RU2125757C1 - Ротор - Google Patents
Ротор Download PDFInfo
- Publication number
- RU2125757C1 RU2125757C1 RU95108214A RU95108214A RU2125757C1 RU 2125757 C1 RU2125757 C1 RU 2125757C1 RU 95108214 A RU95108214 A RU 95108214A RU 95108214 A RU95108214 A RU 95108214A RU 2125757 C1 RU2125757 C1 RU 2125757C1
- Authority
- RU
- Russia
- Prior art keywords
- rotor
- layer
- resin
- magnetic
- magnetic filler
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2786—Outer rotors
- H02K1/2787—Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/2789—Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/279—Magnets embedded in the magnetic core
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/02—Additional mass for increasing inertia, e.g. flywheels
- H02K7/025—Additional mass for increasing inertia, e.g. flywheels for power storage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49009—Dynamoelectric machine
- Y10T29/49012—Rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
- Y10T29/49075—Electromagnet, transformer or inductor including permanent magnet or core
- Y10T29/49076—From comminuted material
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Manufacture Of Motors, Generators (AREA)
- Braking Arrangements (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Centrifugal Separators (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Motor Or Generator Frames (AREA)
Abstract
Изобретение относится к области электротехники. Ротор, специально предназначенный для использования в высокоскоростных электрических двигателях-генераторах, выполненный из армированного волокном пластического материала, включающего в себя материал с магнитным наполнителем, причем армированный волокном пластический материал образует многослойный цилиндрический участок ротора, а материал с магнитным наполнителем располагается внутри по меньшей мере одного слоя и между двумя слоями. Изобретение раскрывает и способ изготовления данного ротора, согласно которому осуществляют намотку на оправку начального слоя пропитанных смолой волокон, а также намотку не менее одного промежуточного слоя, содержащего протанные смолой волокна с образованием промежутков между последними. В данных промежутках размещают смесь материала с магнитным наполнителем и полимерного матричного материала. Затем вокруг промежуточного слоя наматывают внешний слой пропитанных смолой волокон и накладывают магнитное поле для выравнивания в соответствии с требуемой ориентацией материала с магнитным наполнителем при нахождении смолы в жидком состоянии ранее процесса гелеобразования и в ходе этого процесса. В заключение проводят отверждение смолы и намагничивание магнитного материала. Техническим результатом является улучшение работы электрической машины при высоких скоростях вращения ротора. 2 с. и 6 з.п.ф-лы, 4 ил.
Description
Изобретение относится к конструкции роторов электрических машин и, более конкретно, но не исключительно, касается роторов, предназначенных для использования в областях, требующих высоких скоростей.
Уже известны высокоскоростные роторы, предназначенные для использования в различных областях применения, в частности, в качестве электрических двигателей/генераторов. Такие машины могут работать как электродвигатель или генератор в зависимости от того, подается электрическая энергия к электрической обмотке статора, связанного с ротором, или отводится от нее. Такое решение предложено, например, в патенте Франции FR 2614367 в качестве средства хранения и преобразования электроэнергии.
Известные роторы, предназначенные для использования в электродвигателях/генераторах, имеют не идеальную конструкцию для высокоскоростных применений.
Задачей изобретения является более эффективное электромагнитное взаимодействие между ротором и расположенным в непосредственной близости от него статором по всей длине корпуса ротора, причем при использовании на высоких скоростях вращения ротора могут быть устранены не сбалансированные районы вращающейся массы.
В соответствии с настоящим изобретением предлагается ротор, выполненный из армированного волокном пластического материала, заключающего в себя материал с магнитным наполнителем, причем армированный волокном материал образует многослойный цилиндрический участок ротора, а материал магнитного наполнителя располагается в слоях и между ними. Указанный цилиндрический участок может представлять собой полый трубчатый участок. Указанный участок может быть заключен в некомпозитный, например, износоустойчивый слой.
Преимущественно, указанный участок соответствующего настоящему изобретению ротора содержит первый слой волоконной обмотки, не менее одного промежуточного слоя волоконной обмотки, нанесенного на первый слой и ограничивающего спиральное пространство между ними, с расположением в этом пространстве материала с магнитным наполнителем, и внешний слой волоконной обмотки, нанесенный на промежуточный слой (слои).
