RU2112287C1 - Твэл для водо-водяных энергетических реакторов - Google Patents
Твэл для водо-водяных энергетических реакторов Download PDFInfo
- Publication number
- RU2112287C1 RU2112287C1 RU96115777A RU96115777A RU2112287C1 RU 2112287 C1 RU2112287 C1 RU 2112287C1 RU 96115777 A RU96115777 A RU 96115777A RU 96115777 A RU96115777 A RU 96115777A RU 2112287 C1 RU2112287 C1 RU 2112287C1
- Authority
- RU
- Russia
- Prior art keywords
- fuel
- zirconium
- alloy
- particles
- fissile
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Сущность изобретения: твэл имеет пористость 15 - 45% об. для компенсации распухания топливных частиц. В оболочке твэла размещен топливный сердечник, состоящий из делящейся фазы - крупки или гранул известных соединений U - Zn - Nb, U - Mo, U3Si, - металлургически сцепленных между собой и оболочкой пропиточным сплавом на основе циркония. При этом топливные частицы соединены между собой и оболочкой "менисковыми" мостиками из пропиточного сплава на основе циркония, которые образуются при расплавлении пропиточного сплава на основе циркония. 4 з.п.ф-лы, 5 ил.
Description
Изобретение относится к области атомной энергетики и может быть использовано для изготовления твэлов водо-водяных реакторов.
Одним из основных требований к твэлам является их надежность в аварийных ситуациях.
Известна конструкция твэла контейнерного типа для реакторов ВВЭР-1000: в оболочке из циркониевого сплава размещены таблетки из диоксида урана [1]. Эти твэлы показывают удовлетворительную работоспособность при стационарном режиме работы. Однако из-за низкой теплопроводности топлива (до 4 Вт/м•град) развивается высокая температура в центре твэла (до 2000oC) и снижается надежность при аварийных ситуациях: энергичный разогрев всего твэла от запасенной в нем энергии.
При разгерметизации оболочки твэла контейнерного типа сразу происходит контакт теплоносителя с большой поверхностью топлива. Поэтому подобная конструкция твэла (контейнерного типа) также не надежна из-за отсутствия металлургического сцепления топливного сердечника с оболочкой.
Высокой радиационной стойкостью обладают твэлы дисперсионного типа.
Известная конструкция твэла с дисперсионным топливом UO2-Zr в оболочке из циркониевого сплава Э110 [2]. Твэл представляет собой полученный горячим прессованием топливный сердечник из диоксида урана и циркония в оболочке из сплава Э110.
Однако ураноемкость такого твэла (2,4-4,8 г/см3, объемная доля диоксида урана в сердечнике составляет 30-60%) уступает ураноемкости твэла с таблетками из диоксида урана (7,7 г/см3).
Прокаткой или обжатием достигается плотное прилегание сердечника к оболочке, однако при этом отсутствует металлургическое сцепление.
В условиях аварийной ситуации при 900oC начнется интенсивное взаимодействие компонентов сердечника с увеличением объема.
Наиболее близким техническим решением к заявляемому является конструкция твэла кольцевого типа для реактора АМ (Первой атомной электростанции): оболочка из нержавеющей стали общей длиной 1700 мм заполнена горючим - крупкой уран-молибденового сплава (9% молибдена) - и пропитана магнием [3].
Благодаря особенностям конструкции (ядерное топливо занимает до 60% от активного объема) и применению емкого по делящемуся изотопу топлива (сплав ОМ-9), обеспечивается ураноемкость 8-9 г/см3 и равномерное распределение топлива по высоте твэла. Пропитка засыпанного топлива магнием методом вакуумного всасывания расплава позволяет получить качественное металлургическое сцепление компонентов твэла и обеспечить работоспособность твэла в нестационарных режимах. Благодаря высокой теплопроводности топливной композиции и металлургическому сцеплению компонентов твэла температура в центре сердечника не превышает 450oC.
Однако в таких твэлах отсутствуют свободные объемы для компенсации распухания в штатных и аварийных режимах.
Нержавеющая оболочка твэла и уран-молибденовое топливо имеют значительный паразитный захват тепловых нейтронов.
Основной технической задачей изобретения является повышение надежности твэла в аварийных ситуациях, при сохранении теплопроводности твэла не ниже 15 Вт/м•град и ураноемкости не ниже 7,7 г/см3.
