RU2126492C1 - Газотурбинный двигатель (варианты) - Google Patents

Газотурбинный двигатель (варианты) Download PDF

Info

Publication number
RU2126492C1
RU2126492C1 RU96108948/06A RU96108948A RU2126492C1 RU 2126492 C1 RU2126492 C1 RU 2126492C1 RU 96108948/06 A RU96108948/06 A RU 96108948/06A RU 96108948 A RU96108948 A RU 96108948A RU 2126492 C1 RU2126492 C1 RU 2126492C1
Authority
RU
Russia
Prior art keywords
housing
section
sections
rollers
compressor
Prior art date
Application number
RU96108948/06A
Other languages
English (en)
Other versions
RU96108948A (ru
Inventor
Ричард Алан Костка (CA)
Ричард Алан Костка
Витторио Бруно (CA)
Витторио Бруно
Original Assignee
Пратт энд Уитни Канада Инк.,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пратт энд Уитни Канада Инк., filed Critical Пратт энд Уитни Канада Инк.,
Publication of RU96108948A publication Critical patent/RU96108948A/ru
Application granted granted Critical
Publication of RU2126492C1 publication Critical patent/RU2126492C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/023Details or means for fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/231Geometry three-dimensional prismatic cylindrical

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Self-Closing Valves And Venting Or Aerating Valves (AREA)

Abstract

Газотурбинный двигатель предназначен для преобразования тепловой энергии в механическую. Газотурбинный двигатель содержит спускной клапан, имеющий два участка корпуса, который образует путь прохождения газа по ступеням компрессора. Один из участков является подвижным в сторону от второго участка с созданием отверстия между двумя участками. Подвижный участок имеет один или более кронштейнов с одним или более роликами, прикрепленными к концам кронштейнов. Неподвижный участок имеет одну или более направляющих, по которым перемещаются ролики, когда к подвижному участку прилагается усилие, заставляющее ролики перемещаться по направляющим и разделяющее два участка, что приводит к открытию клапана. Такое выполнение двигателя позволит уменьшить усилие, требуемое для открытия клапана. 2 с. и 1 з.п. ф-лы, 8 ил.