Указанный участок может быть нанесен на подложку.
Указанный пластический материал может содержать один или несколько известных матричных материалов, применяемых в армированных волокном композиционных материалах. Например, этот материал может содержать термореактивный или отверждающийся без нагревания материал, или же термопластичный полимерный материал, например, выбранный из одной или нескольких эпоксидных смол, полиэфирных полимеров, полимеров Фридел Крафта, полимидов, полиамидов, полиэфирсульфонов или полиэфиркетонов, при необходимости с использованием известных отвердителей, наполнителей и тому подобного. Намотка волокон может производиться жгутами. Они могут наматываться геликоидально (спирально) и/или в виде колец (ободов) внутри композиционного материала.
В изобретении также предлагается способ изготовления ротора, содержащий операции: а) намотки на оправку начального слоя пропитанных смолой волокон; б) намотки не менее одного промежуточного слоя, содержащего пропитанные смолой волокна, вокруг начального слоя таким образом, чтобы образовать промежутки между волокнами промежуточного слоя; в) размещения в промежутках смеси, содержащей материал с магнитным наполнителем и полимерный матричный материал; г) намотки вокруг промежуточного слоя внешнего слоя, содержащего пропитанные смолой волокна; д) приложения магнитного поля для выравнивания в соответствии с требуемой ориентацией материала с магнитным наполнителем при нахождении смолы в жидком состоянии ранее процесса гелеобразования и в ходе этого процесса; е) отверждения смолы, и ж) намагничивания магнитного материала.
Смолой может быть термореактивная смола и отверждение может быть осуществлено охлаждением до соответствующей известной температуры отверждения; вслед за операцией е) может следовать операция охлаждения перед проведением операции ж).
Преимущественно, волокна могут представлять собой углеродные волокна или же могут быть стекловолокном или кевларом (полиарамидом), пластиковой или алюминиевой лентой, или могут содержать волокна бора, нейлона, полиолефина или их смеси, или же любые другие подходящие известные волокна.
Использованный магнитный материал, такой как указанный материал с магнитным наполнителем, может содержать частицы, сфероиды, нитевидные кристаллы (усы), волокна и тому подобное. Желательно, чтобы это было порошкообразный материал. Магнитный материал может содержать железо, никель, кобальт или сплав, содержащий один или некоторые из этих металлов. Он может содержать феррит, например, феррит бария. Альтернативно и преимущественно, этот материал содержит известный твердый магнитный материал (то есть материал, с трудом поддающийся размагничиванию), содержащий редкоземельный элемент, например, кобальт-самарий или неодим-бор. Желательно введение магнитного материала между жгутами волокон внутри композиционного материала.
Следует понимать, что изобретение также включает в себя ротор, имеющий участок, выполненный соответствующим изобретению способом, и электрический двигатель или электрический генератор или же комбинированный мотор-генератор, включающий в себя такой ротор.
Армированные волокном композиционные материалы, содержащие магнитный материал и предназначенные для использования в качестве вращающихся элементов, известны, например, из патента Великобритании GB 1370655 и патента США US 4508567, однако эти соответствующие известному состоянию техники устройства предназначены главным образом для низкоскоростных применений. Конструкция и технология изготовления соответствующих изобретению новых роторов для высокоскоростных электрических двигателей/генераторов существенно отличается от таких устройств, соответствующих известному состоянию техники. Роторы по настоящему изобретению могут обеспечить точный контроль положения, высокую электрическую эффективность и сверхвысокую скорость электрического двигателя/генератора. Использование композиционных материалов в роторах описанным в изобретении неизвестным ранее образом позволяет обеспечить очень высокую прочность конструкции, которая способна выдержать работу на высоких скоростях.
Далее будут описаны в качестве примера со ссылкой на сопроводительные чертежи варианты исполнения настоящего изобретения.
На фиг. 1 показан вид сбоку в сечении ротора и статора.
