RU2118014C1 - Металло-воздушный электрохимический элемент - Google Patents
Металло-воздушный электрохимический элемент Download PDFInfo
- Publication number
- RU2118014C1 RU2118014C1 RU97110360A RU97110360A RU2118014C1 RU 2118014 C1 RU2118014 C1 RU 2118014C1 RU 97110360 A RU97110360 A RU 97110360A RU 97110360 A RU97110360 A RU 97110360A RU 2118014 C1 RU2118014 C1 RU 2118014C1
- Authority
- RU
- Russia
- Prior art keywords
- electrolyte
- electrode
- gap
- electrodes
- area
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Hybrid Cells (AREA)
Abstract
Изобретение относится к химическим источникам тока, преимущественно к воздушно-металлическим батареям с расходуемым металлическим анодом, водным электролитом и гидрофобным газодиффузионным катодом. Изобретение направлено на обеспечение стабильных удельных характеристик при увеличении времени работы. Электрохимический элемент содержит корпус, заполненный электролитом, установленный внутри него с зазором между торцевыми стенками металлический анод, установленные в боковых стенках газодиффузионные катоды и выполненные в корпусе параллельно торцевым стенкам перегородки, замыкающие межэлектродное пространство по высоте электродов. Кроме того, площадь межэлектродного промежутка в горизонтальной плоскости относится к площади зазора между торцевой стенкой корпуса и перегородкой в этой же плоскости как 1 : 1 - 1 : 5, а к площади поперечного сечения объема под электродами в вертикальной плоскости 1 : 1 - 1 : 50 и к площади поперечного сечения электролита над электродами в вертикальной плоскости как 1 : 1 - 1 : 5. 1 з.п. ф-лы, 3 ил.
Description
Изобретение относится к химическим источникам тока, преимущественно к воздушно-металлическим батареям с расходуемым металлическим анодом, водным электролитом и гидрофобным газодиффузионным катодом.
Известен химический источник тока, содержащий средство для перемешивания электролита, выполненное в виде устройства для улавливания образующихся при работе источника газов, соединенного с газоотводными трубками (см. описание к патенту Японии N 5-42112, H 01 M 2/38, 1993 /1/). Недостатком известного химического источника тока является то, что в нем не обеспечивается необходимая стабильность характеристик в процессе эксплуатации.
Известен металло-воздушный электрохимический элемент, содержащий корпус, заполненный электролитом, размещенный внутри корпуса металлический анод, выполненные в боковых стенках корпуса газодиффузионные катоды (см. описание к патенту США N 4507367, НКИ 429-27, 1985 /2/). В известном устройстве предусмотрено перемешивание электролита за счет использования образующегося процессе эксплуатации газа, для чего источник тока снабжен соответствующими приспособлениями. Недостатком известного устройства является относительная сложность конструкции и недостаточная стабильность характеристик в процессе эксплуатации.
Наиболее близким к заявляемому по своей технической сущности и достигаемому результату является известный металло-воздушный электрохимический элемент, содержащий корпус, заполненный электролитом, размещенный внутри него металлический анод, и газодиффузионные катоды в боковых стенках корпуса (см. описание к заявке PCT N 92/05598, H 01 M 12/06, 2/38, 1992 /3/). В известном устройстве обеспечивается перемешивание электролита за счет его тепловой конвекции, поскольку между краями электродов и торцевыми стенками корпуса имеется зазор.
Недостатком известного химического источника тока является его недостаточная стабильность удельных характеристик. Это обусловлено тем, что при изменении условий эксплуатации и/или температуры окружающей среды может уменьшаться температурный градиент внутри корпуса, что ослабляет конвекцию электролита. В результате продукты реакции вместо того, чтобы оседать с отстойнике, находятся во взвешенном состоянии в межэлектродом пространстве. Кроме того, межэлектродное пространство является открытым со стороны торцевых стенок. Это также снижает эффективность конвекции, делая конвекционные потоки несформированными, расплывчатыми.
Заявляемый металло-воздушный электрохимический элемент направлен на обеспечение стабильных удельных характеристик при увеличенном времени работы.
