RU2101620C1 - Способ регенеративного теплообмена - Google Patents

Способ регенеративного теплообмена Download PDF

Info

Publication number
RU2101620C1
RU2101620C1 RU94030375/06A RU94030375A RU2101620C1 RU 2101620 C1 RU2101620 C1 RU 2101620C1 RU 94030375/06 A RU94030375/06 A RU 94030375/06A RU 94030375 A RU94030375 A RU 94030375A RU 2101620 C1 RU2101620 C1 RU 2101620C1
Authority
RU
Russia
Prior art keywords
heat exchanger
water
air
elements
flue gases
Prior art date
Application number
RU94030375/06A
Other languages
English (en)
Other versions
RU94030375A (ru
Inventor
Эссле Стефан
Se]
Сонгфорс Бу
Original Assignee
Свенска Ротор Маскинер Аб
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Свенска Ротор Маскинер Аб filed Critical Свенска Ротор Маскинер Аб
Publication of RU94030375A publication Critical patent/RU94030375A/ru
Application granted granted Critical
Publication of RU2101620C1 publication Critical patent/RU2101620C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • F24H8/003Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation having means for moistening the combustion air with condensate from the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Supply (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chimneys And Flues (AREA)

Abstract

Использование: при регенеративном теплообмене между воздухом для горения и предварительно охлажденными в охлаждающем устройстве влажными дымовыми газами. Сущность изобретения: поверхности теплопередающих элементов регенеративного теплообменника спрыскивают на стороне дымового газа водой и создают водяную пленку на поверхности теплообменных элементов. 2 з. п. ф-лы, 2 ил.