Поставленная цель достигается тем, что твэл (фиг. 1) включает в себя герметичную оболочку 1 с концевыми заглушками 2 и размещенный в ней топливный сердечник 3, состоящий из частиц делящейся фазы 4 (фиг. 2) и пропиточного сплава на основе циркония 5. При этом частицы делящейся фазы соединены между собой и с оболочкой "менисковыми" мостиками пропиточного сплава на основе циркония 5, а поры 6 составляют от 15 до 45% от внутреннего объема оболочки твэла.
Сопоставительный анализ заявляемого технического решения с известными позволяет установить соответствие заявляемого изобретения требованиям критерия "новизна".
Частицы делящейся фазы в виде крупки или гранул покрыты слоем сплава на основе циркония, который частично или полностью покрывает их поверхность.
С целью снижения избыточной реактивности твэла в состав пропиточного сплава на основе циркония может входить выгорающий поглотитель, например, гадолиний или гафний.
С целью повышения количества делящейся фазы в твэле в состав пропиточного сплава на основе циркония может входить уран или плутоний.
Металлургический контакт частиц делящейся фазы между собой и с оболочкой достигнут за счет капиллярных свойств сплавов на основе циркония. Эта сплавы представляют собой легкоплавкие эвтектики с температурой плавления ~ 800 - 900oC, которые смачивают конструкционные и топливные материалы, а также обладают высоким поверхностным натяжением. Сплавы, проявляя капиллярные свойства при расплавлении, обволакивают топливные частицы, соединяя их.
Пропиточный сплав на основе циркония в виде крупки или гранул совместно с частицами делящейся фазы виброзасыпаются в оболочку (фиг. 3). При последующем вакуумном нагреве выше температуры плавления пропиточного сплава поверхности частиц топлива и оболочки смачиваются сплавом, образуя между ними металлургическое сцепление. При этом происходит перемещение расплава в стыки (места касаний) топливных частиц с образованием "менисковых" мостиков между ними (в местах первоначального расположения крупки или гранул пропиточного сплава остаются поры) (фиг. 4). Вследствие этого величина теплопроводности сердечника равна 16-25 Вт/м•град. Величину пористости в интервале от 15 до 45% от внутреннего объема твэла модно регулировать меняя плотность засыпки частиц топлива и пропиточного сплава подбором фракций частиц.
В качестве топливных частиц используются сплавы на основе урана (U-Mo, U-Nb-Zr, U-Si, UO2 и т.п.).
С целью увеличения ураноемкости сердечника и более равномерного распределения делящейся фазы в состав сплава на основе циркония можно вводить уран или плутоний.
С целью снижения избыточной реактивности твэла в состав сплава на основе циркония можно вводить выгорающий поглотитель, например, гадолиний или гафний.
Имеющейся в сердечнике исходной пористости достаточно для компенсации от 25 до 105% увеличения объема топливных частиц при аварийных ситуациях.
На фиг. 1 представлен схематично предлагаемый твэл, где 1 - оболочка; 2 - концевые заглушки; 3 - топливный сердечник;
На фиг. 2 представлено сечение предлагаемого твэла, где 1 - оболочка; 4 - частицы делящейся фазы; 5 - пропиточный сплав на основе циркония; 6 - опоры.
На фиг. 2 представлено сечение предлагаемого твэла, где 1 - оболочка; 4 - частицы делящейся фазы; 5 - пропиточный сплав на основе циркония; 6 - опоры.
На фиг. 3 представлено сечение оболочки твэла с засыпанной смесью до операции расплавления сплава на основе циркония, где 1 - оболочка; 4 - частицы делящейся фазы; 5 - пропиточный сплав на основе циркония; 6 - поры.
На фиг. 4 представлены фрактограмма поперечного излома твэла, где 4 - частица делящейся фазы (U-Zr-Nb со слоем сплава на основе циркония, растекшегося по поверхности частицы делящейся фазы при температурном нагреве); 5 - "менисковый" мостик сплава на основе циркония; 6 - опоры.
На фиг. 5 представлено сечение предлагаемого твэла, где 1 - оболочка сложной формы; 4 - частицы делящейся фазы; 5 - пропиточный сплав на основе циркония, легированный ураном, плутонием, гадолинием и гафнием; 6 - поры; 7 - металлизированный слой на частицах делящейся фазы.
Примеры конкретной реализации изобретения
Пример 1. Твэл состоит (фиг. 1) из оболочки 1, топливного сердечника 3 и концевых заглушек 2. В оболочке (фиг. 1 и 2) из циркониевого сплава Э110 диаметром 9,15 мм длиной 910 мм находятся гранулы делящейся фазы в виде сплава U-Zr-Nb, пропиточного сплава на основе циркония, растекшегося по поверхности гранул делящейся фазы при температурном нагреве и пор. Объемные доли гранул делящейся фазы, пропиточного сплава на основе циркония и межгранульной пористости составляют 58,8%, 15,7% и 25,5% от внутреннего объема оболочки твэла соответственно.
