RU2110478C1 - Способ извлечения ванадия - Google Patents

Способ извлечения ванадия Download PDF

Info

Publication number
RU2110478C1
RU2110478C1 RU97108535A RU97108535A RU2110478C1 RU 2110478 C1 RU2110478 C1 RU 2110478C1 RU 97108535 A RU97108535 A RU 97108535A RU 97108535 A RU97108535 A RU 97108535A RU 2110478 C1 RU2110478 C1 RU 2110478C1
Authority
RU
Russia
Prior art keywords
vanadium
solution
oxidation
sulfuric acid
carried out
Prior art date
Application number
RU97108535A
Other languages
English (en)
Other versions
RU97108535A (ru
Inventor
Н.Д. Гуляев
Е.И. Илюшин-Степанцев
В.С. Романовский
Е.А. Зуев
Original Assignee
Закрытое акционерное общество "Техноген"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Техноген" filed Critical Закрытое акционерное общество "Техноген"
Priority to RU97108535A priority Critical patent/RU2110478C1/ru
Application granted granted Critical
Publication of RU2110478C1 publication Critical patent/RU2110478C1/ru
Publication of RU97108535A publication Critical patent/RU97108535A/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к неорганической химии и позволяет извлекать ценный компонент - ванадий из отработанных катализаторов сернокислотного производства. Для этого кислый раствор, полученный после выщелачивания отработанных катализаторов, вначале нейтрализуют щелочным реагентом до рН выше 6,5, а затем окисляют пропусканием воздуха через раствор. Ванадий в виде поливанадатов калия и натрия выделяют добавлением кислоты до рН 4,8-6,3. Проведение способа в коррозионно-неактивных средах позволяет использовать оборудование, выполненное из обычных марок сталей. Окисление раствора воздухом можно проводить во флотомашине. 1 з.п. ф-лы, 2 табл.

