RU2119454C1 - Способ получения высокодисперсных оксидов - Google Patents

Способ получения высокодисперсных оксидов Download PDF

Info

Publication number
RU2119454C1
RU2119454C1 RU94040137A RU94040137A RU2119454C1 RU 2119454 C1 RU2119454 C1 RU 2119454C1 RU 94040137 A RU94040137 A RU 94040137A RU 94040137 A RU94040137 A RU 94040137A RU 2119454 C1 RU2119454 C1 RU 2119454C1
Authority
RU
Russia
Prior art keywords
oxygen
gas
tetrachloride
titanium
plasma
Prior art date
Application number
RU94040137A
Other languages
English (en)
Other versions
RU94040137A (ru
Inventor
Владимир Ильич Мазин
Original Assignee
Владимир Ильич Мазин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Ильич Мазин filed Critical Владимир Ильич Мазин
Priority to RU94040137A priority Critical patent/RU2119454C1/ru
Publication of RU94040137A publication Critical patent/RU94040137A/ru
Application granted granted Critical
Publication of RU2119454C1 publication Critical patent/RU2119454C1/ru

Links

Abstract

Изобретение относится к производству высокодисперсных оксидов металлов или металлоидов из галогенидов. Результат способа состоит в снижении эксплуатационных затрат и повышении качества продукта. Высокодисперсные порошки оксидов получают путем окисления тетрахлоридов кислородом. При этом жидкие тетрахлориды распыляют в кислородсодержащий плазменный теплоноситель. Распыление проводят кислородсодержащим газом при отношении массового расхода кислорода к массовому расходу тетрахлорида металла или металлоида не менее половины стехиометрически необходимого количества. Распылению подвергают тетрахлориды титана, кремния, олова, германия. Тетрахлорид титана распыляют под углом от 10 до 25o к направлению движения плазменного теплоносителя не менее чем четырьмя струями попарно навстречу друг другу. Модифицирующие добавки, в частности трихлорид алюминия, тетрахлорид кремния и/или тетрахлорид углерода, вводят в зону реакции в виде раствора в тетрахлориде титана. Последние позволяют ускорить процесс испарения капель диспергированной жидкости в высокотемпературном газе и уменьшить размер частиц получаемого порошка диоксида титана. 7 з.п.ф-лы.

