RU2118014C1 - Металло-воздушный электрохимический элемент - Google Patents

Металло-воздушный электрохимический элемент Download PDF

Info

Publication number
RU2118014C1
RU2118014C1 RU97110360A RU97110360A RU2118014C1 RU 2118014 C1 RU2118014 C1 RU 2118014C1 RU 97110360 A RU97110360 A RU 97110360A RU 97110360 A RU97110360 A RU 97110360A RU 2118014 C1 RU2118014 C1 RU 2118014C1
Authority
RU
Russia
Prior art keywords
electrolyte
electrode
gap
electrodes
area
Prior art date
Application number
RU97110360A
Other languages
English (en)
Other versions
RU97110360A (ru
Inventor
Е.В. Дьячков
Б.В. Клейменов
Н.В. Коровин
Original Assignee
Московский энергетический институт (Технический университет)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский энергетический институт (Технический университет) filed Critical Московский энергетический институт (Технический университет)
Priority to RU97110360A priority Critical patent/RU2118014C1/ru
Application granted granted Critical
Publication of RU2118014C1 publication Critical patent/RU2118014C1/ru
Publication of RU97110360A publication Critical patent/RU97110360A/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Abstract

Изобретение относится к химическим источникам тока, преимущественно к воздушно-металлическим батареям с расходуемым металлическим анодом, водным электролитом и гидрофобным газодиффузионным катодом. Изобретение направлено на обеспечение стабильных удельных характеристик при увеличении времени работы. Электрохимический элемент содержит корпус, заполненный электролитом, установленный внутри него с зазором между торцевыми стенками металлический анод, установленные в боковых стенках газодиффузионные катоды и выполненные в корпусе параллельно торцевым стенкам перегородки, замыкающие межэлектродное пространство по высоте электродов. Кроме того, площадь межэлектродного промежутка в горизонтальной плоскости относится к площади зазора между торцевой стенкой корпуса и перегородкой в этой же плоскости как 1 : 1 - 1 : 5, а к площади поперечного сечения объема под электродами в вертикальной плоскости 1 : 1 - 1 : 50 и к площади поперечного сечения электролита над электродами в вертикальной плоскости как 1 : 1 - 1 : 5. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к химическим источникам тока, преимущественно к воздушно-металлическим батареям с расходуемым металлическим анодом, водным электролитом и гидрофобным газодиффузионным катодом.
Известен химический источник тока, содержащий средство для перемешивания электролита, выполненное в виде устройства для улавливания образующихся при работе источника газов, соединенного с газоотводными трубками (см. описание к патенту Японии N 5-42112, H 01 M 2/38, 1993 /1/). Недостатком известного химического источника тока является то, что в нем не обеспечивается необходимая стабильность характеристик в процессе эксплуатации.
Известен металло-воздушный электрохимический элемент, содержащий корпус, заполненный электролитом, размещенный внутри корпуса металлический анод, выполненные в боковых стенках корпуса газодиффузионные катоды (см. описание к патенту США N 4507367, НКИ 429-27, 1985 /2/). В известном устройстве предусмотрено перемешивание электролита за счет использования образующегося процессе эксплуатации газа, для чего источник тока снабжен соответствующими приспособлениями. Недостатком известного устройства является относительная сложность конструкции и недостаточная стабильность характеристик в процессе эксплуатации.
Наиболее близким к заявляемому по своей технической сущности и достигаемому результату является известный металло-воздушный электрохимический элемент, содержащий корпус, заполненный электролитом, размещенный внутри него металлический анод, и газодиффузионные катоды в боковых стенках корпуса (см. описание к заявке PCT N 92/05598, H 01 M 12/06, 2/38, 1992 /3/). В известном устройстве обеспечивается перемешивание электролита за счет его тепловой конвекции, поскольку между краями электродов и торцевыми стенками корпуса имеется зазор.