Description

Изобретение относится к неорганической химии, в частности, к получению соединений ванадия и может быть использовано для извлечения ванадия из отработанных ванадиевых катализаторов (ОВК) сернокислотного производства.
Катализаторы сернокислотного производства состоят из основы - оксида кремния и нанесенного на ее поверхность каталитического состава, включающего оксиды ванадия и калия. Большое количество ОВК, накапливающихся в процессе производства серной кислоты, дает возможность извлекать из них промышленным способом ценные компоненты: ванадий и калий.
Растворы. полученные после выщелачивания ванадийсодержащего сырья, одновременно содержат различные соединения ванадия (2+, 3+, 4+, 5+). Для извлечения ванадия из растворов в виде товарного продукта - пентаоксида ванадия или солей ванадия - необходимо обеспечить окисление ванадия до V 5+.
Известен способ извлечения ванадия из кислого раствора, полученного после выщелачивания ОВК, включающий окисление ванадия кислородсодержащим газом и выделение ванадия из раствора (пат. Великобритации N 2185007, C 01 G 31/02).
В этом способе для окисления ванадия использован дешевый окислитель - кислородсодержащий газ (например, воздух). Однако процесс окисления ванадия в данном способе является многостадийным, и если на первой стадии в качестве окислителя может быть использован воздух, то на второй стадии предпочтителен кислород. Процесс окисления проводят в кислой среде, где окисление ванадия затруднено, и для перевода его в форму V 5+ необходимо повышенное давление кислорода (использование автоклава). Для осаждения концентрата ванадия необходим нагрев до 70-110oC. При осаждении концентрата ванадия происходит и соосаждение примесей (Mn, Fe и др.), загрязняющих получаемый продукт. При проведении окисления в кислой среде необходимо иметь кислотостойкое оборудование из нержавеющих сталей, что вместе с использованием автоклава, кислорода и нагрева раствора для осаждения концентрата ванадия делает данный способ весьма дорогостоящим, сложным, а полученный продукт - загрязненным примесями.
Известны способы извлечения ванадия из ОВК сернокислотного производства обработкой их щелочными или кислыми растворами. При обработке ОВК щелочными растворами (пат. НРБ C 14904, B 22 И 34/22) ванадий извлекают в виде ванадатов калия или натрия, которые можно использовать для изготовления новых катализаторов. При этом в щелочной раствор извлекается только V 5+, что уменьшает полноту извлечения ванадия в раствор. При взаимодействии щелочного раствора с катализатором, кроме соединений ванадия, частично растворяется и кремнеземистый носитель, что чрезвычайно затрудняет дальнейшую переработку раствора из-за образования труднофильтруемого гелеобразного осадка гидроокиси кремния. Кроме того, значительное количество щелочи расходуется непроизводительно при нейтрализации сульфатных соединений, содержащихся в ОВК. Все это делает данный способ достаточно сложным, трудоемким и дорогим.
Поэтому для извлечения ванадия из ОВК чаще используют кислые растворы.
Наиболее близким и выбранным за прототип является способ извлечения ванадия, включающий выщелачивание ОВК сернокислотного производства с получением кислого раствора, окисление ванадия и его выделение из раствора (а.с. ЧССР N 178626, C 01 G 31/00)/
В этом способе сернокислый раствор, полученный перколяцией отработанного катализатора водой в присутствии двуокиси серы, окисляют, например, оксидом марганца или хлоратом натрия в кислой среде, при этом ванадий переходит в V 5+. Выделение ванадия из раствора осуществляют экстракцией с использованием высокомолекулярного амина и реэкстракцией щелочным раствором с последующим осаждением пентаоксида ванадия серной кислотой.
В данном способе использованы дорогостоящие окислители и реагенты для экстракции. Процесс экстракции требует дорогостоящего оборудования, а работа с органическими продуктами - специальных мер пожаробезопасности и промсанитарии, что усложняет осуществление способа. К тому же как окисление, так и экстракцию проводят в кислой среде, что связано с использованием кислотостойкого оборудования из нержавеющих сталей. Все это обусловливает довольно высокую стоимость и сложность как самого способа, так и применяемого в нем оборудования.
При выщелачивании катализатора в раствор наряду с ванадием переходят и примеси: Fe, Mn, Al и др., которые накапливаются в оборотном кислом растворе, что отрицательно сказывается на чистоте ванадиевого продукта. При этом ценный компонент - калий, входящий в состав катализатора, не извлекается.
Задачей изобретения является создание простого и экономичного способа извлечения ванадия из кислого раствора, полученного после выщелачивания ОВК сернокислотного производства, за счет использования дешевых реагентов и недорогого оборудования.
Для решения этой задачи в способе извлечения ванадия, включающем выщелачивание ОВК сернокислотного производства с получением кислого раствора, окисление ванадия и его выделение из раствора, предлагается перед окислением раствор нейтрализовать щелочным реагентом до pH выше 6,5, окисление осуществлять пропусканием воздуха через раствор, а ванадий выделять добавлением кислоты до pH 4,8-6,3.
Окисление раствора воздухом можно проводить во флотомашине.
Упрощение и удешевление способа достигается за счет проведения окисления раствора, полученного после выщелачивания ОВК, и осаждения ванадия в коррозионно-неактивных средах (pH выше 4,8), позволяющих применять оборудование, выполненное из обычных марок сталей, с использованием для окисления ванадия доступного и дешевого реагента - воздуха, а для выделения ванадия - также дешевого реагента - кислоты. Кроме того, к этому же приводит использование стандартного недорогого оборудования - флотомашины для проведения операции окисления раствора воздухом. Получаемый в результате проведения способа продукт содержит, кроме ванадия, и калий и может быть использован для производства новых катализаторов сернокислотного производства. Способ не требует проведения специальных операций по отделению примесей, так как они не входят в состав выделяемых соединений ванадия.
При нейтрализации кислого раствора, полученного после выщелачивания ОВК, до рН выше 6,5 основная масса ванадия при окислении воздухом переходит в водорастворимую форму V 5+, образуя при этом различные поливанадаты. При pH ниже 6,5, как установлено, резко уменьшается эффективность окисления ванадия до 5+ (окисляется менее 70% содержащегося в растворе ванадия). Переработка такого раствора экономически нецелесообразна. С увеличением pH выше 6,5 резко возрастают эффективность и скорость окисления ванадия, и тем больше, чем выше величина pH, которая ограничивается экономическими показателями.
