RU2125117C1 - Магнетронный источник - Google Patents

Магнетронный источник Download PDF

Info

Publication number
RU2125117C1
RU2125117C1 RU97103338A RU97103338A RU2125117C1 RU 2125117 C1 RU2125117 C1 RU 2125117C1 RU 97103338 A RU97103338 A RU 97103338A RU 97103338 A RU97103338 A RU 97103338A RU 2125117 C1 RU2125117 C1 RU 2125117C1
Authority
RU
Russia
Prior art keywords
crucible
source
target material
capillary channels
target
Prior art date
Application number
RU97103338A
Other languages
English (en)
Other versions
RU97103338A (ru
Inventor
Олег Георгиевич Егоров
Original Assignee
Олег Георгиевич Егоров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Георгиевич Егоров filed Critical Олег Георгиевич Егоров
Priority to RU97103338A priority Critical patent/RU2125117C1/ru
Application granted granted Critical
Publication of RU2125117C1 publication Critical patent/RU2125117C1/ru
Publication of RU97103338A publication Critical patent/RU97103338A/ru

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

Использование: техника получения покрытий методом распыления материалов из жидкой фазы. Сущность изобретения: магнетронный источник содержит размещенную в корпусе 1 водоохлаждаемую магнитную систему, тигель 3, выполненный из тугоплавкого немагнитного материала, дополнительный источник 4 расплавленного материала 5 мишени, связанный с полостью тигля 3 через запорный элемент 6 и анод 7. Тигель 3 снабжен также крышкой, выполненной в виде двух пластин 9 из тугоплавкого немагнитного материала со сквозными капиллярными каналами 10, выходящими одним концом на внешнюю поверхность пластин 9, а другим концом на их внутреннюю поверхность. Технический результат: получение высококачественных покрытий за счет возможности размещения магнетронного источника над подложкой с одновременным увеличением длительности рабочего цикла. 1 з.п.ф-лы, 3 ил.

Description

Изобретение относится к технике получения покрытий методом распыления материалов из жидкой фазы и может быть использовано в различных отраслях промышленности, в частности, при производстве листового стекла с тонкопленочными покрытиями.
Из предшествующего уровня техники известен магнетронный источник (см. заявку WO 95/16058 кл. C 23 C 14/35, 1994 г.), содержащий испаритель, основную магнитную систему, расположенную внутри первого вращающегося катода, с внешней поверхностью которого связан испаритель, первую дополнительную магнитную систему, расположенную внутри второго вращающегося катода, внешняя поверхность которого связана с системой нанесения пленки жидкости, а также вторую дополнительную магнитную систему, размещенную внутри третьего вращающегося катода.
Известный магнетронный источник обеспечивает достаточно большую длительность рабочего цикла, но имеет сложную конструкцию. Кроме того, известный магнетронный источник не обеспечивает ни высокой скорости распыления (поскольку материал мишени находится в твердом состоянии), ни высокого качества покрытий за счет дополнительной операции нанесения слоев материала мишени на поверхность первого катода. Последнее обстоятельство приводит также к низкой эффективности использования энергии.
Известен также магнетронный источник (см. Б.С. Данилин и В.К. Сыргин. Магнетронные распылительные системы. - М.: "Радио и связь", 1982 г., с. 67 - 68), взятый в качестве прототипа и содержащий водоохлаждаемую магнитную систему, анод, экран и тигель из тугоплавкого немагнитного материала для размещения в нем расплавленного материала мишени. Использование известного магнетронного источника позволяет не только увеличить скорость распыления вещества мишени за счет увеличения подводимой мощности (т.к. теплопроводность материала в жидкой фазе выше теплопроводности его в твердой фазе), то также повысить эффективность использования энергии, поскольку одновременно с процессом распыления происходит дополнительная генерация вещества мишени за счет его испарения.
Недостаток известного магнетронного источника заключается в том, что он не может быть использован для получения высококачественных покрытий при конвейерном производстве. Действительно, в процессе осаждения с помощью известного магнетронного источника движущаяся подложка обязательно должна располагаться горизонтально и над тиглем. В результате только что напыленная на поверхность движущейся подложки пленка будет подвергаться механическому воздействию со стороны направляющих роликов, что неизбежно приведет к ухудшению ее качества.
Кроме того, увеличение длительности рабочего цикла известного магнетронного источника может быть достигнуто только за счет увеличения объема тигля, что приведет к снижению эффективности использования энергии, подводимой к источнику.
В основу изобретения поставлена задача разработать магнетронный источник, конструктивное выполнение которого обеспечило бы возможность размещения его над подложкой при одновременном сохранении высокой эффективности использования материала мишени, а также возможность увеличения длительности рабочего цикла без увеличения объема тигля.
Поставленная задача, согласно первому варианту, решена тем, что магнетронный источник, содержащий магнитную систему, анод и тигель из тугоплавкого немагнитного материала для размещения в нем расплавляемого материала мишени, согласно изобретению тигель снабжен крышкой, выполненной из тугоплавкого немагнитного материала со сквозными капиллярными каналами, выходящими на внутреннюю и внешнюю поверхности крышки, при этом длина L капиллярных каналов удовлетворяет неравенству
Figure 00000002