На фиг. 2 изображена с увеличением часть ротора, соответствующая области "X" фиг. 1.
На фиг. 3 схематично показано применение ротора и статора, выполненных согласно фиг. 1 и 2.
На фиг. 4 показано применение измененной формы ротора и статора.
Обратимся к рассмотрению фиг. 1 на которой показан электрический двигатель 8, имеющий полый цилиндрический ротор 10, расположенный вокруг цилиндрического статора 11 слоистой конструкции, который имеет концевые центрирующие выступы 12, 13 для фиксации в опорах 14, 15. Концевые кольца 16, 17 на концах ротора 10 удерживают ротор 10 на статоре 11. Центральное глухое отверстие 18 в статоре 11 сообщается с рядом радиальных отверстий 19 ( на чертеже показано семь отверстий), которые выходят в узкое пространство 20 воздушного подшипника (показанное на фиг. 2) между ротором 10 и статором 11. На статоре 11 расположены электрические обмотки 21 (только одна обмотка показана на фиг. 1), которые создают электрическое поле, вращающее ротор 10. Отверстие 22 в опоре 15 сообщается с центральным отверстием 18 для создания пути прохождения воздуха в пространство воздушного подшипника 20.
Как это показано более детально на фиг.2, ротор 10 содержит внутреннюю оболочку 30 и внешнюю оболочку 31, наложенную на внутреннюю оболочку 30. Два промежуточных слоя 36, 37, каждый из которых содержит жгуты 38, 39 углеродных волокон в матрице эпоксидной смолы, намотаны вокруг слоя 32 по окружности с одним и тем же углом спирали, но с угловым смещением без учета фазы на 180o. Соответствующие промежутки 40, 41 между жгутами 38, 39 заполнены композиционным материалом 44, который содержит магнитный порошковый материал, удерживаемый матрицей эпоксидной смолы. Внешний слой 46, содержащий жгуты 48 углеродных волокон в матрице эпоксидной смолы, намотан по окружности совместно с промежуточным слоем 37. Оконечный износоустойчивый слой 50 (например, слой хрома) нанесен на внешний слой 46.
При работе двигателя 8 воздух поступает через отверстия 22, 18 и 19 в пространство 20 воздушного подшипника для поддержания (во взвешенном состоянии) ротора 10. На обмотки 21 подается питание и возникающее электрическое поле вращает ротор 10. По причине легкого веса ротора 10 может быть достигнута исключительно высокая скорость его вращения, превышающая 20.000 оборотов в минуту ( например, 100.000 оборотов в минуту), хотя ротор может использоваться и при более низких скоростях.
Одно из применений двигателя 8 в технике книгопечати показано на фиг.3, где двигатель 8 (на фиг.3 не показан) расположен напротив и рядом с натяжным роликом 55 таким образом, что между ними проходит бумага 57 из рулона 60, установленного на холостом подшипнике 62. Двигатель 8 позволяет управлять натяжением бумаги 57.
Применение соответствующего изобретению ротора в электрическом генераторе показано на фиг. 4. Показанный на фиг. 4 генератор 65 имеет ротор 66, аналогичный во многих отношениях ротору 10 фиг. 1 и 2, который установлен на вертикальном внутреннем статоре 68. Внутренний статор 68 аналогичен во многих отношениях статору 11 фиг. 1, однако имеет плоский верхний конец 70, на котором через пространство 74 воздушного подшипника установлен концевой диск 72 ротора 66. Вал 76 от концевого диска 72 проходит через пространство 77 газодинамического опорного подшипника для подключения к блоку привода (не показан на фиг. 4), например, к газовой турбине. Внешний статор 78 создает пространство газодинамического подшипника 80 вокруг ротора 66. Внешний статор 78 имеет электрические обмотки 82, а внутренний статор 69 имеет электрические обмотки 84. На нижнем конце внутреннего статора 68 имеется центрирующий выступ 86, расположенный в основании 88.
При работе генератора 65 вращение вала 76 приводит во вращение ротор 66, за счет чего генерируется электрический ток в обмотках 82, 84.