Недостатком известного химического источника тока является его недостаточная стабильность удельных характеристик. Это обусловлено тем, что при изменении условий эксплуатации и/или температуры окружающей среды может уменьшаться температурный градиент внутри корпуса, что ослабляет конвекцию электролита. В результате продукты реакции вместо того, чтобы оседать с отстойнике, находятся во взвешенном состоянии в межэлектродом пространстве. Кроме того, межэлектродное пространство является открытым со стороны торцевых стенок. Это также снижает эффективность конвекции, делая конвекционные потоки несформированными, расплывчатыми.
Заявляемый металло-воздушный электрохимический элемент направлен на обеспечение стабильных удельных характеристик при увеличенном времени работы.
Указанный результат достигается тем, что металло-воздушный электрохимический элемент содержит корпус, заполненный электролитом, установленный внутри него с зазором между торцевыми стенками металлический анод, установленные в боковых стенках газодиффузионные катоды и выполненные в корпусе параллельно торцевым стенкам перегородки, замыкающие межэлектродное пространство по высоте электродов.
Указанный результат достигается также тем, что площадь межэлектродного промежутка в горизонтальной плоскости относится к площади зазора между торцевой стенкой корпуса и перегородкой в этой же плоскости как 1:1 - 1:5, а к площади поперечного сечения объема под электродами в вертикальной плоскости 1:1 - 1:50 и к площади поперечного сечения электролита над электродами в вертикальной плоскости как 1:1 - 1:5.
Отличительными признаками заявляемого металло-воздушного элемента является:
- выполнение в корпусе перегородок, параллельных торцевым стенкам корпуса и замыкающих межэлектродное пространство по высоте электродов;
- соотношение размеров, регламентирующих расположение электродов в корпусе и уровень электролита над ними.
Выполнение в корпусе перегородок, параллельных торцевым стенкам корпуса с замыканием межэлектродного пространства по высоте электродов позволяет усилить конвекцию в объеме корпуса, так как формируются восходящий (в межэлектродном промежутке) и нисходящий (в зазоре между торцевыми стенками корпуса и перегородками) потоки, изолированные друг от друга перегородками. Кроме того, в процессе эксплуатации электрохимического элемента на металлическом аноде происходит выделение водорода. Учитывая, что межэлектродный объем изолирован перегородками от остального объема электролита, газ поднимается только по межэлектродному пространству, в результате чего образуется своеобразный газлифт, который обеспечивает, совместно с конвекцией, эффективный вынос продуктов реакции из межэлектродного пространства, что в свою очередь увеличивает длительность работы электрохимического элемента со стабильными удельными характеристиками.
Наиболее устойчивая конвекция, обеспечивающая вынос продуктов реакции из межэлектродного промежутка и, соответственно, обеспечивающая длительность и устойчивость работы элемента практически независимо от условий его эксплуатации (изменяющихся температурных градиентов) достигается при оговоренном соотношении размеров.
При этом, если соотношение площади межэлектродного промежутка в горизонтальной плоскости S1 к площади зазора между торцевыми стенками корпуса и перегородками в горизонтальной плоскости S3 будет больше 1, то будет происходить ослабление потоков и возможно заполнение зазора продуктами реакции, что приведет к изменению удельных характеристик. Уменьшение указанного соотношения до значений меньше 1:5 нецелесообразно, так как снижается удельная энергия, характеризующая эффективность электрохимического элемента.
Если соотношение площади межэлектродного промежутка в горизонтальной плоскости S1 к площади поперечного сечения электролита над электродами в вертикальной плоскости S2 будет больше 1, то конвекционные потоки будут ослаблены из-за недостатка электролита над электродами, а это приведет к тому, что продукты реакции не будут выноситься из межэлектродного промежутка, что снизит работоспособность элемента. Уменьшение же этого соотношения до значений меньше 1:5 снизит удельную энергию.