Description

Областью техники, к которой относится настоящее изобретение, являются газотурбинные двигатели, в частности спускные клапаны для газотурбинных двигателей.
Предпосылки создания изобретения
В газотурбинных двигателях (см. фиг. 1), используемых для приведения в движение летательных аппаратов, воздух направляется через многоступенчатые компрессоры по мере его прохождения аксиально, либо аксиально и радиально, через двигатель к камере сгорания. По мере прохождения воздуха через каждую последовательную ступень компрессора давление воздуха возрастает. При определенных условиях, например, когда уменьшают подачу газа в двигатель или во время запуска двигателя, количество воздуха, необходимое в камере сгорания, меньше того количества, которое протекает через компрессор. При таких режимах может произойти помпаж или выброс пламени в двигателе, что угрожает безопасной работе двигателя и летательного аппарата в целом.
С целью снижения последствий таких состояний, эти газотурбинные двигатели оснащают спускными клапанами в корпусе двигателя спереди камеры сгорания, которые в случае неизбежного помпажа двигателя открываются для уменьшения воздушного потока, поступающего в камеру сгорания. Эти спускные клапаны принимают многие формы, от простых отверстий в корпусе компрессора, которые открываются посредством подвижного клапанного элемента, до устройств, разделяющих смежные участки корпуса двигателя с созданием между ними отверстия.
В заявке на патент Франции 2209044 и заявке на Европатент 0298015 раскрываются спускные клапаны, содержащие простые отверстия в участке корпуса компрессора, которые открываются с помощью подвижного клапанного элемента. Спуск текучей среды осуществляется без перемещения участков корпуса компрессора относительно один другого, однако путем выведения клапанного элемента у участка корпуса из уплотнительного зацепления с последним.
Краткое описание изобретения
Отличительным признаком настоящего изобретения является усовершенствованное средство приведения в действие известного спускного клапана, имеющего два участка, один из которых является подвижным, а другой неподвижным. Предлагаемое изобретение позволяет открывать клапан с меньшим усилием, нежели требовалось ранее. Это достигается за счет приложения усилия к подвижному участку клапана, причем усилие заставляет подвижный участок вращаться соосно вокруг оси двигателя. Как только подвижный участок начинает вращаться, ролики, которые крепятся к подвижному участку под заранее установленным углом и которые перемещаются по направляющим, установленным под углом, вынуждены двигаться по направляющей, тем самым придавая аксиальное перемещение подвижному участку. Это заставляет подвижный участок совершать движение по спирали от подвижного участка с созданием отверстия между неподвижным участком и подвижным участком, через которое может проходить сжатый воздух.
Краткое описание чертежей
Фиг. 1 представляет собой вид в поперечном разрезе газотурбинного двигателя с использованием предлагаемого изобретения; фиг. 2 представляет собой перспективный вид спускного воздушного клапана в соответствии с настоящим изобретением в закрытом положении; фиг. 3 представляет собой перспективный вид спускного воздушного клапана в соответствии с настоящим изобретением в открытом положении.
фиг. 4 представляет собой вид сбоку спускного воздушного клапана в соответствии с настоящим изобретением в закрытом положении; фиг. 5 представляет собой вид в направлении стрелки 8 на фиг. 4.
Фиг. 6 представляет собой вид сбоку спускного воздушного клапана в соответствии с настоящим изобретением в открытом положении.
Фиг. 7 представляет собой вид в направлении стрелки 10 на фиг. 6.
Фиг. 8 представляет собой вид в поперечном разрезе ролика.
Лучший способ осуществления изобретения
Настоящее изобретение лучше всего понимается со ссылкой на фиг. 2 - 8. Фиг. 2 и 3 представляют собой перспективные виды настоящего изобретения, содержащего подвижный участок 10 и неподвижный участок 12, каждый из которых имеет известную конструкцию, причем подвижный участок расположен спереди неподвижного участка. Как показано на фиг. 2, когда спускной клапан находится в закрытом положении, весь сжатый воздух из компрессоров, расположенных спереди спускного клапана, направляется через спускной клапан по центральной оси двигателя в отделение камеры сгорания (не показана), которое расположено за спускным клапаном. Когда спускной клапан открыт, как показано на фиг.3, часть сжатого воздуха, проходящего аксиально по двигателю, направляется через отверстие 14, создаваемое в спускном клапане.
Клапан работает за счет приложения усилия, предпочтительно усилия, тангенциального относительно центральной оси, к подвижному участку 10, которое достаточно для того, чтобы заставить подвижный участок 10 вращаться вокруг центральной оси. На практике усилие предпочтительно создается за счет давления топлива и прилагается к подвижному участку посредством штока 6, соединенного с фланцем 50 через шкворень 52 и роликовое соединение 54, прикрепленное к подвижному участку 10. По мере того, как подвижный участок 10 начинает вращаться, ряд подшипников 56, прикрепленных к подвижному участку 10, перемещается по направляющей 58 на поверхности неподвижного участка 12. Направляющая 58 расположена под углом так, что по мере перемещения роликов 56 по направляющей 58, подвижный участок 10 приводится в движение аксиально, а также тангенциально, что заставляет два участка отходить друг от друга и образовывать отверстие 14 между ними, как показано на фиг. 6.
Как можно видеть на фиг. 4 - 8, ролики подшипников крепятся к кронштейнам 60 при помощи шкворней 62. Внутренняя дорожка ролика 56 плотно пригнана к шкворню 62, тогда как наружная дорожка 66 ролика 56 перемещается по направляющей 58 и движется над подшипниками 64. Эти направляющие могут принимать множество форм. Форма, изображенная на чертежах, выполнена за счет врезания в поверхность корпуса, тогда как другие формы могут быть образованы на поверхности корпуса. Предпочтительные ролики представляют собой традиционно уплотненные подшипники, которые снизят вероятность загрязнения внутри сборки подшипников и создания различных проблем.
Конструкция клапана, изображенная на чертежах, содержит три ролика и три направляющие, равно разнесенные друг от друга. Однако, в зависимости от критериев, предъявляемых к конструкции, можно использовать большее число таких подшипников. Подшипники не только снижают усилие, необходимое для открытия клапана, по сравнению с величиной усилия, присущей известным конструкциям, но также поддерживают относительное положение двух участков корпуса так, что они могут оставаться на одной оси во время открытия и закрытия. Положение направляющих и угол, под которым они расположены, будут зависеть от расстояния, на которое клапан должен открываться, и от длины хода, необходимой для перемещения подшипника по направляющей. Обычно угол, под которым расположена направляющая, составляет приблизительно от 25 до 80o к центральной оси двигателя, причем угол в 45o является предпочтительным углом.
Испытание, проведенное в сравнении между известным спускным клапаном и клапаном в соответствии с настоящим изобретением, имело целью определить количество энергии, необходимой для работы каждого клапана. Испытание заключалось в том, что каждый из клапанов (известный и предлагаемый) помещали на стол так, что неподвижный участок располагался горизонтально поверхности стола. Груз массой 40 фунтов (18 кг 144 г) помещали на подвижный участок 10. Затем клапан приводили в действие за счет приложения усилия, достаточного для открытия клапана, и измеряли величину усилия, необходимо в каждом случае. Результаты показали, что известный клапан требовал приложения усилия, составляющего 90 фунтов (40 кг 824 г), тогда как настоящее изобретение требовало только 40 фунтов. Это составляет снижение величины усилия более, чем на 50%, необходимого для открытия клапана. А это приводит к созданию более быстродействующего клапана. Кроме замены рычажных механизмов известного уровня техники подшипниками в соответствии с настоящим изобретением, существует меньшая вероятность несрабатывания клапана вследствие загрязнения окружающей средой. Помимо этого, перемещение подшипников по направляющим приводит к сохранению относительных положений участков так, что отпадает необходимость в использовании известных прокладок 32, что в свою очередь снижает накладные расходы, связанные с изготовлением клапана.