где
C - капиллярная постоянная материала мишени, см;
r - радиус капиллярных каналов, см.
Поставленная задача, согласно второму варианту, решена тем, что магнетронный источник, содержащий магнитную систему, анод и тигель из тугоплавкого немагнитного материала для размещения в нем расплавляемого материала мишени, согласно изобретению содержит дополнительный источник расплавленного материала мишени, тигель снабжен крышкой, выполненной из тугоплавкого немагнитного материала со сквозными капиллярными каналами, выходящими на внутреннюю и внешнюю поверхности крышки, при этом дополнительный источник расплавленного материала мишени связан через запорный элемент с полостью тигля, а длина L капиллярных каналов удовлетворяет неравенству
Figure 00000003

где
C - капиллярная постоянная материала мишени, см;
r - радиус капиллярных каналов, см.
Целесообразно, чтобы дополнительный источник расплавленного материала мишени был выполнен в виде по крайней мере одного контейнера, снабженного средствами нагрева и поршнем.
Такое выполнение магнетронного источника обеспечивает возможность размещения его над подложкой, поскольку подача материала в зону распыления осуществляется за счет капиллярного впитывания с образованием тонкой пленки расплава на внешней поверхности крышки тигля, иными словами, на поверхности зоны распыления материала.
Наличие дополнительного источника расплавленного материала мишени, расположенного вне рабочей зоны магнетронного источника и связанного с полостью тигля, позволяет уменьшить размеры тигля, а следовательно, массу материала мишени, нагрев которой осуществляется преимущественно за счет энергии, подводимой к магнетрону, при одновременном увеличении рабочего цикла магнетронного источника, который лимитирован лишь количеством материала мишени в дополнительном источнике.
Уменьшение размеров тигля влечет за собой существенное снижение тепловыделений в нем. Это позволяет уменьшить величину зазора между магнитами и тиглем, а следовательно, увеличить концентрацию магнитного поля у распыляемой поверхности. Увеличение же концентрации магнитного поля у распыляемой поверхности позволяет в свою очередь увеличить плотность тока разряда, а следовательно, ведет к увеличению скорости осаждения материала, т.е. к повышению производительности. Уменьшение зазора между тиглем и магнитной системой позволит уменьшить весогабаритные характеристики устройства.
В дальнейшем изобретение поясняется чертежами и описанием к ним.
На фиг. 1 схематично изображен магнетронный источник для нанесения покрытий на горизонтально перемещаемую подложку; на фиг. 2 - разрез по А-А фиг. 1; на фиг. 3 - магнетронный источник для нанесения покрытий на вертикально перемещаемую подложку (вид со стороны подложки, частичный разрез).
Магнетронный источник содержит размещенную в корпусе 1 водоохлаждаемую магнитную систему 2, тигель 3, выполненный из тугоплавкого немагнитного материала, дополнительный источник 4 (контейнер) расплавленного материала 5 мишени, связанный с полостью тигля 3 через запорный элемент 6, выполненный, например, в виде задвижки, и анод 7. Тигель 3 закреплен на корпусе 1 с помощью элемента 8, выполняющего одновременно и функцию ребра жесткости. Тигель 3 снабжен также крышкой, выполненной в виде двух пластин 9 из тугоплавкого немагнитного материала со сквозными капиллярными каналами 10, выходящими одним концом на внешнюю поверхность пластин 9, а другим концом - на их внутреннюю поверхность. В нижней части элемента 8 выполнены