Description

Изобретение относится к способу достижения оптимального обмена энергией при регенеративном теплообмене между воздухом для горения и предварительно охлажденными в охлаждающем устройстве влажными дымовыми газами.
Когда дымовые газы, содержащие водяной пар, охлаждаются до температуры ниже их точки росы, водяной пар может конденсироваться, и может выделяться теплота конденсации.
Дальнейшее понижение температуры возможно при регенеративном теплообмене между воздухом для горения и предварительно охлажденными влажными дымовыми газами, далее водяной пар конденсируется на дымовой стороне и вновь испаряется на стороне воздуха для горения.
Поскольку воздух для горения одновременно с нагреванием увлажняется, значительная часть энергии может передаваться от дымовых газов воздуху для горения.
Однако количество передаваемой энергии ограничено конденсацией на дымовой стороне, получаемой в течение регенеративного теплообмена, что не в полной мере соответствует возможности испарения на стороне воздуха для горения.
Задачей изобретения является упрощение способа получения оптимального обмена энергией.
Эта задача, согласно изобретению, достигается благодаря тому, что поверхности теплообменных элементов регенеративного теплообменника опрыскиваются водой на дымовой стороне таким образом, что слой воды образуется на поверхности элемента теплообменника до такого уровня, что поверхности элемента в течение всего времени нахождения на стороне воздуха на 100% покрыты водой.
Без добавления воды поверхности теплообменного элемента высыхают при прохождении воздушной стороны.
Сущность этого метода в сравнении со способом, согласно изобретению, становится понятной из следующего описания примера, по которому при использовании предлагаемого способа достигается увеличение энергии в воздухе для горения на 12,6%
Согласно простому наиболее предпочтительному варианту изобретения, охлаждающее устройство для предварительного охлаждения дымового газа размещается над дымовой стороной теплообменника, где дымовые газы спускаются в теплообменник таким образом, что вода, образовавшаяся в результате конденсации в охлаждающем устройстве, может стекать и/или капать вниз на элементы теплообменника.
Затем легко достигается температура подаваемой воды, в основном равная или немного выше температуры дымового газа на входе теплообменника, что важно для теплообмена.
На фиг. 1 представлен теплообменник, реализующий предлагаемый способ; на фиг. 2 сечение А-А на фиг. 1.
Вращающийся регенеративный теплообменник, содержащий ротор 1, установленный с возможностью вращения в корпусе 2 с входными каналами 3 и 4 для газов и воздуха соответственно и выходными каналами 5 и 6 для газов и воздуха соответственно, а также верхней и нижней разделительными плитами 7 и 8 соответственно, разделяющими подогреватель воздуха на газовую сторону и воздушную сторону 9 и 10 соответственно, занимающих каждая 165o общей окружности.
Ротор 1 снабжен радиальными стенками 11, делящими ротор на несколько секций 12, занимаемых элементами 13 теплообменника. Они пропускают воздух в направлениях воздушного и газового потоков и состоят из материалов, стойких к коррозии.
Во входном газовом канале 3 помещено охлаждающее устройство 15, которое присоединяется, например, к трубе рециркуляции воды для централизованного теплоснабжения и охлаждает дымовые газы до температуры ниже их точки росы.
Таким образом, конденсируемая вода стекает непосредственно или по канавке вниз на элементы 13 ротора 1 теплообменника, поверхности которых осуществляют конденсацию прямо на поверхностях элементов и также дополнительно спрыскиваются водой, прежде чем они проходят под разделительной плитой 7 и далее на воздушную сторону 10, где вода начинает вновь испаряться.
Согласно изобретению, вода, спрыскивающая элементы 13, а также вода, образовавшаяся в результате конденсации, так обильны, что элементы, пройдя воздушную сторону 10, остаются влажными.
В случае, если конденсация и спрыскивание водой окажутся недостаточными для подобного действия, то нужно добавить воды из водопровода 16, снабженного клапаном и/или возвратной линией 18, имеющей насос 17 от канавки 19 для собирания избыточной воды в нижней разделительной плите 8, при этом линия 18 соединена с отверстиями 20 для спрыскивания в газовом входном канале 3.
Благодаря такой оптимальной конденсации и увлажнению на стороне дымового газа и реиспарению на воздушной стороне от дымовых газов в воздух для горения может передаваться значительно больше энергии, чем это было достижимо раньше.
Для иллюстрации получаемого результата при использовании способа, согласно изобретению, ниже описан пример подобного способа с добавлением и без добавления воды в элементы теплообменника.
В устройстве, показанном на фиг. 1, на сторону дымового газа подается 101374 Нм3 дымовых газов в 1 ч, а с воздушной стороны выходит 92952 Нм3 воздуха в 1 ч.
Каждая сторона составляет 165o общей окружности при скорости вращения ротора 4 об/мин. Температура подаваемого воздуха составляет 30oC.
Охлаждающее устройство 15 способно охлаждать дымовые газы до 58oC, при этом конденсирующаяся вода капает или стекает вниз на элементы 13 теплообменника и имеет в основном такую же температуру.
Подача дополнительной воды для конденсации из охлаждающего устройства 15 должна быть достаточной, чтобы элементы 13 на воздушной стороне сохранялись достаточно влажными. Температура отходящих дымовых газов составляет затем 33oC, а отходящего воздуха 55,5oC.
Содержание влаги входящего газа составляет 0,1336 кг на 1 кг сухих газов, а содержание влаги отходящего газа составляет 0,0328 кг на 1 кг сухих газов.
Соответствующие величины для воздуха составляют 0,0135 и 0,1192 кг на 1 кг сухого воздуха соответственно. Таким образом, энергия, поступающая на воздушную сторону, составляет 9855 кВт.
Если охлаждающее устройство 15 расположено таким образом, что вытекающая из него образовавшаяся в результате конденсации вода не подается на элементы 13, например, в соответствии со Шведским патентом 8703338-7, элементы 13 на воздушной стороне высыхают прежде, чем проходят ее. Температура входящих газов остается 58oC, так же как температура входящего воздуха остается 30oC.
Без дополнительной подачи воды, образовавшейся в результате конденсации, температура охлаждающего газа будет равна 33,8oC, а температура отходящего воздуха будет равна 53,8oC.
Содержание влаги во входящих газах, так же как и содержание влаги во входящем воздухе, остается неизменным 0,1336 кг на 1 кг сухих газов и 0,0135 кг на 1 кг сухого воздуха соответственно.
Содержание влаги в отходящих газах теперь будет равно 0,0341 кг на 1 кг сухих газов, а содержание влаги выходящего воздуха составит 0,1071 кг на 1 кг сухого воздуха.
Таким образом, энергия, поступающая на воздушную сторону, составит 8756 кВт.
Из изложенного очевидно, что благодаря использованию способа согласно изобретению передается на 12,6% больше энергии по сравнению со способом, где не применяется дополнительная подача воды.