Description

Изобретение относится к области производства высокодисперсных оксидов металла или металлоидов из галогенидов и может быть использовано для получения пигментного диоксида титана, находящего применение в лакокрасочной промышленности, производстве бумаги и пластмасс.
Известны способы получения высокодисперсных оксидов металлов или металлоидов из их галогенидов, в частности диоксида титана из тетрахлорида титана, путем высокотемпературного гидролиза паров TiCl4 водяным паром (US 3505091, C 09 C 1/36, 1968) или продуктами сгорания водородсодержащего топлива в кислороде (US 4048290, C 01 B 13/14, 1977), а также окислением паров TiCl4 в струе кислорода (JP 57-123824, C 01 G 23/07, 1981) или кислородсодержащего газа с одновременной подачей для достижения газовой смесью необходимой температуры реакции (преимущественно 1573-1623 K) и стабилизации процесса горения некоторого количества горючего газа, например водорода (DE 1283818, C 01 G 23/04, 1965), оксида углерода (US 3632313, C 01 G 23/04, 1969) или природного газа (Лысцов А.И. и др. Аппаратурная схема узла сжигания тетрахлорида титана пигментной установки. В "Лакокрасочные материалы и их применение", 1989, N 4, с. 81-86; Лысцов А.И. и др. Опытно-промышленные испытания узла сжигания тетрахлорида титана для получения пигментного диоксида титана. В "Лакокрасочные материалы и их применение", 1989, N 5, с. 78-22).
Недостатком этих способов является подвод в зону реакции водородсодержащих горючих газов. Образующийся при их сгорании хлористый водород повышает коррозионную активность отходящего из зоны реакции хлоргаза, обесценивающую последний и снижающую ресурс работы технологического оборудования. Использование же в качестве горючего газа оксида углерода требует специального оборудования по его генерированию, очистке и т.п.
Реализация всех перечисленных выше способов получения пигментного TiO2 предполагает подачу в зону реакции перегретых паров TiCl4. Температура нагрева хлоридов определяется стойкостью футеровки электропечей и, как правило, не превышает 1273 K. Выше 1273 K футеровка электропечей в хлорсодержащих средах быстро разрушается. Наличие протяженных футерованных огнеупорами газоходов для подвода перегретых паров TiCl4 и кислорода к реактору окисления делает такие технологические установки громоздкими, инерционными, создает дополнительные тепловые потери.
При окислении TiCl4 получают диоксид титана рутильной модификации с некоторым количеством анатазной. Последняя ухудшает пигментные свойства TiO2. Для улучшения качества продукта в процесс окисления вводят модифицирующие добавки, например AlCl3 (до 6-8 мас.%) для рутилизации диоксида титана и SiCl4 (до 2-4 мас.%) для повышения дисперсности порошка (Лысцов А.И. и др. Опытно-промышленные испытания узла сжигания тетрахлорида титана для получения пигментного диоксида титана. В "Лакокрасочные материалы и их применение", 1989, N 5, с. 78-82). Жидкий тетрахлорид кремния смешивают с тетрахлоридом титана и в виде раствора подают в испаритель TiCl4. Пары трихлорида алюминия в зону реакции вводят отдельно или хлорирование рубленого металлического алюминия совмещают с нагревом паров TiCl4 в перегревателе. В том и другом случае в зону реакции вводят перегретую смесь паров.
Для получения высокодисперсных оксидов металлов или металлоидов известны способы, заключающиеся в плазменном нагреве паров галогенида металла или металлоида и окислителя, в частности тетрахлорида титана и кислорода (Марин К. Г. и др. Плазмохимическое получение абразивных материалов для полирования полупроводников. В кн. Плазмохимические реакции и процессы. М.: Наука, 1977, с. 50-80). В этом случае не требуется подвода в зону реакции дополнительных горючих газов и уменьшается количество вводимых модификаторов. Среди плазмохимических способов известны варианты нагрева исходных реагентов через промежуточный инертный газ-теплоноситель (например, азот) (US 3275411, кл. 23-202, 1963 и US 3275412, кл. 23-202, 1965) или прямого нагрева кислородсодержащего газа в плазменном генераторе с использованием его в качестве газа-теплоносителя и окислителя TiCl4 (СССР, 324858, C 09 C 1/36, 1970).
По первому варианту (US 3275411, кл. 23-202, 1963 и US 3275412, кл. 23-202, 1965) кислородсодержащий газ и пары галогенида металла (TiCl4) вводят раздельно в два потока плазменного теплоносителя (температура 3000 - 12000 K), полученного при пропускании инертного газа (N2) через плазменные генераторы. Затем оба потока плазмы, один из которых содержит O2 (температура 900-4000 K), а второй - пары TiCl4 (температура 900-3000 K), смешивают, направляя навстречу друг другу под углом от 50 до 160o. Содержание O2 в смеси должно быть не ниже стехиометрически необходимого для превращения хлорида в оксид. Рекомендуется 15-50%-ный (по объему) избыток O2 против стехиометрии. Количество инертного газа в смеси 3-95% от ее суммарного объема. Смесь пропускают через реакционную зону, где образуется оксид соответствующего соединения (высокодисперсные частицы TiO2). Продолжительность пребывания реакционной смеси в зоне реакции 0,001 - 1 (преимущественно 0,02-0,1) с. При получении TiO2 рутильной модификации в один из потоков плазменного теплоносителя вводят пары AlCl3, количество которых составляет 0,16-6,3 (преимущественно 1,6-4,7)% к весу образующегося TiO2. В результате окисления тетрахлорида титана в реакционной зоне образуются сферические частицы пигментной TiO2, большая часть которых имеет средний диаметр 0,13-0,23 мкм. В одном из вариантов процесса через электрическую дугу пропускают только один поток инертного газа, и в образующийся при этом поток плазменного теплоносителя вводят последовательно пары TiCl4 и кислородсодержащий газ или вначале кислородсодержащий газ, а затем пары TiCl4.