Claims (3)

1. Газотурбинный двигатель, имеющий одну или более ступеней компрессора в разделенном на участки корпусе, который образует аксиальный путь прохождения газа по ступеням компрессора, причем указанный корпус, разделенный на участки, содержит спускной клапан, расположенный коаксиально вокруг центральной оси двигателя и ниже от одной по крайней мере ступени компрессора, отличающийся тем, что указанный спускной клапан заставляет по меньшей мере один участок корпуса перемещаться в аксиальном направлении, создавая отверстие на периферии корпуса, позволяющее осуществить спуск текучей среды, находящейся под давлением, а указанный корпус, разделенный на участки, включает первый участок корпуса, имеющий по крайней мере один кронштейн и один или более роликов, присоединенных к кронштейну, второй участок корпуса, имеющий одну или более направляющих, по которым перемещаются ролики, механическое соединение для приложения усилия к кронштейну, заставляющее ролики перемещаться по указанной направляющей или направляющим, что приводит к аксиальному перемещению первого участка корпуса от второго участка с созданием указанного отверстия.
2. Двигатель по п.1, отличающийся тем, что указанная направляющая или направляющие расположены под углом приблизительно от 25 до 80o тангенциально по отношению аксиального пути потока.
3. Газотурбинный двигатель, имеющий одну или более аксиальных ступеней компрессора и центробежный компрессор, расположенный ниже аксиальных компрессоров, причем указанные компрессоры заключены в разделенный на участки корпус, который содержит первый участок и второй участок, образующие путь прохождения газа по ступеням компрессора, причем указанный корпус, разделенный на участки, содержит спускной клапан, расположенный коаксиально центральной оси двигателя и ниже от аксиальных ступеней компрессора, отличающийся тем, что указанный спускной клапан заставляет по меньшей мере один участок корпуса перемещаться в аксиальном направлении, создавая отверстие на периферии корпуса, позволяющее осуществлять спуск текучей среды, находящейся под давлением, а указанный корпус, разделенный на участки, включает подвижный участок, имеющий по крайней мере один кронштейн и один и более роликов, присоединенных к кронштейну, неподвижный участок, имеющий одну или более направляющих, по которым перемещаются ролики, механическое соединение для приложения тангенциального усилия к кронштейну, заставляющее ролики перемещаться по указанной направляющей или направляющим, что приводит к аксиальному перемещению первого участка корпуса относительно второго участка с созданием указанного отверстия на периферии корпуса.
RU96108948/06A 1993-10-13 1994-10-13 Газотурбинный двигатель (варианты) RU2126492C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/135,710 US5380151A (en) 1993-10-13 1993-10-13 Axially opening cylindrical bleed valve
US08/135,710 1993-10-13

Publications (2)

Publication Number Publication Date
RU96108948A RU96108948A (ru) 1998-08-20
RU2126492C1 true RU2126492C1 (ru) 1999-02-20

Family

ID=22469300

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96108948/06A RU2126492C1 (ru) 1993-10-13 1994-10-13 Газотурбинный двигатель (варианты)

Country Status (6)