Указанный результат достигается тем, что металло-воздушный электрохимический элемент содержит корпус, заполненный электролитом, установленный внутри него с зазором между торцевыми стенками металлический анод, установленные в боковых стенках газодиффузионные катоды и выполненные в корпусе параллельно торцевым стенкам перегородки, замыкающие межэлектродное пространство по высоте электродов.
Указанный результат достигается также тем, что площадь межэлектродного промежутка в горизонтальной плоскости относится к площади зазора между торцевой стенкой корпуса и перегородкой в этой же плоскости как 1:1 - 1:5, а к площади поперечного сечения объема под электродами в вертикальной плоскости 1:1 - 1:50 и к площади поперечного сечения электролита над электродами в вертикальной плоскости как 1:1 - 1:5.
Отличительными признаками заявляемого металло-воздушного элемента является:
- выполнение в корпусе перегородок, параллельных торцевым стенкам корпуса и замыкающих межэлектродное пространство по высоте электродов;
- соотношение размеров, регламентирующих расположение электродов в корпусе и уровень электролита над ними.
- выполнение в корпусе перегородок, параллельных торцевым стенкам корпуса и замыкающих межэлектродное пространство по высоте электродов;
- соотношение размеров, регламентирующих расположение электродов в корпусе и уровень электролита над ними.
Выполнение в корпусе перегородок, параллельных торцевым стенкам корпуса с замыканием межэлектродного пространства по высоте электродов позволяет усилить конвекцию в объеме корпуса, так как формируются восходящий (в межэлектродном промежутке) и нисходящий (в зазоре между торцевыми стенками корпуса и перегородками) потоки, изолированные друг от друга перегородками. Кроме того, в процессе эксплуатации электрохимического элемента на металлическом аноде происходит выделение водорода. Учитывая, что межэлектродный объем изолирован перегородками от остального объема электролита, газ поднимается только по межэлектродному пространству, в результате чего образуется своеобразный газлифт, который обеспечивает, совместно с конвекцией, эффективный вынос продуктов реакции из межэлектродного пространства, что в свою очередь увеличивает длительность работы электрохимического элемента со стабильными удельными характеристиками.
Наиболее устойчивая конвекция, обеспечивающая вынос продуктов реакции из межэлектродного промежутка и, соответственно, обеспечивающая длительность и устойчивость работы элемента практически независимо от условий его эксплуатации (изменяющихся температурных градиентов) достигается при оговоренном соотношении размеров.
При этом, если соотношение площади межэлектродного промежутка в горизонтальной плоскости S1 к площади зазора между торцевыми стенками корпуса и перегородками в горизонтальной плоскости S3 будет больше 1, то будет происходить ослабление потоков и возможно заполнение зазора продуктами реакции, что приведет к изменению удельных характеристик. Уменьшение указанного соотношения до значений меньше 1:5 нецелесообразно, так как снижается удельная энергия, характеризующая эффективность электрохимического элемента.
Если соотношение площади межэлектродного промежутка в горизонтальной плоскости S1 к площади поперечного сечения электролита над электродами в вертикальной плоскости S2 будет больше 1, то конвекционные потоки будут ослаблены из-за недостатка электролита над электродами, а это приведет к тому, что продукты реакции не будут выноситься из межэлектродного промежутка, что снизит работоспособность элемента. Уменьшение же этого соотношения до значений меньше 1:5 снизит удельную энергию.
Если соотношение площади межэлектродного промежутка S1 в горизонтальной плоскости к площади S4 поперечного сечения объема под электродами в вертикальной плоскости будет больше 1, то, с одной стороны, это отразится на конвекции, а с другой стороны, поскольку данная часть корпуса является отстойником для продуктов реакции, возможен их захват восходящим потоком и возврат в межэлектродный промежуток, что ухудшит условия работы элемента. Если уменьшить это соотношение до значений 1:20 - 30, то можно обеспечить длительную устойчивую работу элемента без замены электролита со стабильными удельными характеристиками. Однако изменение этого соотношения до значений меньше, чем 1:50, нецелесообразно из-за значительного и неоправданного увеличения массогабаритных характеристик электрохимического элемента.