В качестве примера подходящего порошкового магнитного материала можно указать на кобальт самарий, однако возможно использование и других порошковых магнитных материалов.
Следует понимать, что в роторе 10, 66 могут быть использованы и другие волокна, например стекловолокно. Следует также указать на возможность использования в роторе 10, 66 только одной оболочки или использования более двух оболочек, при этом может быть один слой или более двух промежуточных слоев обмоток.
Далее описан способ изготовления ротора 10.
При использовании обычной машины для намотки волокна производится намотка на вращающуюся оправку жгутов 34 углеродного волокна начального слоя 32 внутренней оболочки 30, пропитанных не отвержденной эпоксидной смолой. Промежуточные слои 36, 37 жгутов 38, 39 углеродных волокон, пропитанных не отвержденной эпоксидной смолой, наматываются на внутренний слой 32 со сдвигом друг относительно друга на 180 без учета фазы. Пространства 40, 41 между жгутами 38, 39 заполняются композиционным материалом 44, содержащим магнитный порошковый материал в размагниченном состоянии и не отвержденную эпоксидную смолу. Внешний слой 46 жгутов 48 углеродных волокон, пропитанных не отвержденной эпоксидной смолой, наматывается на промежуточный слой 37. Внешняя оболочка 31 образуется аналогичным образом за исключением износостойкого слоя 50. Прикладывается известным образом магнитное поле, чтобы обеспечить равномерное распределение магнитного порошкового материала в композиционном материале 44. Наконец, производится отверждение эпоксидной смолы в соответствующей нагревательной среде. Внешняя оболочка 31 механически обрабатывается под необходимый размер, снимается с оправки и затем к ней прикрепляются концевые кольца 16, 17 при помощи подходящего клея, такого как аралдит (торговая марка). Затем наносится износостойкий слой 50. Образованный указанным образом ротор 10 намагничивается с использованием подходящей электрической обмотки для перевода магнитного порошкового материала в композиционном материале 44 в состояние его постоянного намагничивания.
Ротор 66 изготовлен аналогичным образом, за исключением того, что внутри ротора 66 при помощи подходящего клея (например, аралдита) закреплен концевой диск 72.
Может быть использован альтернативный износостойкий слой 50, такой как слой с применением композиционного материала, армированного стекловолокном, или керамического материала.
Вместо использования полого ротора оболочки 30, 31 могут быть нанесены на подложку (например, из алюминия) для образования композитного ротора.
Claims (8)
1. Ротор, содержащий слои с пластическим и магнитным материалами, отличающийся тем, что пластический материал армирован волокном и включает в себя материал с магнитным наполнителем, причем армированный волокном пластический материал образует многослойный цилиндрический участок ротора, а материал с магнитным наполнителем располагается внутри по меньшей мере одного слоя и между двумя слоями.
2. Ротор по п. 1, отличающийся тем, что цилиндрический участок представляет собой полый трубчатый участок.
3. Ротор по п.1 или 2, отличающийся тем, что указанный участок заключен в износостойком слое.
4. Ротор по одному из пп.1 - 3, отличающийся тем, что указанный участок содержит первый слой волоконной обмотки, по крайней мере один промежуточный слой волоконной обмотки, нанесенный на указанный первый слой и образующий спиральные пространства между ними, в которых располагается материал с магнитным наполнителем, и внешний слой волоконной обмотки, нанесенный на промежуточный слой или промежуточные слои.
5. Ротор по одному из пп.1 - 4, отличающийся тем, что указанный участок нанесен на подложку.
6. Ротор по одному из пп.1 - 5, отличающийся тем, что материал с магнитным наполнителем содержит порошок, частицы, сфероиды, нитевидные кристаллы или волокна.
7. Ротор по п.6, отличающийся тем, что материал с магнитным наполнителем содержит твердый магнитный материал, содержащий редкоземельный элемент.