Пример 1. Твэл состоит (фиг. 1) из оболочки 1, топливного сердечника 3 и концевых заглушек 2. В оболочке (фиг. 1 и 2) из циркониевого сплава Э110 диаметром 9,15 мм длиной 910 мм находятся гранулы делящейся фазы в виде сплава U-Zr-Nb, пропиточного сплава на основе циркония, растекшегося по поверхности гранул делящейся фазы при температурном нагреве и пор. Объемные доли гранул делящейся фазы, пропиточного сплава на основе циркония и межгранульной пористости составляют 58,8%, 15,7% и 25,5% от внутреннего объема оболочки твэла соответственно.
Ураноемкость втэла - 8,4 г/см3. Теплопроводность сердечника - 21,4 Вт/м•град. Для подтверждения надежности твэла в аварийных ситуациях его подвергали быстрому нагреву в печи (скорость разогрева 4oC/c) до 1050oC и выдерживали в течение 1 ч. Толщина слоя взаимодействия на оболочке составила 45 мкм, изменения формы и размеров твэла не обнаружено.
Другие возможные реализации изобретения с отличительными особенностями от примера 1 приведены ниже.
Возможна реализация изобретения с известными оболочками из циркониевых сплавов цилиндрической (фиг. 2) и сложной (фиг. 5) формы с описанными диаметрами от 4,5 до 13,6 мм, длиной до 2500 мм.
Возможна реализация изобретения с известными делящимися фазами U-Zr-Nb, U-Mo, U3Si, UO2 в виде крупки или гранул фракционных составов от 0,2 до 3,0 мм с металлизированным слоем ниобия или молибдена, или никеля, или циркония толщиной 1-5 мкм или без этого слоя.
Возможна реализация изобретения с пропиточными сплавами на основе циркония, в которые в качестве легирующих компонентов входят уран или плутоний и/или гадолиний, или гафний. Возможна реализация изобретения с объемной долей пор в сердечнике от 15 до 45%.
Пример 2 (фиг. 5). Твэл состоит из оболочки 1 сложной формы из циркониевого сплава Э-635 с описанным диаметром 6,9 мм, длиной 1030 мм, в которой находятся делящаяся фаза 4 в виде гранул U3Si с металлизированным слоем 7 из ниобия толщиной 1-5 мкм, пропиточный сплав 5 на основе циркония, легированный ураном, плутонием, гадолинием и гафнием, и пор 6. Объемные доли гранул делящейся фазы, пропиточного сплава и пор составляет 56,7%, 16,3% и 27% соответственно. Металлизированный слой на поверхности частиц U3Si получен, например, методом ионно-плазменного напыления ниобия.
Ураноемкость твэла составляет 8,9 г/см3. Теплопроводность твэла составляет 25,5 Вт/м•град. После имитации условий аварийной ситуации (температура 1100oC, время выдержки 1 ч, скорость разогрева 4oC/c) толщина слоя взаимодействия на оболочке составила 55 мкм, изменений формы и размеров твэла не обнаружено.
Результаты показали, что обеспечивается воспроизведение заявляемой конструкции твэла, надежной в аварийных ситуациях до 1000oC с теплопроводностью сердечника не ниже 15 Вт/м•град и ураноемкостью не ниже 7,7 г/см3. По сравнению с прототипом заявляемая конструкция твэла имеет компенсационную межгранульную пористость от 15 до 45 об.% от внутреннего объема оболочки твэла (отсутствующую у твэла-прототипа) для компенсации распухания топливных частиц.
Так как обеспечить засыпку частиц компонентов топливной композиции в оболочку с объемной долей более 85% технологически затруднительно (для этого требуется подбор трех-четырех групп частиц с определенными фракционными составами и объемными соотношениями), то в предлагаемой конструкции твэла не реализуется пористость менее 15%.
Реализовать пористость в топливном сердечнике более 45% нецелесообразно, так как при этом теряется ураноемкость, и технологически сложно.
Claims (5)
1. Твэл для водо-водяного энергетического реактора, включающий герметичную оболочку и размещенный в ней топливный сердечник, состоящий из частиц делящейся фазы и пропиточного сплава, отличающийся тем, что в качестве пропиточного сплава используют сплав на основе циркония, при этом частицы делящейся фазы соединены между собой и с оболочкой менисковыми мостиками пропиточного сплава на основе циркония, а поры составляют 15 - 45 об.% от внутреннего объема оболочки твэла.