По второму варианту (СССР, 324858, C 09 C 1/36, 1970) кислород, нагретый в безэлектродном индукционном или другом разряде, например плазменно-дуговом, высоковольтном, высокочастотном, сверхвысокочастотном, до атомарного (частично или полностью диссоциированного) состояния, в виде струи при среднемассовой ее температуре 1000-5000 K направляют в реактор, где он взаимодействует с подводимыми туда же перегретыми до 1073 K парами тетрахлорида титана, в результате чего образуются пигментный диоксид титана высокого качества и концентрированный хлоргаз. Нагрев кислорода производят без использования инертного газа-теплоносителя при небольшом (5-15%-ном) избытке кислорода от стехиометрического состава. Достоинство способа - наличие в теплоносителе высокой концентрации атомарного кислорода, заметно ускоряющего как начальную стадию окисления тетрахлорида титана до трихлорида (TiCl3) и оксихлорида (TiOCl2), так и конечную стадию процесса - образование твердых частиц диоксида титана при взаимодействии последних с кислородом (Рыкалин Н. Н. и др. Получение пигментной двуокиси титана индукционно-атомарным способом. Физика и химия обработки материалов, 1975, N 1, с. 154-157). Скорость реакции определяется именно этой компонентой струи диссоциированного кислорода.
Недостатком перечисленных плазмохимических способов получения высокодисперсных оксидов металлов или металлоидов является подача в зону реакции тетрахлорида титана и модификаторов в виде перегретого пара, что требует наличия специального оборудования по испарению хлоридов, нагреву паров до температуры 600-1000 K и их подводу к реактору окисления. Данное оборудование отличается большими габаритами, низким тепловым КПД и инерционностью, усложняя эксплуатацию плазмохимических установок, предназначенных для реализации этих способов.
Наиболее близким техническим решением к предлагаемому является способ получения пигментного диоксида титана путем окисления тетрахлорида титана кислородом (СССР, 322960, C 01 G 23/04, 1969, прототип), согласно которому в зону реакции вводят три кислородсодержащие плазменные струи, так что из струй образуется плазменная воронка, в которую подают жидкий тонкораспыленный TiCl4. В качестве плазмообразующего газа применяют очищенный от пыли атмосферный воздух. Воздушную плазму получают в электродуговых нагревателях.
При соударении плазменных струй, истекающих из выходных сопел электродуговых нагревателей с околозвуковой скоростью (около 1000 м/с), в зоне реакции возникают интенсивные рециркуляционные потоки газа, позволяющие интенсивно перемещать кислородсодержащий газ-теплоноситель и факел тонкораспыленного тетрахлорида титана. После смешения происходит нагрев и испарение капель TiCl4 с последующим перегревом паров до температуры начала их реагирования с кислородом. Выделяющееся при экзотермической реакции окисления тепло частично компенсируют затраты энергии плазменного теплоносителя на нагрев и испарение капель жидкости, перегрев паров хлорида и тепловые потери через стенки реактора. Результирующая температура синтеза TiO2 определяется расходом реагентов, тепловым балансом и газодинамической обстановкой в реакционном канале реактора окисления.
Реагирующий поток со скоростью 700 м/с проходит через закалочное сопло в охлаждаемый объем. Из охлаждаемого объема пылегазовая смесь направляется в систему улавливания TiO2.
Способ реализуют при избытке кислорода 20%, температуре воздушной плазмы при входе в зоне реакции 3000-3200 K, температуре в зоне реакции 2200-2300 K, времени пребывания реагентов в зоне реакции 0,002-0,02 с, расходе электроэнергии 2-3 кВт•час/кг TiO2. Полученный диоксид титана состоит на 87-97% из рутила без ввода рутилизирующих добавок, диаметр частиц TiO2 0,1-0,4 мкм, форма частиц сферическая и овальная.
Ввод тетрахлорида титана в зону реакции в виде тонкораспыленной жидкости позволяет исключить предварительное испарение и перегрев паров TiCl4 вне реактора окисления. При этом значительно упрощается аппаратурное оформление способа, поскольку нагрев окислителя, галогенида и синтез оксида металла или металлоида совмещаются в одном технологическом аппарате.
Отходящий из системы улавливания диоксида титана хлоргаз содержит около 25 об. % хлора. Хлоргаз предлагается использовать для получения хлорпроизводных. Если в качестве плазмообразующего газа применяют смесь кислорода и воздуха (70% кислорода, 30% воздуха), то это дает возможность уменьшить расход энергии на производство диоксида титана до 1,3-1,5 кВт•ч/кг TiO2 и получить концентрированный хлоргаз (объемное содержание хлора около 70%). Такой хлоргаз может быть использован для хлорирования титансодержащего сырья. Применение чистого кислорода в качестве плазмообразующего газа в указанном способе проблематично из-за малого ресурса работы электродуговых нагревателей газа на кислороде.
