RU2125905C1 - Прямоточно-центробежный сепаратор - Google Patents
Прямоточно-центробежный сепаратор Download PDFInfo
- Publication number
- RU2125905C1 RU2125905C1 RU97114215A RU97114215A RU2125905C1 RU 2125905 C1 RU2125905 C1 RU 2125905C1 RU 97114215 A RU97114215 A RU 97114215A RU 97114215 A RU97114215 A RU 97114215A RU 2125905 C1 RU2125905 C1 RU 2125905C1
- Authority
- RU
- Russia
- Prior art keywords
- pipe
- separation chamber
- phase
- collector
- designed
- Prior art date
Links
Landscapes
- Cyclones (AREA)
Abstract
Изобретение предназначено для очистки природного газа, транспортируемого по магнистральным трубопроводам, перед поступлением его на газораспределительные станции. Прямоточно-центробежный сепаратор представляет собой наружную цилиндрическую трубу с соосно встроенной внутри нее сепарационной камерой в виде цилиндрической трубы, в которой размещен тангенциальный завихритель, а на выходе из сепарационной камеры - патрубок отвода очищенного газа, имеющий меньший диаметр, чем труба сепарационной камеры, и образующий с ее внутренней стенкой приемную кольцевую щель для вывода уловленной фазы. Отвод уловленной фазы выполнен в виде продольных сквозных тангенциальных каналов с острыми входными кромками, на выходе из которых к нижней части коллектора присоединен в виде тройника вертикально направленный патрубок сбора уловленной фазы. При этом в кольцевой полости за коллектором последовательно установлены два инерционных отделителя, первый из которых выполнен как осевой лопаточный завихритель, а второй - в виде сквозных тангенциальных каналов, размещенных в верхнем секторе выходного конца патрубка отвода очищенного газа. Для отвода остатка мелкодисперсной уловленной фазы нижняя половина кольцевой полости между отделителями сообщена трубопроводом с полостью вертикального патрубка сбора уловленной фазы. В устройстве расширен диапазон нагрузок на сепаратор. 1 з.п.ф-лы, 1 ил.
Description
Изобретение относится к области энергетики и может быть использовано в газовой промышленности, например, для очистки природного газа, транспортируемого по магистральным трубопроводам, и который перед поступлением на газораспределительные станции может содержать взвешенную фазу в виде конденсата, метанола, солярового и турбинного масел, а также песок, сварочный грат, сернистые соединения железа и др.
Известны газоочистительные аппараты в виде циклонов / см., например, И. Е. Идельчик " Справочник по гидравлическим сопротивлениям", Госэнергоиздат, М.Л. I960/. К недостаткам подобных устройств следует отнести их большие габариты, что связано с низкими допустимыми скоростями движения газа в циклонах, а также, как следствие, имеют ограниченный диапазон допустимых нагрузок.
Известен прямоточно-центробежный сепаратор / см. А.И.Ершов, И.М.Плехов, А.И.Бершевиц " Новые конструкции сепараторов для очистки промышленных газов" Минск, 1973 г. Обзорная информация. Серия: Новые химические материалы/, представляющий собой наружную цилиндрическую трубу с соосно встроенной сепарационной камерой в виде цилиндрической трубы, во входной части которой размещен тангенциальный завихритель, а на выходе - патрубок отвода очищенного газа, имеющий меньший диаметр, чем труба сепарционной камеры, и образующий с ее внутренней стенкой приемную кольцевую щель, переходящую в кольцевую щель на трубе сепарационной камеры для вывода уловленной /взвешенной/ фазы в полость коллектора /прототип/.
Недостатками известного устройства являются, во-первых, отсутствие перепуска части газа из коллектора вывода уловленной фазы, что, - при увеличении нагрузки, сопровождаемой ростом динамического напора в сепарационной камере, - приводит к соответствующему повышению противодавления в полости коллектора, препятствуя выводу уловленной фазы из кольцевой щели в полость коллектора.