Сущность заявляемого электрохимического элемента поясняется графическими изображениями. На фиг.1 представлен общий вид элемента в аксонометрии с частичными разрезами; на фиг. 2 показан поперечный разрез элемента; на фиг.3 представлен вид сверху на элемент со снятой крышкой.
Металло-воздущный электрохимический элемент содержит металлический анод 1, выполненный, например, из алюминия или магния или их сплавов и размещенный в корпусе 2. Корпус 2 выполняется из любого материала, инертного по отношению к используемому электролиту и продуктам реакции, например, из различного типа пластмасс, смол и т.д. В боковых стенках корпуса установлены известные газодиффузионные катоды 3, обеспечивающие доступ газа к трехфазной границе, но препятствующие выходу электролита из корпуса. В корпусе выполнены дополнительные перегородки 4, установленные параллельно торцевым стенкам корпуса и замыкающие межэлектродное пространство по высоте электродов. Корпус заполняется соответствующим известным электролитом, например 10-15% раствором поваренной соли, до уровня 5, показанного на чертежах пунктирной линией. Кроме того, элемент снабжен соответствующей крышкой с токосъемниками, выводами, заливочным отверстием и пробкой с клапаном для сброса избыточного давления газа и которые на чертежах не показаны, как не относящиеся к сущности изобретения. На чертежах штриховкой обозначены соответствующие площади, соотношение размеров которых влияет на достижение заявленного результата:
S1 - площадь межэлектродного промежутка в горизонтальной плоскости;
S2 - площадь поперечного сечения электролита над электродами в вертикальной плоскости;
S3 - площадь зазора, образованного торцевыми стенками корпуса и перегородками в горизонтальной плоскости;
S4 - площадь поперечного сечения объема под электродами в вертикальной плоскости.
S1 - площадь межэлектродного промежутка в горизонтальной плоскости;
S2 - площадь поперечного сечения электролита над электродами в вертикальной плоскости;
S3 - площадь зазора, образованного торцевыми стенками корпуса и перегородками в горизонтальной плоскости;
S4 - площадь поперечного сечения объема под электродами в вертикальной плоскости.
Электрохимический элемент работает следующим образом.
При подключении выводов элемента к потребителю начинает происходить электрохимическая реакция, сопровождающаяся растворением анода 1, выделением водорода, выделением тепла и поглощением кислорода, поступающего из внешней среды к газодиффузионным катодам 3.
В результате выделения тепла и газа в межэлектродном промежутке нагретый электролит по каналам, образованным анодом 1, катодами 3 и перегородками 4, поднимается вверх и переливается через верхние края перегородок 4 в зазор, образованный перегородками 4 и торцевыми стенками корпуса 1. При этом переливающийся электролит транспортирует продукты реакции, например гидроокись металла, получающуюся при растворении анода. Попав в зазор, представляющий собой канал, изолированный от тепла, генерируемого в межэлектродном промежутке, электролит остывает и перемещается вниз, в область S4, откуда захватывается восходящим потоком в межэлектродный промежуток, а содержащиеся в электролите продукты реакции под действием сил гравитации оседают на дно корпуса.
Таким образом, в результате введения перегородок, замыкающих межэлектродное пространство по высоте электродов, в корпусе формируются каналы для направленного движения конвекционных потоков, обеспечивающих очистку межэлектродного пространства от продуктов реакции и, соответственно, стабильность характеристик элементов. Выполнение элемента с рекомендованным соотношением размеров позволяет оптимизировать его удельные характеристики с обеспечением конвекции с необходимой интенсивностью при любых режимах эксплуатации элемента.
Claims (2)
1. Металло-воздушный электрохимический элемент, содержащий корпус, заполненный электролитом, установленный внутри него с зазором между торцевыми стенками металлический анод и установленные в боковых стенках газодиффузионные катоды, отличающийся тем, что в корпусе выполнены перегородки, параллельные его торцевым стенкам и замыкающие межэлектродное пространство по высоте электродов.