8. Способ изготовления ротора, согласно которому осуществляют намотку слоев с пластическим и магнитным материалами, отличающийся тем, что он включает следующие операции: осуществляют намотку на оправку начального слоя пропитанных смолой волокон и намотку не менее одного промежуточного слоя, содержащего пропитанные смолой волокна, вокруг начального слоя с образованием промежутков между волокнами промежуточного слоя, размещают в этих промежутках смесь, содержащую материал с магнитным наполнителем и полимерный матричный материал, наматывают вокруг промежуточного слоя внешний слой, содержащий пропитанные смолой волокна, накладывают магнитное поле для выравнивания в соответствии с требуемой ориентацией материала с магнитным наполнителем при нахождении смолы в жидком состоянии ранее процесса гелеобразования и в ходе этого процесса, после чего проводят отверждение смолы и намагничивание магнитного материала.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB929218928A GB9218928D0 (en) | 1992-09-07 | 1992-09-07 | A rotor |
GB9218928.1 | 1992-09-07 | ||
GB939313945A GB9313945D0 (en) | 1993-07-06 | 1993-07-06 | A rotor |
GB9313945.9 | 1993-07-06 | ||
PCT/GB1993/001881 WO1994006193A1 (en) | 1992-09-07 | 1993-09-06 | A fibre reinforced rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
RU95108214A RU95108214A (ru) | 1996-11-27 |
RU2125757C1 true RU2125757C1 (ru) | 1999-01-27 |
Family
ID=26301569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU95108214A RU2125757C1 (ru) | 1992-09-07 | 1993-09-06 | Ротор |
Country Status (17)
Country | Link |
---|---|
US (2) | US5477092A (ru) |
EP (1) | EP0667987B1 (ru) |
JP (1) | JP3177250B2 (ru) |
KR (1) | KR950703223A (ru) |
AT (1) | ATE139068T1 (ru) |
AU (1) | AU669741B2 (ru) |
BR (1) | BR9307015A (ru) |
CA (1) | CA2143847C (ru) |
DE (1) | DE69303031T2 (ru) |
DK (1) | DK0667987T3 (ru) |
ES (1) | ES2087766T3 (ru) |
FI (1) | FI951022A (ru) |
GR (1) | GR3020242T3 (ru) |
HU (1) | HUT70773A (ru) |
NO (1) | NO950868L (ru) |
RU (1) | RU2125757C1 (ru) |
WO (1) | WO1994006193A1 (ru) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5536985A (en) * | 1994-05-09 | 1996-07-16 | General Motors Corporation | Composite armature assembly |
GB2293281A (en) * | 1994-08-08 | 1996-03-20 | British Nuclear Fuels Plc | An energy storage and conversion apparatus |
US6150742A (en) * | 1994-08-08 | 2000-11-21 | British Nuclear Fuels Plc | Energy storage and conversion apparatus |
DE4442869C2 (de) * | 1994-12-02 | 1997-07-31 | Fichtel & Sachs Ag | Läufer für eine elektrische Maschine und Verfahren zur Herstellung eines solchen |
AU6231296A (en) * | 1995-06-17 | 1997-01-15 | Urenco (Capenhurst) Limited | A rotor |
DE69733551T2 (de) * | 1996-03-29 | 2005-11-03 | Urenco (Capenhurst) Ltd., Capenhurst | Verfahren zum magnetisieren eines zylindrischen körpers |
DE19726341A1 (de) * | 1997-06-20 | 1999-01-07 | Paul Mueller Gmbh & Co Kg | Welle einer motorisch angetriebenen Spindel |
US6122817A (en) * | 1997-09-19 | 2000-09-26 | Alliedsignal Inc. | Rotor assembly having lamination stack that is separately piloted and clamped |
US7224096B2 (en) * | 1997-10-16 | 2007-05-29 | Honeywell International Inc. | Rotatable assemblies having chemically bonded lamination stacks |
