RU2096330C1 - Способ выделения сульфата меди из сернокислого раствора - Google Patents

Способ выделения сульфата меди из сернокислого раствора Download PDF

Info

Publication number
RU2096330C1
RU2096330C1 RU95115837A RU95115837A RU2096330C1 RU 2096330 C1 RU2096330 C1 RU 2096330C1 RU 95115837 A RU95115837 A RU 95115837A RU 95115837 A RU95115837 A RU 95115837A RU 2096330 C1 RU2096330 C1 RU 2096330C1
Authority
RU
Russia
Prior art keywords
copper sulfate
copper
sulfate
crystallization
content
Prior art date
Application number
RU95115837A
Other languages
English (en)
Other versions
RU95115837A (ru
Inventor
Р.Я. Каплун
В.П. Ивонин
М.И. Елкин
В.В. Романова
Ф.Г. Хусаинов
В.А. Труфанов
Original Assignee
Акционерное общество открытого типа "Уралэлектромедь"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "Уралэлектромедь" filed Critical Акционерное общество открытого типа "Уралэлектромедь"
Priority to RU95115837A priority Critical patent/RU2096330C1/ru
Publication of RU95115837A publication Critical patent/RU95115837A/ru
Application granted granted Critical
Publication of RU2096330C1 publication Critical patent/RU2096330C1/ru

Links

Images

Landscapes

  • Fodder In General (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Fertilizers (AREA)

