно, или образуются также позитронии в возбужденном состоянии. Однако, поскольку эти орто-позитронии или позитронии в возбужденном состоянии имеют большое время жизни, они диссоциируются на электроны и позитроны индуцированными электромагнитными импульсами при их попадании на разделяющий магнит 9 вместе с сохраняющимися парапозитрониями. В результате позитроны остаются в циркуляционном кольце R и, следовательно, потерь нет. В принципе, позитроны в кольце охлаждаются пучком электронов однородного импульса на участках повторного слияния, пока они не преобразуются в гамма-лучи.
Если использовать эффект излучения тепловой энергии электронов и позитронов и энергию соединения с индуцирующим излучением для стимуляции образования парапозитрониев (см. H. Jkedami, Phys. Rev. Zett. 60, 929 (1988)), то количество образованных парапозитрониев может быть увеличено в 1000-1000000 раз. Напротив, долгоживущие ортопозитронии или позитронии в возбужденных состояниях диссоциируются ионизацией вследствие индуцирующего излучения. Поэтому в сущности индуцированное образование парапозитрониев происходит избирательно. Индуцированное образование имеет место в том случае, если частота νs и частотная ширина Δνs индуцирующего излучения, выбрасываемого антипараллельно пучку электронов, удовлетворяют нижеприведенным условиям относительно величины Δv, являющейся флуктуацией скорости Ve, обусловленной тепловым движением электронов и позитронов. Следует отметить, что в случае, когда выбрасываемое излучение не является антипараллельным, β становится -β.
(α/2)2m0c2= (1+β)γ·hνs (3)
(m0/2)(Δv)2= (1+β)γ·hΔνs (4)
где α = 1/137 является постоянной тонкой структуры, а h - постоянная Планка.
Кроме того, когда еще один тип индуцирующего излучения, при котором 0.4 эВ подставляют в левую часть уравнения (3), т.е. (α/2)2m0c2 (= 6,8 эВ) и mo представляют вместо mo/2 в уравнение (4), накладывается в совмещенном или комбинируемом состоянии, полученные позитронии соединяются по два и получают молекулу позитрония в виде сгустка высокой плотности.
Как будет понятно из уравнений (3) и (4), электроны и позитроны, тепловая энергия которых (1/2)m0v 2 e почти равна нулю, отбираются и энергия связи излучается в виде энергии фотонов индуцированного излучения, в результате чего тепловая энергия полученных парапозитрониев падает до m0(Δv)2, а их плотность возрастает. Более того, все паpaпозитронии в момент индуцированного образования когерентным индуцирующим излучением находятся микроскопически в одинаковом состоянии и образуется переходная система конденсации Бозе-Эйнштейна. Кроме того, сама молекула позитрония является конденсированной совокупностью парапозитрониев.
Предполагается, что эти парапозитронии или молекулы позитрония могут действовать только определенным образом, при котором двухфотонная аннигиляция любого атома позитрония коррелирует с аннигиляцией всех других атомов. В этом случае эти фотоны испускаются в направлении пучка пapaпозитрониев и также в противоположном направлении в пределах очень малого телесного угла, пропорционального (Δνss).
Принимая во внимание вышеупомянутые факты, вычисляют коэффициент Эйнштейна, и можно получить теоретическую величину увеличения вероятности аннигиляции путем самостимуляции парапозитрониев.
В случае, когда численная плотность позитронов в стандартных генераторах 1, 1' простых электронных пучков, имеющих энергию ускорения 400 кэВ и численную плотность электронов 1015m-3, и в фокусирующем пучок соленоиде для участка сходящегося пучка малого кольца R циркуляции позитронов равна количеству электронов, плотность образованных парапозитрониев превосходит численную плотность электронов, и увеличение вероятности аннигиляции плавно возрастает вследствие эффекта конденсации. В результате все парапозитронии, образованные индуцирующим излучением, генерируют лазерное гамма-излучение (GASER) одновременно двухфотонной аннигиляцией, обусловленной эффектом самостимуляции, в короткий период времени 1012 секунд. При этом молекулы позитрония имеют время жизни 1013 секунд независимо от числа образованных молекул и подвергаются самоиндуцированной аннигиляции, образуя лазерное гамма-излучение.
Время аннигиляции гораздо меньше, чем время поддержания конденсации Δt = h/m0(Δv)2 (10-10 секунд в данном варианте), определяемое принципом неопределенности Гейзенберга, и переходная конденсация Бозе-Эйнштейна парапозитрониев поддерживается в пределах времени аннигиляции. Это подтверждает тот факт, что гарантирована когерентность пучка парапозитрониев.
Одна когерентная группа фотонов, образованная двухфотонной аннигиляцией благодаря самоиндуцированной эмиссии позитрониев или пучка пapaпозитрониев однородной фазы является F-GASER испускаемым в направлении распространения позитрониев, и его энергия фотонов выражается следующим образом:
F-GASER= (1+β)γm0c2 (5)
Энергия фотона B-GASERa, испускаемая антипараллельно направлению распространения позитрониев, выражается следующим образом:
B-GASER= (1-β)γm0c2 (6)
Это монохроматическое излучение однородной фазы.
В случае энергии ускорения электронов 400 кэВ в этом варианте воплощения энергии фотонов двух типов GASER определяются следующим образом:
F-GASER= 1,67 МэВ,hνB-GASER= 0,15 МэВ
В обоих случаях длина волны короче, чем длина волны излучения, образованного существующими в настоящее время кольцами излучения большого масштаба.
Можно создать много различающихся вариантов без отхода от принципов данного изобретения, из чего следует, что данное изобретение не ограничивается его специфическими вариантами, изложенными в формуле изобретения.
Согласно данному изобретению, можно получить следующие результаты.
1) Монохроматическое лазерное гамма-излучение, т.е. прямой GASER, имеющий энергию фотонов свыше нескольких МэВ, и монохроматическое лазерное гамма-излучение, т. е. обратный GASER, имеющий энергию фотонов менее 200 кэВ, могут быть одновременно генерированы и с легкостью выделены. Эти GASER не известны из предшествующего уровня техники.
2) Если энергия ускорения электронов и позитронов увеличена путем введения кольца циркуляции электронного пучка, то можно также генерировать монохроматическое лазерное гамма-излучение и F-GASER в энергетической области порядка ГэВ (гига-электрон-Вольт).
3) В частности, в отношении монохроматичности, низкого шума и уменьшенного размера устройства лазерное гамма-излучение, F-GASER и B-GASER далеко превосходят лазеры, получаемые при помощи излучения и кольца излучения большого размера. Данное изобретение может внести вклад в новые исследования и усовершенствования, в которых была введена когерентность, в некоторые разделы химии, касающиеся свойств структур, в физике элементарных частиц и в областях их применения.