Это обстоятельство вынуждает уменьшить величину нагрузки на сепаратор или существенно увеличить присоединенный объем коллектора, например применить наружную трубу с диаметром, втрое превышающим диаметр трубы сепарационной камеры. Во-вторых, в прототипе рекомендованная площадь кольцевой щели вывода уловленной фазы составляет 20% от площади поперечного сечения патрубка отвода очищенного газа, что при максимально допустимом - с точки зрения приемлемого уровня эффективности улавливания, например 99% - диаметре патрубка, равным 100 мм, ширина кольцевой щели составит всего 5 мм. Такая кольцевая щель при быстром увеличении нагрузки с предельным содержанием в газе взвешенной фазы может оказаться недостаточной, что приведет к ее забиванию.
Целью изобретения является расширение диапазона нагрузок на сепаратор при сохранении его минимальных диаметральных габаритов.
Эта цель достигается тем, что в прямоточно-центробежном сепараторе, представляющем собой наружную цилиндрическую трубу с соосно встроенной внутри нее сепарационной камерой в виде цилиндрической трубы, в которой перед перегородкой, разделяющей кольцевую полость на входную часть и коллектор отвода уловленной фазы, размещен тангенциальный завихритель, а на выходе из сепарационной камеры - патрубок отвода очищенного газа, имеющий меньший диаметр, чем труба сепарационной камеры, и образующий с ее внутренней стенкой приемную кольцевую щель для вывода уловленной фазы. За приемной кольцевой щелью на стенке трубы сепарационной камеры выполнены продольные сквозные тангенцинальные каналы с острыми входными кромками, на выходе из которых к нижней части коллектора присоединен в виде тройника вертикально направленный патрубок сбора уловленной фазы. При этом в кольцевой полости за коллектором в обеспечение перепуска части газа обратно в общий поток очищенного газа последовательно установлены два инерционных отделителя, первый из которых выполнен как осевой лопаточный завихритель с закруткой перепускаемого через него газа противоположно закрутке потока в сепарационной камере, а второй - в виде сквозных тангенциальных каналов, размещенных в верхнем секторе выходного конца патрубка отвода очищенного газа. Причем направление выхода через них перепускаемого газа совпадает с направлением вращения потока в патрубке отвода очищенного газа, а для отвода мелкодисперсной части уловленной части фазы нижняя половина кольцевой полости между инерционными отделителями сообщена трубопроводом с полостью вертикального патрубка сбора уловленной фазы. При этом площади поперечных сечений тангенциальных каналов вывода уловленной фазы и тангенциальных каналов выхода перепускаемого газа выполнены равными 50 и 5% от площади поперечного сечения патрубка отвода очищенного газа соответственно, а диаметр тройника, в виде которого выполнен вертикальный патрубок сбора уловленной фазы, должен быть не менее диаметра трубы сепарационной камеры.
При выполнении перечисленной совокупности признаков в устройстве при увеличении нагрузки не будет повышения противодавления в полости коллектора, препятствующего выводу уловленной фазы, не будет забивания каналов вывода взвешенной фазой, а также не будет необходимости (более чем в полтора раза от диаметра сепарационной камеры) увеличивать диаметр наружной трубы сепаратора.