2. Твэл по п.1, отличающийся тем, что вся или часть поверхности частиц делящейся фазы покрыта слоем сплава на основе циркония.
3. Твэл по пп. 1 и 2, отличающийся тем, что в состав сплава на основе циркония входит уран или плутоний.
4. Твэл по пп. 1 - 3, отличающийся тем, что в состав сплава на основе циркония входит выгорающий поглотитель, гадолиний или гафний.
5. Твэл по пп.1 - 4, отличающийся тем, что поверхности частиц делящихся фаз, не смачивающихся сплавом на основе циркония, металлизированы слоем ниобия, или молибдена, или никеля, или циркония толщиной 1 - 5 мкм.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU96115777A RU2112287C1 (ru) | 1996-07-30 | 1996-07-30 | Твэл для водо-водяных энергетических реакторов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU96115777A RU2112287C1 (ru) | 1996-07-30 | 1996-07-30 | Твэл для водо-водяных энергетических реакторов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2112287C1 true RU2112287C1 (ru) | 1998-05-27 |
RU96115777A RU96115777A (ru) | 1998-10-10 |
Family
ID=20184058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU96115777A RU2112287C1 (ru) | 1996-07-30 | 1996-07-30 | Твэл для водо-водяных энергетических реакторов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2112287C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU180840U1 (ru) * | 2017-12-12 | 2018-06-28 | Акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" | Твэл дисперсионного типа |
-
1996
- 1996-07-30 RU RU96115777A patent/RU2112287C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
1. Займовский А.С. и др. Циркониевые сплавы в атомной энергетике. - М.; Энергоиздат, 1981, с.4 - 10. 2. Стецкий Ю.А. и др. Обоснование варианте твэла на основе дисперсионного топлива (VO 2 - Zr) для аппарата ВВЭР-440. Отчет ВНИИНМ. Инв. N 7731, 1992. 3. Ибрагимов Ш.Ш. и др. Исследования отработавших тепловыделяющих элементов Первой атомной электростанции. Атомная энергия. Т.14, вып. 5, май 1963, с.465. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU180840U1 (ru) * | 2017-12-12 | 2018-06-28 | Акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" | Твэл дисперсионного типа |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2723561C2 (ru) | Способ производства полностью керамического микроинкапсулированного ядерного топлива | |
US4636352A (en) | Nuclear fuel rod with burnable plate and pellet-clad interaction fix | |
US3855061A (en) | Nuclear reactor fuel plate | |
KR20200089680A (ko) | 열중성자로용 고온 핵연료 시스템 | |
KR20180121788A (ko) | SiC 및 흑연 매트릭스 TRISO-포함 페블 연료의 신속한 처리를 위한 공정 | |
RU2170956C1 (ru) | Твэл ядерного реактора | |
RU2112287C1 (ru) | Твэл для водо-водяных энергетических реакторов | |
RU89904U1 (ru) | Твэл ядерного реактора | |
US11062810B2 (en) | Manufacture of large grain powders with granular coatings | |
Alkan et al. | Silicon carbide encapsulated fuel pellets for light water reactors | |
Lee et al. | Inert matrix fuel—A new challenge for material technology in the nuclear fuel cycle | |
RU2125305C1 (ru) | Твэл ядерного реактора | |
JPS62168092A (ja) | 可燃性熱中性子吸収要素 | |
RU180840U1 (ru) | Твэл дисперсионного типа | |
JP2823055B2 (ja) | 可燃性吸収材被覆核燃料 | |
JP2556876B2 (ja) | 燃料要素及び燃料集合体 | |
Savchenko et al. | Zirconium Matrix Alloys for Uranium-Intensive Dispersion Fuel Compositions. | |
JPS5840158B2 (ja) | 原子炉で使用する可燃性毒物質棒 | |
RU2154312C1 (ru) | Твэл ядерного реактора | |
CA1100302A (en) | High performance nuclear fuel element | |
RU97107408A (ru) | Твэл ядерного реактора | |
RU2119199C1 (ru) | Поглощающий сердечник органа регулирования атомного реактора | |
KR20000068512A (ko) | 연소도가 높은 원자로 연료체 및 제조 방법 | |
RU2061264C1 (ru) | Твэл для ядерного реактора | |
RU2347289C1 (ru) | Твэл ядерного реактора |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20090731 |