сквозные отверстия 11, а в верхней его части - глухое отверстие 12, полость которого посредством отверстий 13 связана с окружающей источник средой. Отверстия 13 расположены на одинаковом расстоянии друг от друга вдоль всей длины элемента 8. Патрубок 14, отверстия 12 и 13 образуют систему подачи кислорода в случае реактивного распыления или инертного газа. Дополнительный источник 4 расплавленного материала 5 мишени снабжен поршнем со штоком 14 и средствами 15 для нагрева, например индуктором. Магнетронный источник размещен над движущейся подложкой 16, например над лентой стекла. Пластины 9 могут быть изготовлены с использованием обычных методов порошковой металлургии, а именно способов, описанных, например в авторских свидетельствах СССР N 791461 и 1734959.
Магнетронный источник для нанесения покрытий на вертикально перемещаемую подложку (фиг. 3) содержит размещенную в корпусе 1 водоохлаждаемую магнитную систему, тигель 3, выполненный из тугоплавкого немагнитного материала, дополнительный источник 4 (контейнер) расплавленного материала 5 мишени, связанный с полостью тигля 3 через регулируемый запорный элемент 6, снабженный средствами нагрева 15. В полости тигля 3 установлены на одинаковом расстоянии друг от друга горизонтальные перегородки 17 с отбортовками 18 и 19, при этом высота отбортовок 18 и 19 уменьшается сверху вниз, а именно h1 > h2 > h3 > ..., а H1 > H2 > H3 > ... . Отбортовки 18 горизонтальных перегородок 17 соединены с боковыми стенками 20 и 21 тигля в чередующейся последовательности с помощью горизонтальных перемычек 22, а именно отбортовка 18 высотой h1 соединена с боковой стенкой 20, отбортовка 18 высотой h2 - со стенкой 21, отбортовка 18 с высотой h3 - со стенкой 20 и т.д. Отбортовки 19 могут иметь прямой или ступенчатый (фиг. 3) профиль и закреплены с зазором в 1 - 5 мм относительно вышерасположенных отбортовок 18, перемычек 22, а также соответствующих стенок тигля 3. Тигель 3 снабжен также крышкой, выполненной в виде пластины 9 из тугоплавкого немагнитного материала со сквозными капиллярными каналами 10, выходящими одним концом на внешнюю поверхность пластины 9, а другим концом - на ее внутреннюю поверхность. Магнетронный источник содержит также съемный сборник 23 избыточного количества материала 5 мишени, фотоэлектрический датчик 24 капель, подключенный к счетчику числа импульсов (на чертеже не показан). Вход фотоэлектрического датчика 24 капель материала 5 мишени соединен с внутренней полостью тигля 3 через отверстие 26, выполненное в нижней стенке 27 (промежутке между боковой стенкой 21 и вертикальной перегородкой 25).
Магнетронный источник работает следующим образом.
Рабочий объем, в котором размещен магнетронный источник, откачивается до заданного давления, как правило, это 0,01 - 0,1 мм рт.ст. Затем через патрубок 14, глухое отверстие 12 и отверстия 13, образующих систему газоподачи, в рабочий объем напускается инертный газ, например аргон, а между тиглем 3 и анодом 7 прикладывается напряжение. При этом величина напряженности электрического поля в разрядном промежутке не должна превышать пороговой величины, соответствующей началу распыления материала пластин 9. Под действием ионов, бомбардирующих поверхность пластин 9, происходит их нагрев без распыления. Нагрев пластин 9 сопровождается нагревом всего тигля 3 за счет теплопроводности. Одновременно к источнику электрической энергии (на чертеже не показан) подключаются средства 15 нагрева материала 5 мишени, размещенного в источнике 