К недостаткам данного способа получения пигментного диоксида титана следует отнести возникновение интенсивных рециркулирующих потоков газа в зоне смещения кислородсодержащих плазменных струй с факелом тонкораспыленного тетрахлорида титана, создающих направленное движение теплоносителя и капель диспергированной жидкости к периферийным областям реактора окисления. Это, с одной стороны, вызывает перегрев стенок реактора от конвективного теплообмена с нагретым выше 3000 K теплоносителем, поскольку из-за наличия в газовой среде паров хлоридов и возможной их конденсации водяное охлаждение стенок недопустимо. С другой стороны, вследствие взаимодействия исходных (TiCl4) и образующихся при протекании целевой термохимической реакции окисления промежуточных (TiCl4) и конечных (TiO2) жидких и твердых высокодисперсных продуктов с поверхностью стенок канала реактора существует тенденция к образованию и увеличению устойчивого слоя отложений твердых веществ. В результате происходит забивка канала, сопровождающаяся снижением выхода целевого продукта, и, в конечном итоге, приводящая к росту эксплуатационных затрат на получение диоксида титана.
Реализация известного способа предполагает высокие скорости движения реагирующего потока по каналу реактора из-за малого поперечного сечения последнего, что определяет, соответственно, большие линейные габариты реактора окисления. Увеличение внутреннего диаметра реактора снижает эффективность смешения компонентов. При этом по сечению реактора возникают профили температуры и скорости газа (Неклесса А.Т. и др. Экспериментальное исследование процессов смешения и теплоотдачи в многодуговом ПХР. Теплофизика высоких температур, 1984, т. 22, N 5, с. 1034-1036), создающие различные температурно-временные условия термообработки капель жидкости, окисления паров TiCl4, формирования зародышей твердой фазы и роста частиц диоксида титана в объеме зоны реакции. Последнее сказывается на распределении образующихся твердых частиц по размерам и приводит к существенным неоднородностям в дисперсном составе порошка TiO2.
Цель настоящего изобретения состоит в снижении эксплуатационных затрат и повышении качества продукта.
Поставленная цель достигается тем, что в известном способе получения высокодисперсных оксидов металлов или металлоидов, например диоксида титана, путем окисления тетрахлорида титана кислородом, включающем распыление жидкого тетрахлорида титана в кислородсодержащий плазменный теплоноситель, распыление тетрахлорида титана проводят кислородсодержащим газом при отношении массового расхода кислорода к массовому расходу тетрахлорида титана не менее половины стехиометрически необходимого количества. При этом тетрахлорид титана распыляют под углом от 10 до 25o к направлению движения плазменного теплоносителя не менее чем четырьмя струями попарно навстречу друг другу. Распылению подвергают раствор тетрахлорида титана с трихлоридом алюминия, а также с тетрахлоридом кремния и/или тетрахлоридом углерода.
Достижение поставленной цели обеспечивается прежде всего тем, что при распылении тетрахлорида титана кислородсодержащим газом исходные компоненты в зону реакции вводятся уже в виде газодисперсной смеси, в которой каждая капля TiCl4 окружена кислородсодержащей газовой оболочкой, за счет чего воспламенение смеси при ее контакте с высокотемпературным газом-теплоносителем, образование и рост зародышей твердой фазы оксида при горении паров хлорида металла происходят по всему объему зоны реакции, содержащей высокодисперсный аэрозоль, в условиях близких концентрации окислителя. Распыление жидкого TiCl4 кислородсодержащим газом при отношении массового расхода кислорода к массовому расходу тетрахлорида титана не менее половины стехиометрически необходимого количества позволяет, с одной стороны, провести качественное распыление тетрахлорида титана газом, поскольку размер капель прямо пропорционален массе распыливающего газа, приходящегося на единицу массы распыливаемой жидкости, с другой - обеспечивает в газодисперсной системе начальное содержание кислорода, гарантирующее окисление TiCl4 по крайней мере до оксихлорида титана TiOCl4.
Смешение факела распыленного тетрахлорида титана с плазменным теплоносителем происходит при инжектировании теплоносителя в факел за счет разности кинетических энергий потока теплоносителя и газодисперсной смеси. При этом нагрев и испарение капель жидкости с воспламенением паров TiCl4 начинается в периферийных областях газодисперсной струи с распространением фронта горения к центральным областям за счет наличия в факеле распыла поперечных турбулентных пульсаций газа. Подмешивание кислородсодержащего газа-теплоносителя в факел распыла кроме подвода тепла увеличивает в газодисперсной системе содержание кислорода до концентрации, необходимой для полного окисления TiCl4 в TiO2.