Применение флотомашины обеспечивает высокие скорость и эффективность окисления раствора воздухом за счет объемной аэрации и интенсивного перемешивания при невысокой стоимости применяемого оборудования.
Окисление раствора, полученного после выщелачивания ОВК, воздухом в нейтральной или щелочной средах сопровождается образованием нерастворимых примесей (Mn, Fe, Al и др.), выпадающих в осадок в виде тонкодисперсного шлама. При выделении ванадия известными приемами эти примеси входят в состав осадка получаемого труднофильтруемого пентаоксида ванадия, отделение его от раствора и очистка от примесей требуют дополнительных приемов и затрат.
Предлагается выделять ванадий в виде поливанадатов калия и натрия добавлением к окисленному раствору кислоты (например, серной, соляной, уксусной и т.п.) до pH 4,8-6,3.
При pH выше 6,3 ванадий находится в растворе в основном в виде ванадат-аниона, не дающего осадка. Как установлено, в окисленном воздухом растворе при добавлении кислоты до pH 4,8-6,3 в присутствии ионов калия и натрия, находящихся в растворе, образуются труднорастворимые соли поливанадатов типа K3V9O25 и K3NaHV9O25, которые выпадают в осадок в виде кристаллов оранжевого цвета и легко отделяются декантацией от тонкодисперсного шлама примесей (Mn, Fe, Al и т.п.). Выделенные из раствора поливанадаты содержат одновременно два ценных продукта - ванадий и калий, практически не содержат примесей (Mn, Fe, Al и т.п.). Они могут быть использованы в производстве ванадиевых катализаторов сернокислотного производства и для получения пятиокиси ванадия.
При изменении pH ниже 4,8 ионы K и Na постепенно вытесняются из поливанадатов кислотой. При этом выделяется осадок красного цвета, представляющий собой полимеризованные формы пентаоксида ванадия, который в коллоидном состоянии находится в растворе, обволакивая кристаллы поливанадатов и смешиваясь со шламом примесей. Выделение чистых соединений ванадия из этой смеси невозможно.
Таким образом, установлены операции, их последовательность и режимы, позволяющие сделать способ извлечения ванадия простым и недорогим за счет использования дешевых реагентов и стандартного недорогого некислотостойкого оборудования.
Предложенный способ извлечения ванадия отработан в лабораторных условиях и прошел промышленные испытания.
Пример 1. Сернокислый раствор, полученный после выщелачивания отработанного ванадиевого катализатора (ОВК) сернокислотного производства, имел химический состав (г/дм3): V5+ - 7,5; V4+ - 8,8; Fe (общ) - 3,1; Mn - 0,6; K+ - 8,7; pH - 1,95.
Этот раствор нейтрализовали кристаллической содой Na2CO3 до различных значений pH (табл. 1). Нейтрализованный раствор помещали в лабораторную флотомашину с числом оборотом импеллера 900 об/мин и проводили его окисление воздухом с соотношением газ:жидкость (Г:Ж) = 3:1 в минуту до установления постоянной концентрации V5+ в растворе, контролируемой ежечасно методом отбора проб. Установлено, что в данном случае уменьшение соотношения Г:Ж ниже, чем 3: 1, увеличивает время, необходимое для полного окисления ванадия (9 ч при Г:Ж=1:0,5), а с увеличением Г:Ж выше, чем 3:1, время окисления остается постоянным (3 ч). Температура раствора составляла 28oC.
Результаты, приведенные в табл. 1, показали, что при pH раствора выше 6,5 до ванадий 5+ окисляется более 70% всего содержащегося в растворе ванадия. С увеличением pH степень окисления ванадия возрастает.
Окисленный при pH, равном 9,2, раствор закачивали в аппарат, выполненный из оргстекла, с лопастной мешалкой (45 об/мин), и приливали серную кислоту для снижения величины pH (табл. 2). Извлечение ванадия в осадок определяли по содержанию ванадия в растворе методом отбора проб.
При pH выше 6,3 не наблюдали выделения осадка. В интервале pH от 6,3 до 4,8 выпадали в осадок оранжевые кристаллы поливанадатов калия и натрия. Процесс осаждения кристаллов практически заканчивался за 2 ч, при этом концентрация ванадия в растворе снижалась до постоянной величины (0,3 г/л). Осадок отфильтровывали через фильтр-ткань и промывали на фильтре равным объемом питьевой воды. Химический состав осадка, %: V2O5 - 72; V2O4 - 0,2; Mn - 0,06; Fe - 0,16; Si - 0,05; K - 10,5; Na - 3,6; S - 0,05; F - 0,02; остальное - вода.
При pH ниже 4,8 происходило выделение труднофильтруемого осадка красного цвета, имеющего в своем составе как поливанадаты, так и коллоидный пентаоксид ванадия, находящийся во взвешенном состоянии. Это не позволяло селективно отделить соединения ванадия от примесей.
Пример 2. При промышленных испытаниях полученный после выщелачивания ОВК кислый раствор состава, указанного в примере 1, направляли в нейтрализатор, представляющий собой емкость с мешалкой, выполненные из обычных сталей, куда одновременно закачивали концентрированный содовый раствор, pH раствора после нейтрализации составлял 7,5-8. Контроль pH осуществляли с помощью промышленного pH-метра.
Нейтрализованный раствор закачивали в промышленную флотомашину типа ФМ ("Механобр") объемом камеры 3,0 м3, выполненную из обычной стали. Скорость вращения импеллера флотомашины - 750 об/мин. При этом отношение Г:Ж составляло 3:1 в минуту. В этих условиях через 3 ч степень окисления ванадия составила 92%.
Раствор после окисления перекачивали в другую флотомашину, оборудованную низкооборотными (150 об/мин) мешалками. Медленным добавлением серной кислоты при перемешивании раствора устанавливали pH 6,0. В течение 2 ч происходило практически полное выделение из раствора поливанадатов в виде кристаллов оранжевого цвета. При этом остаточное содержание ванадия в растворе не превышало 0,3 г/л.
Полученную суспензию переливали в стальной конический отстойник, покрытый изнутри эпоксидной смолой. Осаждение проводили в течение 1 ч, после чего кристаллы оседали в нижней части отстойника. Раствор и шламовые примеси сливали сифоном. Кристаллический осадок поливанадатов промывали водой при перемешивании, выгружали на фильтр-ткань и направляли на вакуум-фильтр. Состав полученного продукта, в %: V2O5 - 69; V2O4 - 0,2; Mn - 0,05; Fe - 0,1; Si - 0,06; K - 10,3; Na - 3,7; S - 0,06; P - 0,02; остальное - вода. Сквозное извлечение ванадия - 94%.
Проведенные испытания показали, что реализация предложенного способа извлечения ванадия из кислого раствора, полученного после выщелачивания ОВК сернокислотного производства, позволяет выделить ванадий в виде чистого продукта - поливанадатов калия и натрия без использования дорогих реагентов и кислотостойкого оборудования из нержавеющих сталей.