4 (контейнере). С помощью термопар (на чертеже не показаны) осуществляется контроль температуры тигля 3 и материала 5 в источнике 4. При достижении температуры тигля и источника 4 величины, соответствующей температуре плавления материала 5, запорный элемент (задвижка) 6 открывается и материал 5 мишени под действием усилия, прикладываемого к штоку 14 поршня, заполняет всю полость нагретого тигля 3 за счет наличия отверстий 11. После заполнения полости нагретого тигля 3 расплавленным материалом 5 мишени за счет капиллярного впитывания происходит сначала заполнение материалом 5 мишени капиллярных каналов 10, а затем на внешних поверхностях пластин 9 образуются капли расплавленного материала 5 мишени, предельная величина которых, а следовательно, и толщина пленки может быть рассчитана на основании физических свойств материала пластин 9 и материала 5 мишени (см. Р.Финн. Равновесные капиллярные поверхности. - М.: "Мир", 1989 г.). Очевидно, что для образования на внешних поверхностях пластин 9 сплошной пленки расплавленного материала 5 мишени, расстояние между отверстиями капиллярных каналов 10 на внешней поверхности пластин 9 не должно превышать удвоенного значения радиуса предельной величины капель. Очевидно, как показали эксперименты, расстояние между отверстиями капиллярных каналов 10 должно быть меньше или равно радиусу предельного размера капель. Это обусловлено, по всей видимости, уменьшением величины поверхностного натяжения из-за активации поверхности материала мишени, поскольку при магнетронном распылении молекулы при взаимодействии с поверхностью мишени проникают на достаточно большую глубину - до 10 - 15 нм.
После образования на внешних поверхностях пластин 9 сплошной пленки расплавленного материала 5 мишени, постепенно увеличивая плотность тока, добиваются интенсивного распыления материала с поверхности пленки расплава. После достижения заданной величины упругости паров материала 5 мишени в рабочем объеме начинается процесс самораспыления, при этом подача в рабочий объем инертного газа (аргона) прекращается. Процесс напыления осуществляется на перемещаемую подложку 16, при этом оптимальным режимом работы магнетронного источника является равенство скорости поступления расплавленного материала 5 мишени на внешнюю поверхность пластин 9 и скорости его распыления.
Стабилизировать величину скорости поступления расплавленного материала 5 мишени на внешнюю поверхность пластин 9 можно путем изменения величины усилия, прикладываемого к штоку 14 поршня. Автоматически поддерживать на требуемом уровне толщину пленки на внешних поверхностях пластин 9 можно также за счет выполнения внешней поверхности пластины не плоской, а имеющей одинаковые уклоны от середины к краям в направлении, перпендикулярном направлению перемещения подложки. Величина уклонов выбирается в диапазоне 1 - 5o, при этом по краям тигля устанавливаются сборники избыточного материала 5 мишени. Здесь следует отметить, что крепление тигля 3 к корпусу 1 с помощью элемента 8, выполняющего одновременно функцию ребра жесткости, целесообразно только в случае нанесения покрытия на широкие ленточные подложки, например стеклянные, поскольку в этом случае площадь крышки тигля 3 велика, что может вызвать ее прогиб под действием веса, находящегося в полости тигля 3, расплавленного материала 5 мишени.
Использование источника 4 расплавленного материала мишени 5 не приводит к нарушению температурной стабильности устройства, так как в полость тигля 3 непрерывно поступает расплав, имеющий более низкую температуру по сравнению с температурой расплава на внешней поверхности пластин 9.