Распыление TiCl4 под углом от 10 до 25o к направлению движения плазменного теплоносителя не менее чем четырьмя струями попарно навстречу друг другу позволяет организовать соударение газодисперсных струй распыла в центральной области зоны реакции и получить слаборасширяющийся капельно-газовый факел с углом раскрытия (телесный угол, внутри которого находится не менее 90% массы распыливаемой жидкости) от 10 до 70o, обладающий инжекционной способностью и ориентированный в направлении движения плазменного теплоносителя (вдоль оси реактора). При этом за счет соударения направленных навстречу друг другу газодисперсных струй происходит гашение радиальных составляющих скоростей распыливающего газа и капель TiCl4 и выравнивание параметров (температуры и концентрации кислородсодержащего газа и паров TiCl4, скорости газа и капель, распределения дисперсной фазы) капельно-газового факела по его сечению.
Проведенные исследования соударения струй распыла форсунок показали, что слаборасширяющийся ориентированный капельно-газовый факел, обладающий инжекционной способностью, удается получить только при угле соударения струй от 20 до 50o (или угле ввода струй к направлению движения плазменного теплоносителя (20-50o)/2 = (10-25o)). При угле ввода распыленных струй к направлению движения плазменного теплоносителя менее 10o, с одной стороны, значительно увеличивается расстояние от плоскости ввода струй до плоскости их соударения в зоне реакции, с другой - смешение струй происходит не путем их соударения, а путем слияния, без выравнивания параметров капельно-газового факела по его сечению. Получаемое распределение параметров по сечению факела мало отличается от такого для одиночной газодисперсной струи. При угле соударения струй более 50o начинает быстро возрастать угол раскрытия, при этом становится существенной массовая доля капель жидкости, имеющая направление движения к периферийным областям зоны реакции (стенкам реактора). Смешение компонентов приближается к динамическому перемешиванию. В том и другом случае по сечению зоны реакции возникают различные температурно-временные условия протекания целевой реакции окисления, снижающие качество конечного продукта.
Подача в реактор окисления трихлорида алюминия в виде раствора в тетрахлориде титана позволяет упростить подвод AlCl3 в зону реакции и получить равномерное распределение оксида алюминия по массе диоксида титана. При этом расход AlCl3 определяется его растворимостью в тетрахлориде титана и составляет 0,05-1% по массе к TiCl4.
При испарении в высокотемпературном газе капли раствора тетрахлорида кремния и/или тетрахлорида углерода в тетрахлориде титана за счет различия в парциальных давлениях паров хлоридов от температуры (температуры кипения TiCl4, SiCl4 и CCl4 соответственно равны 409, 330 и 350 K) в поверхностном слое капли снижается содержание высоколетучего компонента за счет его более интенсивного испарения. Температура поверхности капли, а за ней и средняя температура в объеме капли повышается до температуры равновесного испарения жидкого хлорида с более высокой температурой кипения (TiCl4) (при испарении капли в газе с температурой значительно превышающей температуры кипения жидкости капли, температура равновесного испарения близка к температуре кипения), в результате происходит объемное вскипание содержащихся в капле хлоридов кремния и/или углерода, сопровождающееся разрывом и дроблением капли парами высоколетучего хлорида. Дополнительное диспергирование капель ускоряет процесс испарения жидкости в высокотемпературном газе, поскольку характерное время испарения капель прямо пропорционально квадрату их диаметра, и уменьшает вероятность гетерогенной конденсации паров диоксида титана, что в конце концов приводит к росту дисперсности получаемых частиц диоксида титана.
Способ осуществляют следующим образом. Кислородсодержащий газ-теплоноситель, в частности кислород, нагревают высокочастотным индукционным разрядом в ВЧИ-плазмотроне до диссоциированного состояния и в виде потока с среднемассовой температурой 4000-5000 K (удельная энтальпия плазменной струи (14-21)•103 кДж/кг), имеющего среднемассовую скорость 10-15 м/с, направляют в реактор окисления вдоль оси последнего. Тетрахлорид титана распыляют кислородом (или воздухом) при критических параметрах газа. Средний объемно-поверхностный диаметр капель в факеле распыла форсунок не превышает 90 мкм. Процесс ведут при суммарном содержании кислорода в плазменном теплоносителе и распыливающем газе не выше двукратного стехиометрически необходимо количества, при этом на выходе зоны реакции образуется отходящий хлоргаз, с объемным содержанием хлора не менее 70%, который непосредственно можно использовать для хлорирования титансодержащего сырья.
Поскольку газодинамический напор струй распыла форсунок на несколько порядков превосходит газодинамический напор потока плазменного теплоносителя, то сноса струй в направлении движения теплоносителя не происходит. В результате на оси реактора образуется капельно-газовый факел, охваченный спутным потоком диссоциированного кислорода.