Claims (6)

1. Способ генерирования лазерного гамма-излучения, включающий облучение мишени пучком электронов для генерации позитронов и воздействие на пучок электронов и пучок позитронов, ускоренных до одинаковых энергий, отличающийся тем, что осуществляют слияние пучков электронов и позитронов в одном и том же направлении и образуют на оси слияния молекулы позитрония или парапозитрония в форме пучка одной и той же фазы, охлажденного до температуры переходной конденсации Бозе-Эйнштейна, посредством чего одновременно генерируют лазерное гамма-излучение двух длин волн, сопровождающих аннигиляцию молекул, вызываемую самоиндуцированным излучением.
2. Способ по п.1, отличающийся тем, что пучок позитронов накапливают по меньшей мере до заданной энергии и интенсивности.
3. Способ по п.1, отличающийся тем, что генерируют лазерное гамма-излучение путем наложения на сливающиеся пучки электронов и позитронов поляризованного или неполяризованного лазерного пучка фотонов для избирательного индуцированного образования молекул позитрония или охлажденных парапозитрониев в форме пучка одинаковой фазы.
4. Способ по п.3, отличающийся тем, что поляризованный или неполяризованный лазерный пучок фотонов направляют антипараллельно направлению распространения сливающихся пучков электронов и позитронов.
5. Устройство для генерирования лазерного гамма-излучения, содержащее мишень для генерации позитронов, инжектор электронов и позитронов, кольцо циркуляции позитронов и средство для ускорения пучка электронов и пучка позитронов до соответствующих заданных энергий посредством инжектора и кольца циркуляции, отличающееся тем, что дополнительно содержит средство для направления пучка электронов и пучка позитронов в сходящийся поток в одном и том же направлении и фокусирующий элемент на участке слияния электронов и позитронов для генерации прямого лазерного гамма-излучения высокой энергии и обратного лазерного гамма-излучения низкой энергии в прямом и обратном направлениях соответственно.
6. Устройство по п.5, отличающееся тем, что оно дополнительно содержит приспособление для накладывания лазерного излучения или лазерного излучения на сливающиеся пучки электронов и позитронов для избирательно индуцируемого образования молекул позитрония или охлажденных парапозитрониев в форме пучка одинаковой фазы.
RU95120007A 1994-11-29 1995-11-28 Способ и устройство для генерации лазерного гамма-излучения RU2127935C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6-293607 1994-11-29
JP29360794A JP3145259B2 (ja) 1994-11-29 1994-11-29 ガンマ線レーザーの発生方法及びその装置

Publications (2)

Publication Number Publication Date
RU95120007A RU95120007A (ru) 1997-12-27
RU2127935C1 true RU2127935C1 (ru) 1999-03-20

Family

ID=17796907

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95120007A RU2127935C1 (ru) 1994-11-29 1995-11-28 Способ и устройство для генерации лазерного гамма-излучения

Country Status (5)

Country Link
US (1) US5617443A (ru)
EP (1) EP0715381B1 (ru)
JP (1) JP3145259B2 (ru)
DE (1) DE69522083T2 (ru)
RU (1) RU2127935C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608855C1 (ru) * 2015-09-10 2017-01-25 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Однопроходный гамма - лазер