На чертеже представлен общий вид прямоточно-центробежного сепаратора в разрезе. Сепаратор содержит наружную цилиндрическую трубу (1) с соосно встроенной внутри нее сепарационной камерой (2) в виде цилиндрической трубы (3). Перегородка (4) разделяет межтрубную кольцевую полость на входную часть (5) и коллектор (6) вывода уловленной фазы. На входе в трубу (3) размещены тангенциальный завихритель (7), а на выходе из сепарационной камеры (2) - патрубок (8) отвода очищенного газа, приемная кольцевая щель (9), ограниченная снаружи внутренней стенкой трубы (3), а изнутри - наружной стенкой патрубка (8). Непосредственно за приемной кольцевой щелью (9) на стенке трубы (3) выполнены продольные сквозные тангенциальные каналы (10) с острыми входными кромками (11), на выходе из которых к нижней части коллектора (6) присоединен в виде тройника вертикально направленный патрубок (12) сбора уловленной фазы. При этом в кольцевой полости за коллектором (6) последовательно установлены два инерционных отделителя, первый (13) из которых выполнен как осевой завихритель с закруткой, противоположной закрутке потока в сепарационной камере (2), а второй (14) - в виде сквозных тангенциальных каналов, размещенных в верхнем секторе выходного конца патрубка (8). Причем направление выхода перепускаемого газа через каналы (14) совпадает с направлением вращения потока в патрубке (8), а нижняя половина кольцевой полости (15) сообщена трубопроводом (16) с полостью патрубка (12).
Сепаратор работает следующим образом. Подаваемый в сепаратор поток газа, несущий взвешенную фазу, закручивается на входе в сепарационную камеру (2) с помощью завихрителя (7). В трубе (3) сепарационной камеры (2) под действием центробежных сил происходит разделение фаз. Большая часть газовой фазы, движущейся в приосевой области трубы (3), выходит из нее через патрубок (8) отвода очищенного газа, а взвешенная фаза, движущаяся спиральным потоком по периферии трубы (3) сепарационной камеры (2) захватывается приемной кольцевой щелью (9) и через продольные тангенциальные каналы (10) постепенно и плавно отводится в кольцевую полость коллектора (6) и далее накапливается в вертикальном патрубке (12). Небольшая часть газа, поступившая вместе с уловленной фазой из кольцевой полости за коллектором (6) через первый инерционный отделитель (13), резко меняет при этом направление движения таким образом, что большая часть уловленной фазы, не подверженная турбулентному переносу, удерживается в кольцевой полости коллектора (6), обеспечивая тем самым ее накопление в вертикальном патрубке (12). Как указывалось выше, часть газа, прошедшая через инерционный отделитель (13), может содержать незначительную долю взвешенной фазы, которая, осаждаясь в нижней половине кольцевой полости (15), по мере ее накопления начинает перемещаться по трубопроводу (16) в полость вертикального патрубка (12), а часть очищенного газа через второй инерционный отделитель (14) перепускается обратно в основной поток очищенного газа с направлением вращения, одинаковым с последним.
Таким образом, осуществляя постепенный и плавный отвод уловленной фазы через продольные тангенциальные каналы с острыми входными кромками и сопровождая этот процесс перепуском части газа через два последовательно установленных инерционных отделителя обратно в общий поток очищенного газа, достигается главная цель изобретения: расширение диапазона нагрузок на сепаратор при сохранении минимальными его диаметральных габаритов.
Claims (2)
1. Прямоточно-центробежный сепаратор, представляющий собой наружную цилиндрическую трубу с соосно встроенной сепарационной камерой в виде цилиндрической трубы, в которой перед перегородкой, разделяющий кольцевую полость на входную часть и коллектор сбора уловленной фазы, размещен тангенциальный завихритель, а на выходе из сепарационной камеры - патрубок отвода очищенного газа, имеющий меньший диаметр, чем труба сепарационной камеры и образующий с ее внутренней стенкой приемную кольцевую щель для вывода уловленной фазы, отличающийся тем, что за приемной кольцевой щелью на стенке трубы сепарационной камеры выполнены продольные сквозные тангенциальные каналы с острыми входными кромками, на выходе из которых к нижней части коллектора присоединен в виде тройника вертикально направленный патрубок сбора уловленной фазы, при этом в кольцевой полости за коллектором последовательно установлены два инерционных отделителя, первый из которых выполнен как осевой лопаточный завихритель, а второй - в виде сквозных тангенциальных каналов, размещенных в верхнем секторе выходного конца патрубка отвода очищенного газа, а нижняя половина кольцевой полости между инерционными отделителями сообщена трубопроводом с полостью вертикального патрубка сбора уловленной фазы.