Claims (2)

1. Способ извлечения ванадия, включающий выщелачивание отработанных ванадиевых катализаторов сернокислотного производства с получением кислого раствора, окисление ванадия и его выделение из раствора, отличающийся тем, что перед окислением раствор нейтрализуют щелочным реагентом до рН выше 6,5, окисление осуществляют пропусканием воздуха через раствор, а ванадий выделяют добавлением кислоты до рН 4,8 - 6,3.
2. Способ по п.1, отличающийся тем, что окисление воздухом проводят во флотомашине.
RU97108535A 1997-05-27 1997-05-27 Способ извлечения ванадия RU2110478C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97108535A RU2110478C1 (ru) 1997-05-27 1997-05-27 Способ извлечения ванадия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97108535A RU2110478C1 (ru) 1997-05-27 1997-05-27 Способ извлечения ванадия

Publications (2)

Publication Number Publication Date
RU2110478C1 true RU2110478C1 (ru) 1998-05-10
RU97108535A RU97108535A (ru) 1998-09-20

Family

ID=20193305

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97108535A RU2110478C1 (ru) 1997-05-27 1997-05-27 Способ извлечения ванадия

Country Status (1)

Country Link
RU (1) RU2110478C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454369C1 (ru) * 2008-11-18 2012-06-27 Панган Груп Стил Ванадиум & Титаниум Ко., Лтд. Способ получения оксида ванадия
RU2492254C1 (ru) * 2012-06-29 2013-09-10 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ извлечения ванадия из кислых растворов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454369C1 (ru) * 2008-11-18 2012-06-27 Панган Груп Стил Ванадиум & Титаниум Ко., Лтд. Способ получения оксида ванадия
RU2492254C1 (ru) * 2012-06-29 2013-09-10 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ извлечения ванадия из кислых растворов

Similar Documents

Publication Publication Date Title
US9399804B2 (en) Method for recovering scandium
CN114438347B (zh) 高氯含钒溶液中提取制备高纯氧化钒的方法
CA1079489A (en) Continuous production of iron oxide hydroxide
CN105800849A (zh) 一种磺酸类染料及染料中间体的废水处理工艺及装置
CN111206150B (zh) 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法
RU2110478C1 (ru) Способ извлечения ванадия
FI3795542T3 (fi) Kromiyhdisteiden poisto cr(vi)-pitoisista vesifaaseista
CA2213781C (en) Method for the removal of metals from solution by means of activated silica
JPH04119919A (ja) 二酸化チタンの製造方法
CN101636229A (zh) 从含砷溶液回收金属和分离砷的方法和设备
US5431895A (en) Process for the removal of lead and cadmium from phosphoric acid
EP3697730A1 (en) Polyferric sulphate solution
AU2009101298B4 (en) Process for recovering gold otherwise lost to the antimony bearing PLS from alkaline leaching of aurostibnite ores
RU2181303C2 (ru) Способ отделения катализатора методом мембранного электродиализа
US4394355A (en) Recovery of catalytically-useful cobalt and like metal moieties from their solid oxalates with EDTA salts
US4083915A (en) Cobalt stripping process
EP0440406A2 (en) Process for producing titanium dioxide
EP1067095B1 (en) A method for the manufacture of ferric sulfate solution and a water treatment agent using the same
RU2157420C1 (ru) Способ переработки ванадийсодержащих конвертерных шлаков
EP0186318A1 (en) Recovery of sulfur from sulfur froth
RU2131849C1 (ru) Способ получения коагулирующе-флокулирующего реагента и способ обработки воды
FI70048C (fi) Foerfarande foer utfaellning av vaerdefull metall ur en med mealljoner belastad organiskt vaetskemedium
CN1119424C (zh) 一种双氧水氧化法提铈工艺
RU2019521C1 (ru) Способ очистки воды
JPS589767B2 (ja) カリウム回収方法