2. Элемент по п.1, отличающийся тем, что площадь межэлектродного промежутка в горизонтальной плоскости относится к площади зазора между торцевой стенкой корпуса и перегородкой в этой же плоскости как 1 : 1 - 1 : 5, а к площади поперечного сечения объема под электродами в вертикальной плоскости как 1 : 1 - 1 : 50 и к площади поперечного сечения электролита над электродами в вертикальной плоскости как 1 : 1 - 1 : 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU97110360A RU2118014C1 (ru) | 1997-06-17 | 1997-06-17 | Металло-воздушный электрохимический элемент |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU97110360A RU2118014C1 (ru) | 1997-06-17 | 1997-06-17 | Металло-воздушный электрохимический элемент |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2118014C1 true RU2118014C1 (ru) | 1998-08-20 |
RU97110360A RU97110360A (ru) | 1998-12-10 |
Family
ID=20194345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU97110360A RU2118014C1 (ru) | 1997-06-17 | 1997-06-17 | Металло-воздушный электрохимический элемент |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2118014C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2561566C1 (ru) * | 2014-05-20 | 2015-08-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" | Способ ввода расходуемого электрода в воздушно-алюминиевый источник тока |
RU2641305C2 (ru) * | 2013-11-22 | 2018-01-17 | Электрисите Де Франс | Батарея с извлекаемым воздушным электродом |
RU2710024C1 (ru) * | 2018-10-29 | 2019-12-24 | Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" | Металловодяная батарея |
-
1997
- 1997-06-17 RU RU97110360A patent/RU2118014C1/ru active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2641305C2 (ru) * | 2013-11-22 | 2018-01-17 | Электрисите Де Франс | Батарея с извлекаемым воздушным электродом |
RU2561566C1 (ru) * | 2014-05-20 | 2015-08-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" | Способ ввода расходуемого электрода в воздушно-алюминиевый источник тока |
RU2710024C1 (ru) * | 2018-10-29 | 2019-12-24 | Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" | Металловодяная батарея |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3647672A (en) | Electrode with aerolifting and gas-separation effects for electrolysis of solutions of electrolytes | |
NO163702B (no) | Fremgangsmaate ved fremstilling av et metall, fortrinnsvismagnesium, ved elektrolyse, samt elektrolysecelle for anvendelse ved fremgangsmaaten. | |
US4308322A (en) | Battery cell and electrolyte circulation pump | |
RU2118014C1 (ru) | Металло-воздушный электрохимический элемент | |
US2614138A (en) | Sealable storage battery construction | |
CA1236517A (en) | Electrochemical storage cell | |
CN209843832U (zh) | 一种液态金属电池 | |
US3102058A (en) | Inert voltaic batteries | |
US4011367A (en) | Sodium-sulphur electric cells | |
RU2002115867A (ru) | Способ и устройство для функционирования электролизера | |
JP6600713B2 (ja) | ガス発生装置 | |
CN104393370B (zh) | 铝合金空气电池装置 | |
JPH0443987B2 (ru) | ||
CN104362411B (zh) | 铝合金空气电池系统 | |
US3477939A (en) | Bipolar electrolytic cell | |
CN109065831B (zh) | 铅酸蓄电池电解液混匀装置 | |
US3036142A (en) | Primary battery | |
JP2005166320A (ja) | 鉛蓄電池 | |
RU2183371C1 (ru) | Металловоздушная батарея | |
JP3049151B2 (ja) | ナトリウム−硫黄電池 | |
JPS6039763A (ja) | 電解液循環装置を備える鉛蓄電池 | |
US6436579B1 (en) | Electrical energy generation | |
JP6647803B2 (ja) | 空気電池システム、及び注液用部品 | |
JPH08102310A (ja) | 鉛蓄電池排気栓 | |
RU96119464A (ru) | Воздушно-алюминиевый элемент, батарея на основе воздушно-алюминиевого элемента и способ эксплуатации батареи |