US6121709A (en) * | 1997-10-16 | 2000-09-19 | Alliedsignal Inc. | Rotor assembly having bonded lamination stack |
EP1100186A3 (en) | 1999-11-10 | 2003-02-05 | Korea Advanced Institute of Science and Technology | Polymer composite squirrel cage rotor with high magnetic permeability filler for induction motor and method of making it |
US6591483B1 (en) * | 2000-04-04 | 2003-07-15 | The Cherry Corporation | Method of forming a spatially fine magnetic structure |
US6583528B2 (en) | 2000-06-19 | 2003-06-24 | Indigo Energy, Inc. | High performance composite flywheel |
US20020089240A1 (en) | 2001-01-09 | 2002-07-11 | Du Hung T. | Electric motor having armature coated with a thermally conductive plastic |
US7096566B2 (en) | 2001-01-09 | 2006-08-29 | Black & Decker Inc. | Method for making an encapsulated coil structure |
US7814641B2 (en) | 2001-01-09 | 2010-10-19 | Black & Decker Inc. | Method of forming a power tool |
JP4110504B2 (ja) * | 2001-03-13 | 2008-07-02 | 株式会社安川電機 | 真空用モータ |
JP2005508482A (ja) | 2001-11-08 | 2005-03-31 | ボーグワーナー・インコーポレーテッド | 2段電動コンプレッサ |
US20030084888A1 (en) | 2001-11-08 | 2003-05-08 | Lebold Robert S | Supercharger type compressor/generator with magnetically loaded composite rotor |
US6963151B2 (en) * | 2002-02-04 | 2005-11-08 | Electric Boat Corporation | Composite lamina arrangement for canning of motors |
US20060286414A1 (en) * | 2005-06-15 | 2006-12-21 | Heraeus, Inc. | Enhanced oxide-containing sputter target alloy compositions |
US7825554B2 (en) * | 2005-09-20 | 2010-11-02 | Bastian Family Holdings, Inc. | Stabilizing power source for a vehicle |
EP1941163B1 (en) * | 2005-09-27 | 2011-11-09 | Umoe Mandal AS | Centrifugal fan |
US20080088195A1 (en) * | 2006-10-16 | 2008-04-17 | Dooley Kevin A | Outside rotor electric machine |
DE102007006986B3 (de) * | 2007-02-07 | 2008-06-19 | Ima Materialforschung Und Anwendungstechnik Gmbh | Rotor für eine schnell laufende elektrische Maschine |
CH699198A1 (de) * | 2008-07-24 | 2010-01-29 | Alstom Technology Ltd | Synchronmaschine sowie Verfahren zum Herstellen einer solchen Synchronmaschine. |
DE102008050807A1 (de) * | 2008-10-08 | 2010-04-22 | Pro Diskus Ag | Rotor für eine elektrische Maschine |
DE102008050801A1 (de) * | 2008-10-08 | 2010-04-15 | Pro Diskus Ag | Rotor-Welle-Anordnung für eine elektrische Maschine |
US9362036B2 (en) | 2009-08-04 | 2016-06-07 | The Boeing Company | Magnetic composite structures with high mechanical strength |
US20110074231A1 (en) * | 2009-09-25 | 2011-03-31 | Soderberg Rod F | Hybrid and electic vehicles magetic field and electro magnetic field interactice systems |
EP2561232B1 (de) * | 2010-04-19 | 2015-12-16 | Pierburg Pump Technology GmbH | Elektrische kfz-kühlmittelpumpe |
GB201016006D0 (en) * | 2010-09-23 | 2010-11-10 | Dyson Technology Ltd | A reinforced magnet |
RU2011120410A (ru) * | 2011-05-23 | 2012-11-27 | "Центр Разработки Нефтедобывающего Оборудования" ("Црно") | Линейный электродвигатель для погружной установки с плунжерным насосом |
GB201110233D0 (en) * | 2011-06-16 | 2011-08-03 | Williams Hybrid Power Ltd | Magnetically loaded composite rotors and tapes used in the production thereof |