Claims (2)

1. Способ регенеративного теплообмена между воздухом для горения и предварительно охлажденными в охлаждающем устройстве влажными дымовыми газами, отличающийся тем, что поверхности теплопередающих элементов регенеративного теплообменника спрыскивают на стороне дымового газа водой и создают водяную пленку на поверхностях элементов теплообменника, которая дает возможность поверхностям этих элементов в течение всего времени пребывания их на воздушной стороне оставаться по существу покрытыми водой на 100%
2. Способ по п.1, отличающийся тем, что охлаждающее устройство для предварительного охлаждения дымовых газов размещают над дымовой стороной теплообменника, откуда дымовые газы отводят вниз в теплообменник таким образом, что конденсирующаяся вода, образующаяся в охлаждающем устройстве, может стекать и/или капать вниз на элементы теплообменника.
3. Способ по п.1 или 2, отличающийся тем, что температуру воды, подаваемой для спрыскивания теплопередающих элементов, поддерживают равной или несколько выше температуры дымового газа на входе подающего канала теплообменника.
RU94030375/06A 1991-12-17 1992-12-16 Способ регенеративного теплообмена RU2101620C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE9103730-9 1991-12-17
SE9103730.9 1991-12-17
SE9103730A SE468296B (sv) 1991-12-17 1991-12-17 Foerfarande foer optimalt energiutbyte vid regenerativ vaermevaexling, varvid vaermeoeverfoeringselementen begjutes med vatten
PCT/SE1992/000867 WO1993012386A1 (en) 1991-12-17 1992-12-16 Method for regenerative heat exchange

Publications (2)

Publication Number Publication Date
RU94030375A RU94030375A (ru) 1996-07-27
RU2101620C1 true RU2101620C1 (ru) 1998-01-10

Family

ID=20384628

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94030375/06A RU2101620C1 (ru) 1991-12-17 1992-12-16 Способ регенеративного теплообмена

Country Status (9)

Country Link
US (1) US5482108A (ru)
EP (1) EP0616674B1 (ru)
JP (1) JP3299539B2 (ru)
CZ (1) CZ283843B6 (ru)
DE (1) DE69210040T2 (ru)
DK (1) DK0616674T3 (ru)
RU (1) RU2101620C1 (ru)
SE (1) SE468296B (ru)
WO (1) WO1993012386A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703052C1 (ru) * 2019-04-01 2019-10-15 Евгений Михайлович Пузырёв Регенеративный теплообменник с испарительным охлаждением
RU2715127C1 (ru) * 2019-07-15 2020-02-25 Михаил Евгеньевич Пузырев Роторный регенеративный теплообменник

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE506020C2 (sv) * 1996-02-08 1997-11-03 Svenska Rotor Maskiner Ab Regenerativ, roterande värmeväxlare med hydraulmotordrivning
SE521274C2 (sv) * 1999-06-23 2003-10-14 Fagersta Energetics Ab Förfarande och anläggning för rökgaskondensering vid förbränning av vätehaltiga eller fuktiga bränslen
US9056988B2 (en) 2007-02-05 2015-06-16 Ppg Industries Ohio, Inc. Solar reflective coatings and coating systems
JP5351840B2 (ja) * 2010-06-25 2013-11-27 三菱重工業株式会社 排ガスの余熱回収装置
US9404668B2 (en) 2011-10-06 2016-08-02 Lennox Industries Inc. Detecting and correcting enthalpy wheel failure modes
US9175872B2 (en) 2011-10-06 2015-11-03 Lennox Industries Inc. ERV global pressure demand control ventilation mode
US9835353B2 (en) 2011-10-17 2017-12-05 Lennox Industries Inc. Energy recovery ventilator unit with offset and overlapping enthalpy wheels
US9395097B2 (en) 2011-10-17 2016-07-19 Lennox Industries Inc. Layout for an energy recovery ventilator system
US9441843B2 (en) * 2011-10-17 2016-09-13 Lennox Industries Inc. Transition module for an energy recovery ventilator unit
US9671122B2 (en) 2011-12-14 2017-06-06 Lennox Industries Inc. Controller employing feedback data for a multi-strike method of operating an HVAC system and monitoring components thereof and an HVAC system employing the controller
WO2014110880A1 (zh) * 2013-01-18 2014-07-24 北京神雾环境能源科技集团股份有限公司 气体换热器及具有其的气体换热系统
US10890383B2 (en) * 2014-01-21 2021-01-12 Drexel University Systems and methods of using phase change material in power plants
CN109869734B (zh) * 2017-12-04 2020-05-12 清华大学 一种烟气余热深度回收系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB717782A (en) * 1951-04-24 1954-11-03 Svenska Rotor Maskiner Ab Improvements in or relating to systems for preheating and humidifying air
US2843217A (en) * 1952-02-21 1958-07-15 Linde Robert Von Gas separating plant
US3148665A (en) * 1961-08-11 1964-09-15 Gilbert Associates Boiler waste heat recovery process
SE7809801L (sv) * 1978-09-14 1980-03-15 Lagerquist Roy Forangnings- kondensationsforfarande for vermeanleggningar
US4497361A (en) * 1981-06-15 1985-02-05 Hajicek David J Regenerative heat and humidity exchanging apparatus
US4452180A (en) * 1982-09-30 1984-06-05 Hassan Kamal Eldin Indirect counterflow heat recovery system of the regenerative type for steam generators, gas turbines, and furnaces and engines in general
SE455226B (sv) * 1986-10-23 1988-06-27 Scandiaconsult Ab Forfarande och anordning for rokgaskondensering samt forvermning och befuktning av forbrenningsluft vid forbrenningsanleggningar
GB8812251D0 (en) * 1988-05-24 1988-06-29 Stelrad Group Ltd Bottles
DE4107359A1 (de) * 1991-03-05 1992-09-10 Ver Energiewerke Ag Verfahren und anordnung zur regelung der verbrennungslufttemperatur an dampfkesseln