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097740A (en) * 1998-09-29 2000-08-01 Palathingal; Jose Chakkoru Method and apparatus of producing coherent high-frequency electromagnetic radiation by interacting beams of ions and electrons
US6813330B1 (en) 2003-07-28 2004-11-02 Raytheon Company High density storage of excited positronium using photonic bandgap traps
US7425706B2 (en) * 2005-02-22 2008-09-16 Gilbert R. Hoy Gamma-ray laser; induced gamma emission system and method
DE102010023632B4 (de) 2010-06-14 2012-05-03 Walter Greiner Vorrichtung und Verfahren zur Erzeugung elektromagnetischer Strahlung
JP6067468B2 (ja) * 2013-04-22 2017-01-25 ネクストエナジー・アンド・リソース株式会社 垂直度測定器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557370A (en) * 1968-02-14 1971-01-19 Dawson Inc Alexander Gamma ray laser having a low temperature closed resonating cavity
GB1456348A (en) * 1974-03-21 1976-11-24 Marie G R P Ring laser for x rays or gamma rays
US4598415A (en) * 1982-09-07 1986-07-01 Imaging Sciences Associates Limited Partnership Method and apparatus for producing X-rays
WO1988001446A1 (en) * 1986-08-20 1988-02-25 Apricot S.A. High energy laser
EP0436043A1 (en) * 1989-07-26 1991-07-10 Sumitomo Heavy Industries, Ltd Inverse-compton scattering apparatus
WO1992003028A1 (de) * 1990-08-06 1992-02-20 Siemens Aktiengesellschaft Synchrotronstrahlungsquelle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711999B2 (ja) * 1987-02-24 1995-02-08 栄胤 池上 自由ポジトロニウム放射光の発生方法及びその装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557370A (en) * 1968-02-14 1971-01-19 Dawson Inc Alexander Gamma ray laser having a low temperature closed resonating cavity
GB1456348A (en) * 1974-03-21 1976-11-24 Marie G R P Ring laser for x rays or gamma rays
US4598415A (en) * 1982-09-07 1986-07-01 Imaging Sciences Associates Limited Partnership Method and apparatus for producing X-rays
WO1988001446A1 (en) * 1986-08-20 1988-02-25 Apricot S.A. High energy laser
EP0436043A1 (en) * 1989-07-26 1991-07-10 Sumitomo Heavy Industries, Ltd Inverse-compton scattering apparatus
WO1992003028A1 (de) * 1990-08-06 1992-02-20 Siemens Aktiengesellschaft Synchrotronstrahlungsquelle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608855C1 (ru) * 2015-09-10 2017-01-25 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Однопроходный гамма - лазер

Also Published As

Publication number Publication date
DE69522083D1 (de) 2001-09-13
DE69522083T2 (de) 2002-06-06
JP3145259B2 (ja) 2001-03-12
EP0715381B1 (en) 2001-08-08
EP0715381A2 (en) 1996-06-05
JPH08153936A (ja) 1996-06-11
EP0715381A3 (en) 1997-10-01
US5617443A (en) 1997-04-01

Similar Documents

Publication Publication Date Title
Blackburn et al. Quantum radiation reaction in laser–electron-beam collisions
Breeden et al. Stark acceleration of Rydberg atoms in inhomogeneous electric fields
Lawson On the adiabatic self-constriction of an accelerated electron beam neutralized by positive ions
RU2143773C1 (ru) Способ формирования лазера гамма-излучения и устройство для его реализации, способ формирования мощного когерентного электронного пучка и устройство для его реализации
Mourou et al. Extreme light
RU2127935C1 (ru) Способ и устройство для генерации лазерного гамма-излучения
Chen et al. Crystal channel collider: Ultra-high energy and luminosity in the next century
RU2142666C1 (ru) Способ и устройство для создания лазера сверхжесткого излучения (варианты)
US3944825A (en) Method and apparatus for the separation of isotopes
US4817124A (en) Charged particle high frequency laser
EP0303714B1 (en) Method of generating free positronium radiant light and apparatus therefor
RU2120678C1 (ru) Способ генерации когерентного пучка частиц и устройство для его осуществления
Kruyt et al. Advancements and Applications of Cooling Simulation Tools: A Focus on Xsuite
Rivlin Gamma-ray lasing by free nuclei and bymatter-antimatter beams
US6097740A (en) Method and apparatus of producing coherent high-frequency electromagnetic radiation by interacting beams of ions and electrons
RU2058676C1 (ru) Способ охлаждения пучка заряженных частиц
Brown et al. Comparing the antiproton and proton and progress toward cold antihydrogen
Chen et al. Channeled particle acceleration by plasma waves in metals
JPH0527095A (ja) レーザー冷却法
Takahashi Production of tunable coherent gamma rays from accelerated positronium
Katz Desirable linear electron accelerator characteristics for nuclear research
Kruyt et al. JACOW: Advancements and Applications of Cooling Simulation Tools: A Focus on Xsuite
JP3241779B2 (ja) 高輝度放射光発生方法及び装置
Patil Elementary Particles
Chew et al. High Energy Accelerators at the University of California Radiation Laboratory

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20051129