Abstract

Использование: изобретение относится к области химии, в частности к способам получения сульфата меди - медного купороса, и может быть использовано в металлургии, химической промышленности, в производстве кормовых микродобавок в сельском хозяйстве. Способ получения сульфата меди из сернокислых растворов электролитического рафинирования меди включает совмещенную выпарку-кристаллизацию нагретого до 80-90oC раствора с соотношением меди и серной кислоты, равным 35-95:1, с температурой циркулирующего маточного раствора на 2-4oC выше температуры кристаллизации сульфата меди, при этом вакуумную кристаллизацию осуществляют под давлением 1,5-1,9 кПа. Способ позволяет получать мелкодисперсный продукт с содержанием основного продукта не менее 98,5% и с содержанием кристаллов фракции крупностью менее 0,5 мм до 85-95% и дает возможность исключить крупные фракции кристаллов 2,5; 1,6; 1,0 мм, 1 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области химии, способу получения сульфата меди - медного купороса, и может быть использовано в металлургии при переработке сернокислых растворов электролитического получения рафинированной меди.
Способ может быть использован в металлургии, химической промышленности, в производстве кормовых микродобавок в сельском хозяйстве, для скота и птицы, а также в производстве удобрений.
Заявляемый способ получения сульфата меди позволяет получать мелкодисперсный сульфат меди (медный купорос) более высокого качества как по содержанию основного компонента сульфата меди не менее 98,5% так и по содержанию кристаллов фракции крупностью менее 0,5 мм до 85-95% позволяет исключить крупные фракции кристаллов сульфата меди 2,5; 1,6; 1,0 мм.
Получение сульфата меди определенного гранулометрического состава, содержащего фракции крупностью менее 0,5 мм, позволяющее расширить область применения медного купороса, является актуальной задачей, так как для кормовых микродобавок необходим сульфат меди более мелких фракций, чем 0,5 мм.
Известен способ получения сульфата меди медного купороса из отработанного электролита, включающий нейтрализацию его материалами, содержащими медь, до остаточной концентрации серной кислоты 0,5% упаривание нейтрализованного раствора меди при 95-100oC и последующее охлаждение раствора сульфата меди. Отжатые на центрифуге кристаллы промывают и высушивают [1]
Недостатком способа являются сросшиеся в виде двойников кристаллы сульфата меди со средним размером 0,3-0,4 мм, содержание основного компонента CuSO4•5H2O 93-95% Это некондиционный продукт, который необходимо дополнительно перекристаллизовывать.
Известен другой способ получения кристаллического сульфата меди медного купороса из отработанного электролита медеэлектролитных производств [2] включающий нейтрализацию раствора в две стадии. Вначале отработанный электролит нейтрализуют медьсодержащими металлами до остаточного содержания серной кислоты 5-50 г/л и повышения концентрации меди до 140-160 г/л, а затем проводят донейтрализацию раствора гексаметилентетрамином в количестве, превышающем необходимое для нейтрализации кислоты, 10-20 г/п. Нейтрализованный раствор отстаивают, осаждают примеси, осадок их отделяют, а очищенный раствор упаривают и кристаллизуют.
Получают сульфат меди в виде рыхлой массы о содержанием основного компонента 94% железа 0,1% мышьяка 0,05% нерастворимого осадка - 0,1% примеси органики 0,1% с преобладанием частиц размером 0,25 мм.
Такой продукт плохо отжимается, содержит влагу до 10-20% загрязнен примесными элементами.
Для повышения чистоты конечного продукта его необходимо промывать, при этом снижается выход готового продукта примерно на 25-30 мас. Продукт слеживается, комкуется при хранении и транспортировке. Из-за низкого содержания основного компонента (97%) и повышенного содержания примесей и органики полученный сульфат меди нельзя использовать в качестве кормовой добавки.
Кроме того, способ с двухстадийной нейтрализацией раствора разными материалами с отстаиванием и отделением осадка примесей затрудняет его промышленное осуществление, требует применения дорогостоящего и дефицитного гексаметилентетрамина.
Наиболее близким изобретению по технической сущности и достигаемому результату является способ получения сульфата меди медного купороса - вакуумной кристаллизацией из сернокислого раствора при постоянной температуре в интервале 27-55oC и непрерывной циркуляции образующийся суспензии со скоростью 1-4 м/с при соотношении массы кристаллов в циркулирующей суспензии к массе маточного раствора, равном 1:(1,2-5,3) [3]
Способ позволяет получать сульфат меди неоднородного гранулометрического состава со средним диаметром частиц 0,8-1,3 мм и более низкого качества по содержанию основного компонента 97-98% и содержанию примесей: железа 0,039% мышьяка 0,015% нерастворимого остатка 0,1% Это не соответствует требованиям, предъявляемым к мелкодисперсному сульфату меди: содержание кристаллов крупностью меньше 0,5 мм должно составлять не менее 85-95%
Полученный этим способом продукт содержит наряду с фракцией кристаллов менее 0,5 мм и крупные частицы размером более 1 мм; 1,6 мм; 2,5 мм, что не позволяет использовать такой продукт в качестве микродобавки в корм скоту и птице.