Country Link
US (1) US5380151A (ru)
EP (1) EP0723630B1 (ru)
JP (1) JP3682976B2 (ru)
DE (1) DE69426601T2 (ru)
RU (1) RU2126492C1 (ru)
WO (1) WO1995010709A1 (ru)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048171A (en) * 1997-09-09 2000-04-11 United Technologies Corporation Bleed valve system
US6212770B1 (en) * 1998-02-27 2001-04-10 United Technologies Corporation Method of forming a roller assembly
US6092987A (en) * 1998-02-27 2000-07-25 United Technologies Corporation Stator assembly for a rotary machine
JPH11294189A (ja) * 1998-02-27 1999-10-26 United Technol Corp <Utc> 回転機械用のステ―タ構造体
US6086326A (en) * 1998-02-27 2000-07-11 United Technologies Corporation Stator structure for a track opening of a rotary machine
US6370772B1 (en) * 1998-02-27 2002-04-16 United Technologies Corporation Method of forming a track for an axial flow gas turbine
US6106227A (en) * 1998-02-27 2000-08-22 United Technologies Corporation Roller assembly for guiding an actuating ring
DE19834530A1 (de) * 1998-07-31 2000-02-03 Bmw Rolls Royce Gmbh Anordnung eines als Abblaseventil eines Axialverdichters fungierenden Blendenringes
US6183195B1 (en) 1999-02-04 2001-02-06 Pratt & Whitney Canada Corp. Single slot impeller bleed
GB9918072D0 (en) 1999-07-30 1999-10-06 Alliedsignal Ltd Turbocharger
US6695578B2 (en) 2001-12-19 2004-02-24 Sikorsky Aircraft Corporation Bleed valve system for a gas turbine engine
US6755025B2 (en) * 2002-07-23 2004-06-29 Pratt & Whitney Canada Corp. Pneumatic compressor bleed valve
US6899513B2 (en) * 2003-07-07 2005-05-31 Pratt & Whitney Canada Corp. Inflatable compressor bleed valve system
US7197881B2 (en) 2004-03-25 2007-04-03 Honeywell International, Inc. Low loss flow limited feed duct
US7624581B2 (en) * 2005-12-21 2009-12-01 General Electric Company Compact booster bleed turbofan
US7946104B2 (en) * 2006-05-12 2011-05-24 Rohr, Inc. Bleed air relief system for engines
US7850419B2 (en) * 2006-11-30 2010-12-14 Pratt & Whitney Canada Corp. Bleed valve actuating system for a gas turbine engine
FR2925130B1 (fr) * 2007-12-14 2012-07-27 Snecma Dispositif de prelevement d'air dans un compresseur de turbomachine
US8105012B2 (en) * 2008-03-12 2012-01-31 Opra Technologies B.V. Adjustable compressor bleed system and method
US8092153B2 (en) * 2008-12-16 2012-01-10 Pratt & Whitney Canada Corp. Bypass air scoop for gas turbine engine
US8167551B2 (en) * 2009-03-26 2012-05-01 United Technologies Corporation Gas turbine engine with 2.5 bleed duct core case section
GB2470050B (en) * 2009-05-07 2015-09-23 Cummins Turbo Tech Ltd A compressor
FR2987874B1 (fr) * 2012-03-09 2015-10-09 Snecma Couvercle pour compresseur, compresseur et turboreacteurs associes
US9068506B2 (en) 2012-03-30 2015-06-30 Pratt & Whitney Canada Corp. Turbine engine heat recuperator system
US9638201B2 (en) 2012-06-20 2017-05-02 United Technologies Corporation Machined aerodynamic intercompressor bleed ports
US9103283B2 (en) * 2012-06-20 2015-08-11 United Technologies Corporation Spherical-link end damper system with near constant engagement
US9322337B2 (en) 2012-06-20 2016-04-26 United Technologies Corporation Aerodynamic intercompressor bleed ports
US9328735B2 (en) 2012-09-28 2016-05-03 United Technologies Corporation Split ring valve
US9752587B2 (en) * 2013-06-17 2017-09-05 United Technologies Corporation Variable bleed slot in centrifugal impeller
US9651053B2 (en) * 2014-01-24 2017-05-16 Pratt & Whitney Canada Corp. Bleed valve
DE102015220333A1 (de) * 2015-10-19 2017-04-20 Rolls-Royce Deutschland Ltd & Co Kg Vorrichtung zur Einstellung eines Spaltes zwischen dem Gehäuse eines Laufrades und dem Laufrad in einem Radialverdichter und eine Turbomaschine
US10934943B2 (en) 2017-04-27 2021-03-02 General Electric Company Compressor apparatus with bleed slot and supplemental flange
US11346240B2 (en) * 2019-06-07 2022-05-31 Raytheon Technologies Corporation Gas turbine engine bleed valve damping guide link