Если соотношение площади межэлектродного промежутка S1 в горизонтальной плоскости к площади S4 поперечного сечения объема под электродами в вертикальной плоскости будет больше 1, то, с одной стороны, это отразится на конвекции, а с другой стороны, поскольку данная часть корпуса является отстойником для продуктов реакции, возможен их захват восходящим потоком и возврат в межэлектродный промежуток, что ухудшит условия работы элемента. Если уменьшить это соотношение до значений 1:20 - 30, то можно обеспечить длительную устойчивую работу элемента без замены электролита со стабильными удельными характеристиками. Однако изменение этого соотношения до значений меньше, чем 1:50, нецелесообразно из-за значительного и неоправданного увеличения массогабаритных характеристик электрохимического элемента.
Сущность заявляемого электрохимического элемента поясняется графическими изображениями. На фиг.1 представлен общий вид элемента в аксонометрии с частичными разрезами; на фиг. 2 показан поперечный разрез элемента; на фиг.3 представлен вид сверху на элемент со снятой крышкой.
Металло-воздущный электрохимический элемент содержит металлический анод 1, выполненный, например, из алюминия или магния или их сплавов и размещенный в корпусе 2. Корпус 2 выполняется из любого материала, инертного по отношению к используемому электролиту и продуктам реакции, например, из различного типа пластмасс, смол и т.д. В боковых стенках корпуса установлены известные газодиффузионные катоды 3, обеспечивающие доступ газа к трехфазной границе, но препятствующие выходу электролита из корпуса. В корпусе выполнены дополнительные перегородки 4, установленные параллельно торцевым стенкам корпуса и замыкающие межэлектродное пространство по высоте электродов. Корпус заполняется соответствующим известным электролитом, например 10-15% раствором поваренной соли, до уровня 5, показанного на чертежах пунктирной линией. Кроме того, элемент снабжен соответствующей крышкой с токосъемниками, выводами, заливочным отверстием и пробкой с клапаном для сброса избыточного давления газа и которые на чертежах не показаны, как не относящиеся к сущности изобретения. На чертежах штриховкой обозначены соответствующие площади, соотношение размеров которых влияет на достижение заявленного результата:
S1 - площадь межэлектродного промежутка в горизонтальной плоскости;
S2 - площадь поперечного сечения электролита над электродами в вертикальной плоскости;
S3 - площадь зазора, образованного торцевыми стенками корпуса и перегородками в горизонтальной плоскости;
S4 - площадь поперечного сечения объема под электродами в вертикальной плоскости.
Электрохимический элемент работает следующим образом.
При подключении выводов элемента к потребителю начинает происходить электрохимическая реакция, сопровождающаяся растворением анода 1, выделением водорода, выделением тепла и поглощением кислорода, поступающего из внешней среды к газодиффузионным катодам 3.
В результате выделения тепла и газа в межэлектродном промежутке нагретый электролит по каналам, образованным анодом 1, катодами 3 и перегородками 4, поднимается вверх и переливается через верхние края перегородок 4 в зазор, образованный перегородками 4 и торцевыми стенками корпуса 1. При этом переливающийся электролит транспортирует продукты реакции, например гидроокись металла, получающуюся при растворении анода. Попав в зазор, представляющий собой канал, изолированный от тепла, генерируемого в межэлектродном промежутке, электролит остывает и перемещается вниз, в область S4, откуда захватывается восходящим потоком в межэлектродный промежуток, а содержащиеся в электролите продукты реакции под действием сил гравитации оседают на дно корпуса.
Таким образом, в результате введения перегородок, замыкающих межэлектродное пространство по высоте электродов, в корпусе формируются каналы для направленного движения конвекционных потоков, обеспечивающих очистку межэлектродного пространства от продуктов реакции и, соответственно, стабильность характеристик элементов. Выполнение элемента с рекомендованным соотношением размеров позволяет оптимизировать его удельные характеристики с обеспечением конвекции с необходимой интенсивностью при любых режимах эксплуатации элемента.