Задачей заявляемого изобретения является получение более однородного, мелкокристаллического продукта сульфата меди с содержанием частиц фракции мельче 0,5 мм не менее 85-95% исключить крупные фракции кристаллов сульфата меди: 1 мм; 1,6 мм; 2,5 мм. По химическому составу мелкокристаллический продукт должен отвечать требованиям к сульфату меди маркам "А" и "Б", высшего и первого сорта (ГОСТ 19347-84), содержать основного компонента сульфата меди не менее 98,5% суммы примесей (в пересчете на металл) не более 0,14-0,15%
Поставленная задача достигается тем, что мелкодисперсный сульфат меди получают совмещенной выпаркой кристаллизацией из раствора, нагретого до 80-90oC с соотношением меди и серной кислоты, равном (35-95):1, поддерживая температуру циркулирующего маточного раствора на 2-4oC выше температуры кристаллизации сульфата меди, при этом вакуумную кристаллизацию осуществляют под давлением 1,5 1,9 кПа.
Способ обеспечивает ряд преимуществ: конечный продукт однородный по гранулометрическому составу, содержание основного компонента пентасульфата меди не ниже 98,5% чище по содержанию примесей (железа, мышьяка, никеля, свинца, цинка, кадмия, сурьмы, ртути), отвечает требованиям потребителей к качеству микродобавки в корм окоту и птице.
Сущность заявляемого способа в том, что при получении сульфата меди из сернокислых растворов вакуумной кристаллизацией при повышенной температуре и непрерывной циркуляции и отводе суспензии осуществляют совмещенную выпарку-кристаллизацию из раствора, нагретого до 80-90oC, с соотношением меди и серной кислоты, равном (35-95):1, под давлением 1,5-1,9 кПа; поддерживая температуру циркулирующего маточного раствора на 2-4oC выше температуры кристаллизации сульфата меди.
Сопоставительный анализ известных технических решений и заявляемого изобретения позволяет сделать вывод, что изобретение не известно из уровня техники и соответствует критерию "новизна".
От прототипа заявляемый способ отличается тем, что вакуумную выпарку-кристаллизацию сернокислого раствора сульфата меди осуществляют из нагретого до 80-90oC раствора о соотношением меди и серной кислоты, равном (35-95):1 под давлением 1,5-1,9 кПа, поддерживая температуру циркулирующего маточного раствора на 2-4oC выше температуры кристаллизации сульфата меди.
Сущность заявляемого изобретения для специалиста, занимающегося кристаллизацией сульфата меди из растворов, не следует явным образом из известного уровня техники, что позволяет сделать вывод о соответствии изобретения критерию "изобретательский уровень".
Заявляемый способ получения сульфата меди медного купороса вакуумной кристаллизацией из сернокислых растворов позволяет получить мелкокристаллический продукт крупностью мельче 0,5 мм, более однородный по гранулометрическому составу, имеющий высокое содержание основного компонента и низкое примесей (не ниже 98,5% и не выше 0,14-0,15% соответственно).
Способ позволяет получать до 85-95% фракции кристаллов менее 0,5 мм, исключить крупные частицы продукта размером более 1 мм; 1,6 мм; 2,5 мм, обеспечить высокое качество продукта по химическому составу, отвечающему требованиям на сульфат меди марок "А" и "Б", высшего и первого сорта (по ГОСТ 19347-84).
Режимы осуществления способа подобраны экспериментально.
При температуре исходного раствора менее 80oC необходимо увеличение расхода пара на греющую камеру, сложнее добиться оптимального режима перегрева циркулирующего маточного раствора она достигает лишь 1,5oC. При этом перегреве содержание фракции кристаллов менее 0,5 мм составляет 78% ухудшается качество сульфата меди (таблица 1, п.4); продукт менее однородный, выход его уменьшен на 5% При температуре исходного раствора выше 90oC труднее добиться оптимальной температуры перегрева, продукт также менее однородный, выход его уменьшается до 80% (таблица 1, п.5). Исходный раствор с содержанием меди и кислоты в соотношении меньшем 35:1 приводит к снижению выхода мелкодисперсного сульфата меди (крупностью менее 0,5 мм) до 81% а содержания основного компонента до 97% к увеличению примесей более 0,16% (таблица 1, п.7).
Раствор c большим соотношением меди к кислоте, чем 95:1, ведет к увеличению степени пересыщения раствора, потерям меди с маточным раствором, уменьшению выхода медкодисперсного сульфата меди медного купороса на 8% Продукт получен менее однородный, фракции кристаллов крупностью менее 0,5 мм составляют 70% (таблица 1, п.6).
Температура перегрева циркулирующего маточного раствора более 4oC ведет к ухудшению качества по содержанию основного компонента до 98% суммы примесей более 0,2% снижению выхода продукта на 7% и содержания фракции менее 0,5 мм до 80% (таблица 1, п.5,8).
Меньшее значение температуры перегрева маточного раствора, чем на 2oC, ведет также к снижению качества и однородности продукта, уменьшению его выхода (таблица 1, п.4).
Вакуум более 15 кПа трудно поддерживать стабильно, особенно в летнее время, из-за ограниченных возможностей снижения температуры охлаждающей воды, увеличивается ее расход. Уменьшается однородность и качество продукта, его выход (таблица 1, п.8).
Вакуум меньше 1,9 кПа влияет на выход мелкодисперсного сульфата меди - выход уменьшается на 8% содержание фракции менее 0,5 мм 75% содержание основного компонента в продукте составляет 98% сумма примесей (в пересчете на металл) 0,2% Способ опробован в промышленном масштабе.