За счет протекания различных физико-химических процессов, сопровождающих смешение плазменного теплоносителя с капельно-газовым факелом, таких как нагрев распыливающего газа, нагрев и испарение капель тетрахлорида титана, нагрев паров TiCl4 до начала их взаимодействия с окружающим кислородом (выше 1000 K), с одновременным снижением температуры подмешенной части теплоносителя, и выделения тепловой энергии экзотермической реакции окисления, с сопутствующим образованием конденсированной фазы диоксида титана, по сечению и длине капельно-газового факела устанавливается равновесная температура, определяемая тепловой мощностью плазменного теплоносителя и расходом реагентов. Величины последних подбирают из условия поддержания в объеме факела температуры в интервале 1500-2100 K, что, с одной стороны, обеспечивает достаточные скорости испарения диспергированного TiCl4 и реакции окисления паров с получением диоксида титана рутильной модификации, с другой - исключает плавление, жидкофазную коагуляцию и спекание частиц конденсированной фазы. Поскольку течение всех физико-химических процессов растянуто во времени и пространстве, в том числе и подмешивание к капельно-газовому факелу плазменного теплоносителя, то в сечении факела устанавливается мало отличающаяся по его длине температура. Образование и рост зародышей конденсированной фазы происходит в близких по температуре и конденсации кислорода условиях, что в конечном итоге приводит к получению порошка узкого гранулометрического состава и регулируемой модификации.
При предложенном смешении реагентов в объеме реактора отсутствуют зоны, содержащие капли и пары TiCl4, с температурой менее 1300 K и концентрацией кислорода менее половины стехиометрически необходимого количества, при которых скорость реакции превращения недостаточна, а качество получаемого диоксида титана ухудшается, в частности, из-за последующего гидролиза непрореагировавшей части TiCl4. Высокой скорости реакции окисления паров тетрахлорида, три- и оксихлорида титана кислородом способствует нахождение кислорода плазменного теплоносителя в диссоциированном (атомарном) состоянии.
Расчетное время нахождения реагирующей смеси в зоне реакции 0,02 - 0,10 с.
По выходу из зоны реакции пылегазовая смесь поступает в закалочный объем, где осуществляют ее охлаждение оборотным хлоргазом и проводят частичную рекуперацию тепла. Пылегазовый поток с температурой 700-800 K направляют в систему улавливания, состоящую из металлотканевых (или металловойлочных) фильтров для выделения из газового потока порошка диоксида титана.
Отходящий хлоргаз подвергают дополнительному охлаждению до 320-330 K с рекуперацией тепла и после компримирования направляется в аппараты хлорирования титансодержащего сырья.
Пример 1. В зону реакции реактора окисления подают плазменный поток кислорода расходом 2,22•103 кг/с с тепловой мощностью 32 кВт. Сюда же под углом 20o к оси реактора через 4 форсунки распыляют подогретый до 363 K тетрахлорид титана. Расход TiCl4 - 0,036 кг/с, расход кислорода на распыление - 6,28•10-3 кг/с (отношение массовых расходов O2 и TiCl4 равно 0,17). Суммарный избыток кислорода от стехиометрии 34 об.% Температура в зоне реакции - 1600-1900 K.
Из фильтра выгружают порошок диоксида титана с размером частиц 0,18-0,54 мкм, содержащий 93-96% рутила. Форма частиц сферическая и овальная.
Расход энергии 1,2-1,3 кВт•ч/кг TiO2 с учетом КПД источника электропитания генератора плазмы (не ниже 0,65) и ВЧИ - плазмотрона (0,80-0,82).
Пример 2. В зону реакции реактора окисления подают плазменный поток кислорода расходом 2,96•10-3 кг/с и тепловой мощностью 44 кВт. Распылению повергают TiCl4, содержащий 0,5% растворенного AlCl3 (6 форсунок, угол наклона форсунок к оси реактора - 15o). Температура раствора - 363 K. Расход TiCl4 0,061 кг/с, расход кислорода на распыление 9,24•10-3 кг/с (отношение массовых расходов O2 и TiCl4 равно 0,15). Суммарный избыток кислорода против стехиометрии 18 об.%. Температура в зоне реакции 1500-1800 K.
Из фильтра выгружают порошок TiO2 с размером частиц 0,15-0,45 мкм и содержанием рутила 95-99%. Форма частиц сферическая и овальная.
Расход электроэнергии 1,0-1,1 кВт•ч/кг TiO2.
Пример 3. В зону реакции реактора окисления подают плазменный поток кислорода расходом 2,96•10-3 кг/с и тепловой мощностью 44 кВт. Распылению подвергают раствор TiCl4, содержащий 2 мас.% SiCl4 и 0,05 мас.% AlCl3 (6 форсунок, угол наклона форсунок к оси реактора 15o). Температура раствора 313 K. Расход раствора 0,061 кг/с, расход кислорода на распыление 9,24•10-3 кг/с (отношение массовых расходов O2 и раствора равно 0,15). Суммарный избыток кислородом против стехиометрии 18%. Температура в зоне реакции 1500-1800 K.
Из фильтра выгружают порошок TiO2 с размером частиц 0,08-0,26 мкм и содержанием рутила 92-95%. Форма частиц сферическая и овальная.
Расход электроэнергии 1,0-1,1 кВт•ч/кг TiO2.
Пример 4. Условия реализации способа те же, что и в примере 3. Распылению подвергают раствор TiCl4, содержащий 1% CCl4 и 0,05% AlCl3.
Из фильтра выгружают порошок TiO2 с размером частиц 0,10-0,36 мкм и содержанием рутила 94-98%. Форма частиц сферическая и овальная.
Расход электроэнергии 1,0-1,1 кВт•ч/кг TiO2.
Массовая доля хлора в партиях продукта колеблется от 0,06 до 0,08% и связана с адсорбцией хлора на поверхности диоксида титана в процессе охлаждения порошка диоксида титана и газовой среды при выгрузке продукта из узла улавливания. После проведения операции обесхлорирования содержание хлора снижается до 0,005 мас.%. По своим качественным показателям получаемые порошки диоксида титана соответствует требованиям, предъявляемым к необработанному пигментному диоксиду титана.
Аналогичным образом получают высокодисперсные порошки оксидов кремния, олова и германия из их жидких хлоридов.