2. Сепаратор по п.1, отличающийся тем, что площади поперечных сечений тангенциальных каналов вывода уловленной фазы и тангенциальных каналов выхода перепускаемого газа выполнены 50 и 5% от площади поперечного сечения патрубка отвода очищенного газа соответственно, а диаметр тройника, в виде которого выполнен вертикальный патрубок сбора уловленной фазы, не менее диаметра трубы сепарационной камеры.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU97114215A RU2125905C1 (ru) | 1997-08-01 | 1997-08-01 | Прямоточно-центробежный сепаратор |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU97114215A RU2125905C1 (ru) | 1997-08-01 | 1997-08-01 | Прямоточно-центробежный сепаратор |
Publications (2)
Publication Number | Publication Date |
---|---|
RU97114215A RU97114215A (ru) | 1998-05-20 |
RU2125905C1 true RU2125905C1 (ru) | 1999-02-10 |
Family
ID=20196501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU97114215A RU2125905C1 (ru) | 1997-08-01 | 1997-08-01 | Прямоточно-центробежный сепаратор |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2125905C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2545544C2 (ru) * | 2007-03-26 | 2015-04-10 | Твистер Б.В. | Циклонный сепаратор для текучих сред |
RU191607U1 (ru) * | 2018-10-09 | 2019-08-13 | Общество с ограниченной ответственностью "Прогресс" | Центробежная камера очистки технологического аэрогидропотока |
-
1997
- 1997-08-01 RU RU97114215A patent/RU2125905C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
Ершов А.И. и др. Новые конструкции сепараторов для очистки промышленных газов: Обзорная информация // серия: Новые химические материалы. - Минск, 1973, с.21. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2545544C2 (ru) * | 2007-03-26 | 2015-04-10 | Твистер Б.В. | Циклонный сепаратор для текучих сред |
RU191607U1 (ru) * | 2018-10-09 | 2019-08-13 | Общество с ограниченной ответственностью "Прогресс" | Центробежная камера очистки технологического аэрогидропотока |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3898068A (en) | Cyclonic separator | |
US6190543B1 (en) | Cyclonic separator | |
US6398973B1 (en) | Cyclone separator | |
US3641745A (en) | Gas liquid separator | |
US5510017A (en) | Pipe liquid/gas separator having vane sets | |
WO2008029262A3 (en) | Three-phase cyclonic separator with a debris trap | |
GB2392115A (en) | A system for separating an entrained immiscible liquid component from a wet gas stream | |
DK506983A (da) | Cyklonseparator | |
CN102076422A (zh) | 具有两个气体出口的旋风分离器以及分离方法 | |
FR2484287A1 (fr) | Separateur a cyclone comportant une aube de guidage d'influent | |
CN110732188B (zh) | 一种管内相分隔分流式高流速气液分离装置和方法 | |
RU2125905C1 (ru) | Прямоточно-центробежный сепаратор | |
EP1157651A2 (en) | Cyclone separator | |
CZ160693A3 (en) | Apparatus for separating particles from a liquid containing a plurality of components | |
CN113382796B (zh) | 用于流体净化的装置和方法 | |
CN210729883U (zh) | 一种旋流式气液分离装置 | |
GB2618798A (en) | Separator | |
UA76282C2 (en) | Small-size high-performance separator | |
CN110605190A (zh) | 一种旋流式气液分离装置 | |
CN105214860A (zh) | 气体-固体两相多级旋风分离装置 | |
RU118876U1 (ru) | Устройство для очистки газа | |
RU39513U1 (ru) | Вихревой пылеуловитель | |
RU2140825C1 (ru) | Устройство для очистки газа | |
JPS5615854A (en) | Cyclon | |
RU2133136C1 (ru) | Центробежный сепаратор |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20080802 |