Осуществление способа иллюстрируется следующими примерами, выполненными в условиях действующего промышленного производства АООТ "Уралэлектромедь".
Пример 1.
Исходный сернокислый раствор после электрорафинирования меди, обогащенный медью до соотношения меди к серной кислоте, равного 35:1, нагревают до 82oC, 10 м 3/4 раствора подают в вакуум-выпарной кристаллизатор (ВВК) и смешивают с циркулирующим в кристаллизаторе маточным раствором, отбираемым из зоны кристаллизации и предварительно подогретым на 2oC выше температуры кристаллизации сульфата меди. На выходе из центральной трубы кристаллизатора в сепаратор выделяют кристаллы сульфата меди при установившемся вакууме 1,9 кПа. При этих условиях отводят суспензию кристаллов сульфата меди в количестве 4200 кг/ч. (в пересчете на сухую соль ) из зоны кристаллизации на центрифугирование.
Кристаллы сульфата меди центрифугируют от маточного раствора на центрифуге ФГП, сушат при 80oC в сушильном барабане.
Получен сульфат меди однородного фазового и гранулометрического составов.
Выход кристаллов сульфата меди фракции менее 0,5 мм 88% крупные зерна кристаллов фракций 2,5; 1,6; 1,0 мм отсутствуют.
Химический состав сульфата меди удовлетворяет требованиям к 1 сорту А или высшего и содержит (мас.):
Сульфат меди не менее 99,0
Серная кислота отсутствует
Железо не более 0,01
Мышьяк не более 0,003
Никель не более 0,1
Сурьма не более 0,01
Свинец не более 0,0008
Кадмий не более 0,0001
Кальций не более 0,003
Магний не более 0,001
Цинк не более 0,004
Нерастворимый остаток не более 0,01
Магния не более 0,001
Цинка не более 0,004
Нерастворимый остаток не более 0,01
Ртуть не более 0,0005
Пример 2.
Исходный сернокислый раствор после электрорафинирования меди, обогащение по меди до соотношения ее к серной кислоте 80:1, нагретый до 86oC, в количестве 8 м3/ч подают в вакуум-выпарной кристаллизатор (ВВК) и смешивают о циркулирующим маточным раствором, который предварительно подогревается на 3oC выше температуры охлаждения суспензии в аппарате.
В камере смешения эта смесь смешивается с циркулирующей внутри аппарата суспензией сульфата меди.
При выходе из центральной трубы ВВК полученную смесь охлаждают при вакууме 1,7, кПа и выделяют из суспензии кристаллы сульфата меди в количестве 4280 кг/ч в пересчете на сухую соль.
Кристаллы сульфата меди отделяют на центрифуге, сушат при 80oC.
Полученные кристаллы сульфата меди однородны по фазовому и гранулометричеcкому составу. Выход кристаллов фракции менее 0,5 мм составляет 92% фракции кристаллов 2,5; 1,6; 1,0 мм отсутствуют.
Химический состав сульфата меди отвечает требованиям потребителей, соответствует 1 сорту марки А, содержит,
Медного купороса CuS04•5Н2O не менее 98,8
Железа не более 0,01
Серной кислоты отсутствует
Нерастворимого остатка не более 0,01
Мышьяка не более 0,003
Никеля не более 0,15
Сурьмы не более 0,01
Свинца не более 0,001
Кадмия не более 0,0001
Кальция не более 0,002
Магния не более 0,001
Цинка не более 0,004
Ртути не более 0,00006
Пример 3.
Мелкокристаллический сульфат меди получают, как в примере 1, при подаче исходного раствора в количестве 12 м3/ч, с соотношением меди к серной кислоте 95:1, нагретого до 90oC, и подают в вакуум-выпарной кристаллизатор, смешивая его с циркулирующим маточным раствором, нагретым на 4oC выше температуры кристаллизации сульфата меди, а затем смешивают полученную смесь с циркулирующей внутри аппарата суспензией. При этом поддерживают вакуум 1,5 кПа, обеспечивающий пересыщение суспензии и выход сульфата меди в количестве 4500 кг/ч в пересчете на сухую соль.
Кристаллы сульфата меди отделяют на центрифуге, сушат при тех же условиях, что в примере 1.
Массовая доля кристаллов сульфата меди менее 0,5 мм составляет 95% крупные фракции 2,5; 1,6; 1,0 мм также отсутствуют.
Химический состав сульфата меди соответствует 1 сорту, высшей марки, содержащей,
Медного купороса не менее 98,5
Серной кислоты отсутствует
Железа не более 0,01
Нерастворимого остатка не более 0,01
Мышьяка не более 0,003
Никеля не более 0,15
Сурьмы не более 0,01
Свинца не более 0,001
Кадмия не более 0,0001
Кальция не более 0,002
Магния не более 0,001
Цинка не более 0,004
Ртути не более 0,00008
Таким образом, заявляемый способ получения сульфата меди кристаллизацией из сернокислого раствора позволяет вести переработку отработанных растворов электролитического рафинирования меди, получать мелкокристаллический сульфат меди медный купорос однородного гранулометрического состава и более высокого химического качества по содержанию основного компонента (не менее 98,5%), позволит исключить крупные фракции кристаллов сульфата меди 2,5; 1,6; 1,0 мм.
Положительные результаты испытания способа в условиях работы АООТ "Уралэлектромедь" позволяют считать заявляемый способ получения сульфата меди промышленно применимым.
Преимущества промышленного применения заявляемого способа: возможность получения мелкокристаллического сульфат меди -медного купороса более однородного гранулометрического состава и более высокого химического состава по содержанию основного компонента, воспроизводимость и стабильность технологических параметров, повышение извлечения меди в готовый продукт. Сульфат меди такого качества может быть использован в качестве кормовой добавки для скота и птицы.