Claims (2)

1. Металло-воздушный электрохимический элемент, содержащий корпус, заполненный электролитом, установленный внутри него с зазором между торцевыми стенками металлический анод и установленные в боковых стенках газодиффузионные катоды, отличающийся тем, что в корпусе выполнены перегородки, параллельные его торцевым стенкам и замыкающие межэлектродное пространство по высоте электродов.
2. Элемент по п.1, отличающийся тем, что площадь межэлектродного промежутка в горизонтальной плоскости относится к площади зазора между торцевой стенкой корпуса и перегородкой в этой же плоскости как 1 : 1 - 1 : 5, а к площади поперечного сечения объема под электродами в вертикальной плоскости как 1 : 1 - 1 : 50 и к площади поперечного сечения электролита над электродами в вертикальной плоскости как 1 : 1 - 1 : 5.
RU97110360A 1997-06-17 1997-06-17 Металло-воздушный электрохимический элемент RU2118014C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97110360A RU2118014C1 (ru) 1997-06-17 1997-06-17 Металло-воздушный электрохимический элемент

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97110360A RU2118014C1 (ru) 1997-06-17 1997-06-17 Металло-воздушный электрохимический элемент

Publications (2)

Publication Number Publication Date
RU2118014C1 true RU2118014C1 (ru) 1998-08-20
RU97110360A RU97110360A (ru) 1998-12-10

Family

ID=20194345

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97110360A RU2118014C1 (ru) 1997-06-17 1997-06-17 Металло-воздушный электрохимический элемент

Country Status (1)

Country Link
RU (1) RU2118014C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561566C1 (ru) * 2014-05-20 2015-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" Способ ввода расходуемого электрода в воздушно-алюминиевый источник тока
RU2641305C2 (ru) * 2013-11-22 2018-01-17 Электрисите Де Франс Батарея с извлекаемым воздушным электродом
RU2710024C1 (ru) * 2018-10-29 2019-12-24 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Металловодяная батарея

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641305C2 (ru) * 2013-11-22 2018-01-17 Электрисите Де Франс Батарея с извлекаемым воздушным электродом
RU2561566C1 (ru) * 2014-05-20 2015-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" Способ ввода расходуемого электрода в воздушно-алюминиевый источник тока
RU2710024C1 (ru) * 2018-10-29 2019-12-24 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Металловодяная батарея

Similar Documents

Publication Publication Date Title
US3647672A (en) Electrode with aerolifting and gas-separation effects for electrolysis of solutions of electrolytes
NO163702B (no) Fremgangsmaate ved fremstilling av et metall, fortrinnsvismagnesium, ved elektrolyse, samt elektrolysecelle for anvendelse ved fremgangsmaaten.
US4308322A (en) Battery cell and electrolyte circulation pump
RU2118014C1 (ru) Металло-воздушный электрохимический элемент
US2614138A (en) Sealable storage battery construction
CA1236517A (en) Electrochemical storage cell
CN209843832U (zh) 一种液态金属电池
US3102058A (en) Inert voltaic batteries
US4011367A (en) Sodium-sulphur electric cells
RU2002115867A (ru) Способ и устройство для функционирования электролизера
JP6600713B2 (ja) ガス発生装置
CN104393370B (zh) 铝合金空气电池装置
JPH0443987B2 (ru)
CN104362411B (zh) 铝合金空气电池系统
US3477939A (en) Bipolar electrolytic cell
CN109065831B (zh) 铅酸蓄电池电解液混匀装置
US3036142A (en) Primary battery
JP2005166320A (ja) 鉛蓄電池
RU2183371C1 (ru) Металловоздушная батарея
JP3049151B2 (ja) ナトリウム−硫黄電池
JPS6039763A (ja) 電解液循環装置を備える鉛蓄電池
US6436579B1 (en) Electrical energy generation
JP6647803B2 (ja) 空気電池システム、及び注液用部品
JPH08102310A (ja) 鉛蓄電池排気栓
RU96119464A (ru) Воздушно-алюминиевый элемент, батарея на основе воздушно-алюминиевого элемента и способ эксплуатации батареи