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1862289A (en) * 1929-03-29 1932-06-07 American Blower Corp Apparatus and method of controlling fans
US2092961A (en) * 1936-05-01 1937-09-14 Chain Belt Co Discharge gate mechanism for concrete transportation conduits
US2473620A (en) * 1944-12-05 1949-06-21 Bendix Aviat Corp Valve
US2645244A (en) * 1948-08-06 1953-07-14 Amiel F Klickman Close-off device for pipe lines
US2693904A (en) * 1950-11-14 1954-11-09 A V Roe Canada Ltd Air bleed for compressors
US2702665A (en) * 1951-03-07 1955-02-22 United Aircraft Corp Stator construction for axial flow compressors
US2850227A (en) * 1954-12-03 1958-09-02 Gen Motors Corp Compressor air bleed-off valve
US3030006A (en) * 1958-05-27 1962-04-17 United Aircraft Corp Circumferential bleed valve
US3360189A (en) * 1965-10-11 1967-12-26 United Aircraft Canada Bleed arrangement for gas turbine engines
US3398928A (en) * 1966-03-11 1968-08-27 Otis Eng Co Valves
US3638428A (en) * 1970-05-04 1972-02-01 Gen Electric Bypass valve mechanism
GB1365491A (en) * 1971-01-02 1974-09-04 Dowty Rotol Ltd Gas turbine ducted fan engines and fans therefor
DE2247400C2 (de) * 1972-09-27 1975-01-16 Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Vorrichtung zum Abblasen von verdichteter Luft aus einem Verdichter eines Gasturbinenstrahltriebwerks
US3941498A (en) * 1974-04-08 1976-03-02 Chandler Evans Inc. Variable geometry collector for centrifugal pump
US4050240A (en) * 1976-08-26 1977-09-27 General Motors Corporation Variable air admission device for a combustor assembly
US4120156A (en) * 1977-06-08 1978-10-17 The Garrett Corporation Turbocharger control
US4280678A (en) * 1978-11-29 1981-07-28 Pratt & Whitney Aircraft Of Canada, Limited Bleed valve
US5136840A (en) * 1982-09-30 1992-08-11 General Electric Company Gas turbine engine actuation system
US4522592A (en) * 1983-08-01 1985-06-11 Johnson W Grant Valve structure for an oral evacuator system
US4715779A (en) * 1984-12-13 1987-12-29 United Technologies Corporation Bleed valve for axial flow compressor
US4998562A (en) * 1986-05-23 1991-03-12 Halkey-Roberts Corporation Flow control valve
US4827713A (en) * 1987-06-29 1989-05-09 United Technologies Corporation Stator valve assembly for a rotary machine
DE3734386A1 (de) * 1987-10-10 1989-04-20 Daimler Benz Ag Abgasturbolader fuer eine brennkraftmaschine

Also Published As

Publication number Publication date
EP0723630B1 (en) 2001-01-17
DE69426601D1 (de) 2001-02-22
JP3682976B2 (ja) 2005-08-17
WO1995010709A1 (en) 1995-04-20
JPH09503568A (ja) 1997-04-08
US5380151A (en) 1995-01-10
DE69426601T2 (de) 2001-05-31
EP0723630A1 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
RU2126492C1 (ru) Газотурбинный двигатель (варианты)
EP3255282B1 (en) Bleed valve with altitude compensating pneumatic actuator
US9476362B2 (en) Turbomachine with bleed valves located at the intermediate case
RU96108948A (ru) Аксиально открывающийся цилиндрический спускной клапан
US5477673A (en) Handling bleed valve
RU2222708C2 (ru) Двухконтурный газотурбинный двигатель со средствами отведения избыточного количества воздуха с упрощенным управлением
US4715779A (en) Bleed valve for axial flow compressor
US6122905A (en) Compressor bleed valve
US5311734A (en) System and method for improved engine cooling in conjunction with an improved gas bearing face seal assembly
RU2296887C2 (ru) Двухконтурный турбореактивный двигатель
WO1989011583A1 (en) Turbocharger apparatus
US7249930B2 (en) Variable-nozzle turbocharger with integrated bypass
US8075246B2 (en) Relief device for a turbojet and a turbojet comprising same
EP2864611A1 (en) Spherical-link end damper system with near constant engagement
KR20000022754A (ko) 배기 터빈 과급기에서 스러스트를 균형잡는 방법 및 장치
GB2063366A (en) Turbocharger and adaptions thereof
US10330019B2 (en) Self-actuating and dual pivot flapper valve
EP0936357B1 (en) Gas turbine engine
US20240102422A1 (en) Sealing device for a discharge valve of a turbomachine
EP4198292B1 (en) Variable area nozzle assembly and method for operating same
US11754018B2 (en) Aircraft propulsion system exhaust nozzle with ejector passage(s)
CA2229352C (en) Compressor bleed valve
US5417055A (en) Valve for diverting fluid flows in turbomachines
JPH01267302A (ja) 可変容量タービン

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20031014