Claims (2)

1. Способ выделения сульфата меди из сернокислого раствора, включающий вакуумную кристаллизацию исходного раствора при повышенной температуре, непрерывной циркуляции и отводе суспензии, отделение кристаллов и сушку их, отличающийся тем, что нагретый до 80 90oС исходный раствор с массовым соотношением меди и серной кислоты 35 95 1 смешивают с циркулирующим маточным раствором с температурой на 2 4oС выше температуры кристаллизации сульфата меди и подвергают вакуумной выпарке-кристаллизации.
2. Способ по п.1, отличающийся тем, что вакуумную кристаллизацию ведут под давлением 1,5 1,9 кПа.
RU95115837A 1995-09-08 1995-09-08 Способ выделения сульфата меди из сернокислого раствора RU2096330C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95115837A RU2096330C1 (ru) 1995-09-08 1995-09-08 Способ выделения сульфата меди из сернокислого раствора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95115837A RU2096330C1 (ru) 1995-09-08 1995-09-08 Способ выделения сульфата меди из сернокислого раствора

Publications (2)

Publication Number Publication Date
RU95115837A RU95115837A (ru) 1997-10-10
RU2096330C1 true RU2096330C1 (ru) 1997-11-20

Family

ID=20171977

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95115837A RU2096330C1 (ru) 1995-09-08 1995-09-08 Способ выделения сульфата меди из сернокислого раствора

Country Status (1)

Country Link
RU (1) RU2096330C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2586413C2 (ru) * 2014-10-15 2016-06-10 Оао "Некк" Способ получения медного купороса

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Позин М.Е. Технология минеральных солей. Ч. 1. - Л.: Химия, 1974, с.688 и 689. 2. Авторское свидетельство СССР N 889619, кл.C 01G 3/10, 1981. 3. Авторское свидетельство СССР N 608764, кл.C 01G 3/10, 1978. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2586413C2 (ru) * 2014-10-15 2016-06-10 Оао "Некк" Способ получения медного купороса

Similar Documents

Publication Publication Date Title
US2986448A (en) Preparation of sodium percarbonate
JP5940025B2 (ja) 高純度のパラタングステン酸アンモニウム四水和物
CN104743581B (zh) 一种高纯氯化钾的制备工艺
US3383180A (en) Crystallization of large particle sized ammonium perchlorate
JP2013180948A (ja) 晶析による粗大硫安製品の製造方法、およびこの製造方法を実施するための装置
US3206282A (en) Removal of soluble after-precipitate from concentrated phosphoric acid
US2895794A (en) Process for recovering potassium values from kainite
RU2096330C1 (ru) Способ выделения сульфата меди из сернокислого раствора
US3419899A (en) Crystallization of ammonium perchlorate
US4138472A (en) Process for obtaining coarsely crystalline pure ammonium sulfate
US3472619A (en) Production of phosphoric acid and calcium sulfate
US2809214A (en) Purification of monochloroacetic acid
US3367951A (en) Process for purifying solid peroxides
RU2071942C1 (ru) Способ получения медного купороса
DE2631917A1 (de) Kontinuierliches kristallisationsverfahren zur herstellung von natriumcarbonat-peroxid
US2892870A (en) Process for purifying and crystallizing urea
RU2747674C1 (ru) Способ получения медного купороса
US3711597A (en) Process for the recovery of ammonium sulphate from it aqueous solutions contaminated by organic substances
US3357979A (en) Process improvement for preparing cyanuric acid
SU1824377A1 (ru) Способ извлечения лития из литийсодержащего раствора
RU2104936C1 (ru) Способ получения сульфата магния
RU2255046C1 (ru) Способ получения медного купороса
US4485049A (en) Two-stage crystallization of nitrilotriacetonitrile from a hot solution
SU1030388A1 (ru) Способ получени гидрофобного карбоната кальци
SU1433951A1 (ru) Способ получени кормового диаммонийфосфата

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140909