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703052C1 (ru) * 2019-04-01 2019-10-15 Евгений Михайлович Пузырёв Регенеративный теплообменник с испарительным охлаждением
RU2715127C1 (ru) * 2019-07-15 2020-02-25 Михаил Евгеньевич Пузырев Роторный регенеративный теплообменник

Also Published As

Publication number Publication date
JP3299539B2 (ja) 2002-07-08
CZ283843B6 (cs) 1998-06-17
EP0616674B1 (en) 1996-04-17
DE69210040T2 (de) 1996-11-28
JPH07502589A (ja) 1995-03-16
CZ144094A3 (en) 1994-12-15
DE69210040D1 (de) 1996-05-23
EP0616674A1 (en) 1994-09-28
SE9103730L (sv) 1992-12-07
DK0616674T3 (da) 1996-08-12
SE468296B (sv) 1992-12-07
WO1993012386A1 (en) 1993-06-24
RU94030375A (ru) 1996-07-27
US5482108A (en) 1996-01-09
SE9103730D0 (sv) 1991-12-17

Similar Documents

Publication Publication Date Title
RU2101620C1 (ru) Способ регенеративного теплообмена
US6138470A (en) Portable liquid desiccant dehumidifier
US4939906A (en) Multi-stage boiler/regenerator for liquid desiccant dehumidifiers
CA1059326A (en) Steam condensing apparatus
US4287721A (en) Chemical heat pump and method
KR20150030618A (ko) 습식 냉각 탑을 위한 에어-투-에어 열 교환기 우회 장치 및 방법
SU1022947A2 (ru) Способ опреснени воды
US4301861A (en) Steam condensing apparatus
JPS6014265B2 (ja) 造水・空調システム
EP0485375A1 (en) METHOD AND DEVICE FOR EVAPORATING LIQUIDS.
US4860548A (en) Air conditioning process and apparatus therefor
US4685617A (en) Method of and apparatus for conditioning air in enclosures
JP3559255B2 (ja) 間接型熱交換装置を備えたデシカント空調装置
US4803846A (en) Method of and means for controlling the condition of air in an enclosure
CN109626473A (zh) 闭式制冷式加湿脱湿海水淡化系统及其工作方法
FI72799C (fi) Saett att aostadkomma vaermeaotervinning ur fuktig gas genom vattenaongabsorption och anlaeggning foer saettets utfoerande.
RU2177115C2 (ru) Устройство кондиционирования воздуха
JPS6274221A (ja) 囲い中の空気状態の調整方法と手段
JPH05346236A (ja) 冷房装置
JP3314220B2 (ja) 凍結品の解凍方法
SU637593A1 (ru) Установка кондиционировани воздуха
SU1186575A1 (ru) Установка дл опреснени воды
SU1553780A1 (ru) Контактный нагреватель
SU1374018A1 (ru) Сушильна установка
EP1064499B1 (en) Dehumidifier for flue gases

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20031217