Выдавливание остатков расплавленного материала 5 мишени из источника 4 в полость тигля 3 осуществляется с помощью задвижки 6. При этом одновременно происходит разобщение полостей источника 4 и тигля 3. После этого средства 15 нагрева отключаются. Дальнейшая работа магнетронного источника сопровождается монотонным уменьшением количества расплавленного материала 5 мишени в полости тигля 3. По окончании рабочего цикла магнетронный источник отключается от источника электрической энергии и охлаждается. Затем производится загрузка материала 5 мишени в источник 4 и рабочий цикл повторяется.
Предложенный магнетронный источник может располагаться и под горизонтально перемещаемой подложкой 16. Однако в этом случае длительность рабочего цикла определяется только объемом источника 4. Следовательно, в этом случае целесообразно уменьшить объем полости тигля 3 до минимально допустимой величины.
В случае использования предложенного магнетронного источника для нанесения покрытий на вертикально перемещаемую с большой скоростью подложку (фиг. 3) внутреннюю полость тигля 3 необходимо разделить на отсеки с помощью горизонтальных перегородок 17 с боковыми отбортовками 18 и 19. Заполнение полости тигля 3 расплавленным материалом 5 мишени осуществляется из источника 4 с помощью регулируемого запорного элемента 6, при этом сначала происходит заполнение первого отсека до уровня H1. При дальнейшем поступлении материала 5 из источника 4 происходит перетекание материала 5 из первого отсека во второй и заполнение его до уровня H2. Аналогично происходит заполнение и последующих отсеков.
После заполнения последнего (самого нижнего) отсека материалом 5 мишени до уровня, определяемого высотой вертикальной перегородки 25, избыточный материал начнет поступать в съемный сборник 23, что будет зафиксировано фотоэлектрическим датчиком 24. Уменьшая расход материала 5 с помощью регулируемого запорного элемента 6, добиваются расхода материала 5, равного 1 - 2 каплям в минуту. Поскольку высота боковых отбортовок 19 уменьшается сверху вниз, то соответственно и количество материала 5, вытекающего из капиллярных отверстий 10, будет уменьшаться в направлении сверху вниз. Однако подбором числа перегородок 17 и высоты отбортовок 19 можно добиться такого режима работы магнетронного источника, при котором толщина пленки расплавленного материала 5 мишени будет постоянной по всей высоте тигля 3. Действительно, только часть материала 5, поступающего через капиллярные каналы 10, соответствующие первому отсеку, будет распыляться. Избыточное же количество материала 5 будет под действием силы тяжести стекать вниз. Однако, поскольку давление материала 5 в полости второго отсека меньше, чем в первом (H1 > H2), то и количество материала 5, поступающего из второго отсека через соответствующие капиллярные каналы 10, будет меньше. Количество же материала 5, распыляемого с единицы поверхности пластины 9, не зависит от высоты, поэтому на уровне второго отсека на внешнюю поверхность пластины 9 поступает меньшее количество избыточного материала, чем на уровне первого отсека. При оптимальном режиме работы магнетронного источника количество материала 5, поступающего на внешнюю поверхность пластины 9 через капиллярные каналы 10, соответствующие самому нижнему отсеку, и стекающего сверху, равно количеству распыляемого в единицу времени материала 5.