EP2560270B1 (en) | 2011-08-18 | 2019-10-02 | GE Energy Power Conversion Technology Ltd | Bandage of a permanent magnet rotor |
US8816543B2 (en) | 2012-04-03 | 2014-08-26 | The Boeing Company | Flexible magnet directional stiffening methods |
GB2502621A (en) * | 2012-06-01 | 2013-12-04 | Crompton Technology Group Ltd | Rotor magnet securing arrangement |
GB201223001D0 (en) * | 2012-12-20 | 2013-01-30 | Williams Hybrid Power Ltd | Magnetically loaded composite rotor and methods of making the same |
US10432061B2 (en) | 2013-07-19 | 2019-10-01 | Gkn Hybrid Power Limited | Flywheel assembly |
WO2015110816A2 (en) * | 2014-01-22 | 2015-07-30 | Gkn Hybrid Power Limited | Flywheel assembly |
GB2517523B (en) * | 2013-07-19 | 2016-01-13 | Gkn Hybrid Power Ltd | Flywheel control scheme |
CN103554839B (zh) * | 2013-11-07 | 2015-10-07 | 哈尔滨工业大学 | 一种碳纤维复合材料电机护环 |
FR3064423B1 (fr) * | 2017-03-22 | 2019-11-15 | Whylot Sas | Rotor pour moteur ou generatrice electromagnetique a structure alveolaire comportant des alveoles pour le logement d'aimants respectifs |
KR102048574B1 (ko) | 2018-08-23 | 2020-01-22 | 엘지전자 주식회사 | 모터 및 그 제조방법 |
DE102021209602A1 (de) | 2021-09-01 | 2023-03-02 | Zf Friedrichshafen Ag | Verfahren zum Aufbringen einer Rotorbandage auf einen Rotor und Herstellungsvorrichtung zum Herstellen einer Rotorbandage |
JP7554727B2 (ja) * | 2021-09-28 | 2024-09-20 | 本田技研工業株式会社 | ロータ、回転電機、ロータの製造方法 |
CN114430218B (zh) * | 2022-01-28 | 2023-05-16 | 淄博朗达复合材料有限公司 | 转子、电机及转子的制造方法 |
DE102022112183A1 (de) * | 2022-05-16 | 2023-11-16 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Herstellen einer Rotorbandage für einen Rotor sowie Rotor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3488837A (en) * | 1967-02-27 | 1970-01-13 | Gen Electric | Method of making hollow cylindrical molded armatures |
FR2114148A5 (ru) * | 1970-11-16 | 1972-06-30 | Crouzet Sa | |
DE2252505A1 (de) * | 1972-10-26 | 1974-05-09 | Philips Patentverwaltung | Rotationshohlkoerper, insbesondere um seine laengsachse umlaufender zylinder |
US4360871A (en) * | 1978-12-22 | 1982-11-23 | United Technologies Corporation | Method for fabricating wind turbine blades |
GB2082846A (en) * | 1980-06-05 | 1982-03-10 | Gunton Electronics Ltd | Adaptor for I.C.E. ignition systems |
DE3021396A1 (de) * | 1980-06-06 | 1981-12-17 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Rotor fuer eine elektrische maschine |
JPS585241A (ja) * | 1981-07-02 | 1983-01-12 | Brother Ind Ltd | 粉末成形方法 |
JPH0740778B2 (ja) * | 1985-08-28 | 1995-05-01 | 日立電線株式会社 | 磁気異方性材料の製造方法 |
US4674178A (en) * | 1985-10-16 | 1987-06-23 | Sundstrand Corporation | Method of fabricating a permanent magnet rotor |
US5285699A (en) * | 1988-12-07 | 1994-02-15 | Board Of Regents, University Of Texas System | Reinforced composite flywheels and shafts |
JP2902116B2 (ja) * | 1993-01-14 | 1999-06-07 | コンポジット ローター,インコーポレイテッド | 超軽量型複合遠心ロータ |
-
1993
- 1993-09-06 ES ES93919517T patent/ES2087766T3/es not_active Expired - Lifetime
- 1993-09-06 AU AU49752/93A patent/AU669741B2/en not_active Expired
- 1993-09-06 EP EP93919517A patent/EP0667987B1/en not_active Expired - Lifetime