Claims (8)

1. Способ получения высокодисперсных оксидов металлов или металлоидов путем окисления хлорида соответствующего элемента кислородом, включающий распыление жидкого тетрахлорида металла или металлоида в кислородсодержащий плазменный теплоноситель, отличающийся тем, что распыление тетрахлорида металла или металлоида проводят кислородсодержащим газом при отношении массового расхода кислорода к массовому расходу тетрахлорида металла или металлоида не менее половины стехиометрически необходимого количества.
2. Способ по п.1, отличающийся тем, что распылению подвергают тетрахлорид титана.
3. Способ по п.1, отличающийся тем, что распылению подвергают тетрахлорид кремния.
4. Способ по п.1, отличающийся тем, что распылению подвергают тетрахлорид олова.
5. Способ по п.1, отличающийся тем, что распылению подвергают тетрахлорид германия.
6. Способ по п.1, отличающийся тем, что тетрахлорид титана распыляют под углом от 10 до 25o к направлению движения плазменного теплоносителя не менее чем четырьмя струями попарно навстречу друг другу.
7. Способ по п. 1 и 2, отличающийся тем, что распылению подвергают раствор тетрахлорида титана с трихлоридом алюминия.
8. Способ по пп.1, 2 и 7, отличающийся тем, что распылению подвергают раствор тетрахлорида титана с тетрахлоридом кремния и/или тетрахлоридом углерода.
RU94040137A 1994-10-28 1994-10-28 Способ получения высокодисперсных оксидов RU2119454C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94040137A RU2119454C1 (ru) 1994-10-28 1994-10-28 Способ получения высокодисперсных оксидов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94040137A RU2119454C1 (ru) 1994-10-28 1994-10-28 Способ получения высокодисперсных оксидов