Claims (3)

1. Магнетронный источник, содержащий магнитную систему, анод и тигель из тугоплавкого немагнитного материала для размещения в нем расплавляемого материала мишени, отличающийся тем, что тигель снабжен крышкой, выполненной из тугоплавкого немагнитного материала со сквозными капиллярными каналами, выходящими на внутреннюю и внешнюю поверхности крышки, при этом длина L капиллярных каналов удовлетворяет неравенству:
Figure 00000004

где с - капиллярная постоянная материала мишени, см;
r - радиус капиллярных каналов, см.
2. Магнетронный источник, содержащий магнитную систему, анод и тигель из тугоплавкого немагнитного материала для размещения в нем расплавляемого материала мишени, отличающийся тем, что он содержит дополнительный источник расплавленного материала мишени, тигель снабжен крышкой, выполненной из тугоплавкого немагнитного материала со сквозными капиллярными каналами, выходящими на внутреннюю и внешнюю поверхности крышки, при этом дополнительный источник расплавленного материала мишени связан через запорный элемент с полостью тигеля, а длина L капиллярных каналов удовлетворяет неравенству:
Figure 00000005

где с - капиллярная постоянная материала мишени, см;
r - радиус капиллярных каналов, см.
3. Источник по п. 2, отличающийся тем, что дополнительный источник расплавленного материала мишени выполнен в виде по крайней мере одного контейнера, снабженного средствами нагрева и поршнем.
RU97103338A 1997-03-05 1997-03-05 Магнетронный источник RU2125117C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97103338A RU2125117C1 (ru) 1997-03-05 1997-03-05 Магнетронный источник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97103338A RU2125117C1 (ru) 1997-03-05 1997-03-05 Магнетронный источник

Publications (2)

Publication Number Publication Date
RU2125117C1 true RU2125117C1 (ru) 1999-01-20
RU97103338A RU97103338A (ru) 1999-03-10

Family

ID=20190461

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97103338A RU2125117C1 (ru) 1997-03-05 1997-03-05 Магнетронный источник

Country Status (1)

Country Link
RU (1) RU2125117C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2620845C1 (ru) * 2015-12-17 2017-05-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Устройство для синтеза и осаждения покрытий
RU2698781C2 (ru) * 2017-05-02 2019-08-29 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" Способ получения восстановительного газа

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Данилин Б.С. и Свергин В.К. Магнетронные распылительные системы. - М.: Радио и связь, 1982, с.67 и 68. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2620845C1 (ru) * 2015-12-17 2017-05-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Устройство для синтеза и осаждения покрытий
RU2698781C2 (ru) * 2017-05-02 2019-08-29 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" Способ получения восстановительного газа

Similar Documents

Publication Publication Date Title
US7156960B2 (en) Method and device for continuous cold plasma deposition of metal coatings
CA2702188C (en) Industrial vapour generator for the deposition of an alloy coating onto a metal strip
CN1966757B (zh) 操作真空沉积装置的方法和真空沉积装置
US5017404A (en) Plasma CVD process using a plurality of overlapping plasma columns
KR101956829B1 (ko) 증착 방법 및 장치
AU2009327078B2 (en) Industrial vapour generator for depositing an alloy coating on a metal strip
CN109518136B (zh) 蒸镀结构、蒸镀系统及蒸镀结构的使用方法
JPS62500110A (ja) 真空中でフィルムを蒸着させるための蒸発器
US20080210549A1 (en) Method and apparatus for manufacturing a substrate with a magnetron sputter coating
CN104996000A (zh) 等离子体源
RU2125117C1 (ru) Магнетронный источник
HU209683B (en) Closed surface-coating vessel and surface-coating equipment
JPS6173875A (ja) 流路幅調整板付き真空蒸着装置
WO2005098078A1 (en) Apparatus for coating functional thin film on the metal surface and its coating method
WO1996025534A1 (en) Apparatus and method for a reliable return current path for sputtering processes
RU2404285C1 (ru) Установка для нанесения покрытий в вакууме
KR101831291B1 (ko) 금속증착장치
RU96100759A (ru) Способ изготовления полуфабрикатов и устройство для его осуществления
CN111542644B (zh) 沉积装置及沉积方法
TW201710536A (zh) 用以測量一沈積率之方法、沈積控制系統與應用其之蒸發源及沈積設備
JPH03188250A (ja) 連続溶融金属めっきに用いられるめっき浴槽
CN1920087B (zh) 连续地热浸涂金属带中保持熔化金属的装置和方法
CN212128288U (zh) 蒸镀源及具有该蒸镀源的蒸镀设备
KR20030080365A (ko) 고속 증발용 보트 및 그 제조 방법
Ticoş et al. Pressure triggered collective oscillations of a dust crystal in a capacitive RF plasma