- 1993-09-06 KR KR1019950700886A patent/KR950703223A/ko not_active Application Discontinuation
- 1993-09-06 DE DE69303031T patent/DE69303031T2/de not_active Expired - Lifetime
- 1993-09-06 RU RU95108214A patent/RU2125757C1/ru active
- 1993-09-06 HU HU9500684A patent/HUT70773A/hu unknown
- 1993-09-06 US US08/232,268 patent/US5477092A/en not_active Expired - Lifetime
- 1993-09-06 DK DK93919517.8T patent/DK0667987T3/da active
- 1993-09-06 JP JP50700794A patent/JP3177250B2/ja not_active Expired - Lifetime
- 1993-09-06 BR BR9307015A patent/BR9307015A/pt not_active Application Discontinuation
- 1993-09-06 WO PCT/GB1993/001881 patent/WO1994006193A1/en active IP Right Grant
- 1993-09-06 CA CA002143847A patent/CA2143847C/en not_active Expired - Lifetime
- 1993-09-06 AT AT93919517T patent/ATE139068T1/de active
-
1995
- 1995-03-06 FI FI951022A patent/FI951022A/fi unknown
- 1995-03-07 NO NO950868A patent/NO950868L/no unknown
- 1995-05-24 US US08/448,684 patent/US5546648A/en not_active Expired - Lifetime
-
1996
- 1996-06-17 GR GR960401613T patent/GR3020242T3/el unknown
Also Published As
Publication number | Publication date |
---|---|
CA2143847C (en) | 2004-04-06 |
FI951022A (fi) | 1995-05-05 |
GR3020242T3 (en) | 1996-09-30 |
WO1994006193A1 (en) | 1994-03-17 |
DE69303031D1 (de) | 1996-07-11 |
FI951022A0 (fi) | 1995-03-06 |
EP0667987B1 (en) | 1996-06-05 |
US5477092A (en) | 1995-12-19 |
JP3177250B2 (ja) | 2001-06-18 |
CA2143847A1 (en) | 1994-03-17 |
NO950868D0 (no) | 1995-03-07 |
HU9500684D0 (en) | 1995-05-29 |
AU4975293A (en) | 1994-03-29 |
DK0667987T3 (da) | 1996-07-01 |
US5546648A (en) | 1996-08-20 |
EP0667987A1 (en) | 1995-08-23 |
DE69303031T2 (de) | 1996-10-02 |
HUT70773A (en) | 1995-11-28 |
ATE139068T1 (de) | 1996-06-15 |
NO950868L (no) | 1995-03-07 |
KR950703223A (ko) | 1995-08-23 |
ES2087766T3 (es) | 1996-07-16 |
JPH07502400A (ja) | 1995-03-09 |
RU95108214A (ru) | 1996-11-27 |
BR9307015A (pt) | 1999-02-23 |
AU669741B2 (en) | 1996-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2125757C1 (ru) | Ротор | |
US5021698A (en) | Axial field electrical generator | |
EP0707752B1 (en) | Rotors | |
US5760508A (en) | Energy storage and conversion devices | |
US6154352A (en) | Method of magnetizing a cylindrical body | |
US5122704A (en) | Composite rotor sleeve | |
EP0641497B1 (en) | Rotor assembly and method for its manufacture | |
EP3186872B1 (en) | High power flywheel system | |
JPH0837769A (ja) | 電気的整流が施された直流機 | |
US6963151B2 (en) | Composite lamina arrangement for canning of motors | |
EP0707754B1 (en) | Energy storage and conversion devices | |
GB2302455A (en) | A rotor | |
WO1997000549A1 (en) | A rotor | |
JP2024135529A (ja) | 回転電機保護リングおよびその製造方法並びに回転電機 | |
EP4346072A1 (en) | Rotor, motor, and manufacturing method for rotor | |
JP2024124643A (ja) | 回転電機保護リングおよびその製造方法並びに回転電機 | |
US5815907A (en) | Method of forming a rim construction for a rotor | |
JPS6035945A (ja) | 永久磁石形回転子の製造方法 | |
JPH09151995A (ja) | フライホイール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RH4A | Copy of patent granted that was duplicated for the russian federation |
Effective date: 20080829 |
|
PC4A | Invention patent assignment |
Effective date: 20090922 |