Publications (2)

Publication Number Publication Date
RU94040137A RU94040137A (ru) 1996-09-10
RU2119454C1 true RU2119454C1 (ru) 1998-09-27

Family

ID=20162131

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94040137A RU2119454C1 (ru) 1994-10-28 1994-10-28 Способ получения высокодисперсных оксидов

Country Status (1)

Country Link
RU (1) RU2119454C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2487837C2 (ru) * 2007-10-12 2013-07-20 Кронос Интернациональ, Инк. Способ получения частиц диоксида титана и частица диоксида титана
RU2547490C2 (ru) * 2013-07-16 2015-04-10 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ синтеза наноразмерных частиц порошка диоксида титана
RU2588536C1 (ru) * 2014-12-15 2016-06-27 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ синтеза наночастиц диоксида титана

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Rykalin N.N. Plasma engineering in metallurgy and inorganic materials technology. B "Pure & applied Chem.," 1976, v 48, p 188-192. *
Пархоменко В.Д. Плазмохимическая технология. Низкотемпературная плазма. - Новосибирск, Наука, 1991, т.4, с.211-214. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2487837C2 (ru) * 2007-10-12 2013-07-20 Кронос Интернациональ, Инк. Способ получения частиц диоксида титана и частица диоксида титана
RU2547490C2 (ru) * 2013-07-16 2015-04-10 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ синтеза наноразмерных частиц порошка диоксида титана
RU2588536C1 (ru) * 2014-12-15 2016-06-27 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ синтеза наночастиц диоксида титана

Also Published As

Publication number Publication date
RU94040137A (ru) 1996-09-10

Similar Documents

Publication Publication Date Title
US3486913A (en) Process for the production of finely divided oxides from halides
KR100991259B1 (ko) 메탈 옥사이드 나노파우더의 플라즈마 합성 및 그를 위한장치
USRE37853E1 (en) Fast quench reactor and method
US7708975B2 (en) Process for making metal oxide nanoparticles
US7476378B2 (en) Process for producing titanium dioxide
EP1514845A1 (en) Plasma synthesis of metal oxide nanoparticles
US3403001A (en) Process and apparatus for the production of metal oxides
JP3274740B2 (ja) 金属およびセラミツク微粉末を製造するための装置及び方法
CA2445169A1 (en) Plasma synthesis of titanium dioxide nanopowder and powder doping and surface modification process
US4910008A (en) Gas-gas phase contactor
US3532462A (en) Method of effecting gas-phase reactions
US5599519A (en) Oxidation of titanium tetrachloride to form titanium dioxide
EP0771309B1 (en) PROCESS FOR CONTROLING AGGLOMERATION IN THE MANUFACTURE OF TiO2
US3306760A (en) Process for carrying out gas phase reactions
RU2119454C1 (ru) Способ получения высокодисперсных оксидов
JPS6117766B2 (ru)
RU2353584C2 (ru) Способ получения нанодисперсного порошка оксида алюминия
RU2487837C2 (ru) Способ получения частиц диоксида титана и частица диоксида титана
US4931012A (en) Phase contactor/process for generating high temperature gaseous phase
EP1208063B1 (en) Process for the recovery of chlorine from iron chlorides
US3449076A (en) Preheating oxidizing gas reactant in tio2 pigment manufacture
RU2349546C1 (ru) Способ получения высокодисперсного порошка диоксида кремния
RU2547490C2 (ru) Способ синтеза наноразмерных частиц порошка диоксида титана
US20020192138A1 (en) Process for producing finely divided metal oxides
RU2321543C1 (ru) Способ синтеза нанодиоксида титана